1
|
Zhang YH, Deng LH, Tan DX, Han FS. Catalytic Asymmetric Total Synthesis of (+)-Chamaecydin and (+)-Isochamaecydin and their Stereoisomers. Angew Chem Int Ed Engl 2025:e202423944. [PMID: 39786342 DOI: 10.1002/anie.202423944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C30 terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed. The 6-6 ring fragment and the five-membered ring fragment were unified via a metal-halogen exchange/intermolecular addition reaction. Subsequently, the central 6-5 bicyclic ring system was constructed through a Michael/aldol cascade. The successful establishment of these strategic transformations allowed for an efficient and rapid construction of spiroannulated 6-6-6-5-5 pentacarbocyclic core via a convergent manner. Finally, the total syntheses of naturally occurring (+)-chamaecydin and (+)-isochamaecydin and their corresponding 1',5'-stereoisomers have been achieved divergently by appropriately orchestrating the reaction sequence including isopropyl incorporation, oxidation state adjustment, and carbonyl group-directed regio- and stereoselective cyclopropanation at a late stage.
Collapse
Affiliation(s)
- Yuan-He Zhang
- Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Le-Hua Deng
- Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dong-Xing Tan
- Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Fu-She Han
- Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Hosseininezhad S, Pirani Ahmad Abad S, Ramazani A. Exploring the capabilities of 2-alkynyl aryl/benzyl azides: synthesis approaches for indoles, quinolines, and their derivatives via transition metal catalysis. RSC Adv 2025; 15:1163-1204. [PMID: 39811016 PMCID: PMC11729253 DOI: 10.1039/d4ra08280j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
In recent research, quinoline and indole structures have gained recognition for their significant clinical relevance and effectiveness. These compounds are known for their wide-ranging pharmacological effects, which include anticancer, antibacterial, antifungal, antiviral, and anti-inflammatory properties. Researchers have successfully implemented a variety of innovative synthetic strategies, leading to the creation of numerous compounds that display fascinating biological activities in diverse fields. This has sparked growing interest in developing quinoline and indole-based analogues, given their impressive variety of biological effects. Over the past few years, new, efficient, and more accessible synthetic techniques-such as green chemistry and microwave-assisted synthesis-have been introduced to produce a diverse array of quinoline and indole structures. This development reflects an expanding area of interest in both academic and industrial settings, making it easier to investigate their biological capabilities. In this review, we examine the intriguing transformations of 2-alkynyl aryl and benzyl azide derivatives into indoles and quinolines, emphasizing the role of metal catalysts such as Au, Cu, Rh, Pd, and Ag, from 2011 to 2024. We showcase the variety of substrates involved, highlight notable advancements in this area of research, and address the limitations faced by chemists. Additionally, we offer insights into the mechanisms driving these important reactions, aiming to enhance understanding and inspire future work in this dynamic field.
Collapse
Affiliation(s)
- Seyedmohammad Hosseininezhad
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Sina Pirani Ahmad Abad
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
3
|
Yuan H, Zhou Y, Xie X, Bao M, Chen K, Hong K, Yu Z, Xu X. Enantioselective Assembly of Fully Substituted α-Amino Allenoates Through a Mannich Addition and Stepwise [3,3]-σ Rearrangement Sequence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409334. [PMID: 39568322 PMCID: PMC11727130 DOI: 10.1002/advs.202409334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/27/2024] [Indexed: 11/22/2024]
Abstract
Chiral fully-substituted allenes are synthetically significant and pivotal building blocks that can engage in diverse transformations toward a variety of bioactive molecules. The enantioselective assembly of these skeletons using readily available reactants offers significant advantages but remains challenging. Herein, an asymmetric formal Michael-type addition of alkynyl imines with the key alkylgold intermediates derived in situ from N-propargylamides is accomplished under gold-complex and chiral quinine-derived squaramide (QN-SQA) synergetic catalysis. Control experiments and the density functional theory (DFT) calculations indicated that this cascade reaction involves a Mannich-type addition and stepwise [3,3]-σ rearrangement sequence, leading to the fully substituted α-amino allenoates, which are elusive and take multi-step to prepare with other methods, in high yields and excellent enantioselectivity.
Collapse
Affiliation(s)
- Haoxuan Yuan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of ChemistryPeking UniversityBeijing100871China
| | - Xiongda Xie
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Ming Bao
- School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Kewei Chen
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Kemiao Hong
- School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Zhixiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of ChemistryPeking UniversityBeijing100871China
| | - Xinfang Xu
- School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
- School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiang453007China
| |
Collapse
|
4
|
Dawange SB, Liu RS. An Intramolecular Reaction between Pyrroles and Alkynes Leads to Pyrrole Dearomatization under Cooperative Actions of a Gold Catalyst and Isoxazole Cocatalysts. Org Lett 2024; 26:7181-7185. [PMID: 39158212 PMCID: PMC11372827 DOI: 10.1021/acs.orglett.4c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The gold-catalyzed one-pot synthesis of 3H-benzo[e]isoindoles (3) from a mixture of isoxazole (2) and diynamides (1) is described. This tandem catalysis involves two separate steps: (i) initial synthesis of 2-(3-pyrrolyl)-1-alkynylbenzenes and (ii) a novel alkyne/pyrrole coupling reaction through pyrrole dearomatization. Our control experiments reveal the cooperative action of the gold catalyst and isoxazole cocatalyst to enable the novel alkyne/pyrrole coupling leading to a 1,2-acyl shift.
Collapse
Affiliation(s)
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan (ROC)
| |
Collapse
|
5
|
Bao M, Zhou Y, Yuan H, Dong G, Li C, Xie X, Chen K, Hong K, Yu ZX, Xu X. Catalytic (4+2) Annulation via Regio- and Enantioselective Interception of in-situ Generated Alkylgold Intermediate. Angew Chem Int Ed Engl 2024; 63:e202401557. [PMID: 38775225 DOI: 10.1002/anie.202401557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 07/02/2024]
Abstract
A regio- and stereoselective stepwise (4+2) annulation of N-propargylamides and α,β-unsaturated imines/ketones has been accomplished with synergetic catalysis by a combination of a gold-complex and a chiral quinine-derived squaramide (QN-SQA), leading to highly functionalized chiral tetrahydropyridines/dihydropyrans in good to high yields with generally excellent enantioselectivity. Mechanistic studies and DFT calculations indicate that the in situ formed alkylgold species is the key intermediate in this transformation, and the amide group served as a traceless directing group in this highly selective transformation. This method complements the enantioselective (4+2) annulation of allene reagents, providing the formal internal C-C π-bond cycloaddition products, which is challenging and remains elusive.
Collapse
Affiliation(s)
- Ming Bao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Haoxuan Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Guizhi Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kewei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
6
|
Hess SN, Fürstner A. An Efficient and Scalable "Second Generation" Total Synthesis of the Marine Polyketide Limaol Endowed with Antiparasitic Activity. Chemistry 2024; 30:e202401429. [PMID: 38716817 DOI: 10.1002/chem.202401429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 06/20/2024]
Abstract
The cluster of four skipped exo-methylene substituents on the "northern" wing of limaol renders this dinoflagellate-derived marine natural product unique in structural terms. This arguably non-thermodynamic array gains kinetic stability by virtue of populating local conformations which impede isomerization to a partly or fully conjugated polyene. This analysis suggested that the difficulties encountered during the late stages of our first total synthesis of this polyketide had not been caused by an overly fragile character of this unusual substructure; rather, an unfavorable steric microenvironment about the spirotricyclic core was identified as the likely cause. To remedy the issue, the protecting groups on this central fragment were changed; in effect, this amendment allowed all strategic and practical problems to be addressed. As a result, the overall yield over the longest linear sequence was multiplied by a factor of almost five and the material throughput increased more than eighty-fold per run. Key-to-success was a gold-catalyzed spirocyclization reaction; the reasons why a Brønsted acid cocatalyst is needed and the origin of the excellent levels of selectivity were delineated. The change of the protecting groups also allowed for much improved fragment coupling processes; most notably, the sequence of a substrate-controlled carbonyl addition reaction followed by Mitsunobu inversion that had originally been necessary to affix the southern tail to the core could be replaced by a reagent controlled asymmetric allylation. Finally, a much-improved route to the "northern" sector was established by leveraging the power of asymmetric hydrogenation of a 2-pyrone derivative. Limaol was found to combine appreciable antiparasitic activity with very modest cytotoxicity.
Collapse
Affiliation(s)
- Stephan N Hess
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
7
|
Gharpure SJ, Kalita D, Somani S, Pal J. Deciphering substitution effects on reductive hydroalkoxylation of alkynyl aminols for stereoselective synthesis of morpholines and 1,4-oxazepanes: total synthesis of tridemorph and fenpropimorph. Org Biomol Chem 2024; 22:5529-5533. [PMID: 38904968 DOI: 10.1039/d4ob00855c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Acid catalysed reductive etherification of N-propargyl amino alcohols for the stereoselective synthesis of cis-2,5/2,6-disubstituted morpholines and cis-2,6/2,7-disubstituted oxazepanes has been developed. Mechanistic studies revealed that terminal alkynols gave morpholines via a 6-exo-dig hydroalkoxylation-isomerization-reduction cascade. Interestingly, an alkyne hydration-cyclization-reduction sequence is found to be involved in the formation of oxazepanes from alkyl substituted internal alkynols. The strategy was used as a key step in the total synthesis of fungicides tridemorph and fenpropimorph.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Deepika Kalita
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Shipra Somani
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Juhi Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| |
Collapse
|
8
|
Wang M, Wang Y. Advances for Triangular and Sandwich-Shaped All-Metal Aromatics. Molecules 2024; 29:763. [PMID: 38398515 PMCID: PMC10892378 DOI: 10.3390/molecules29040763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Much experimental work has been contributed to all-metal σ, π and δ-aromaticity among transition metals, semimetallics and other metals in the past two decades. Before our focused investigations on the properties of triangular and sandwich-shaped all-metal aromatics, A. I. Boldyrev presented general discussions on the concepts of all-metal σ-aromaticity and σ-antiaromaticity for metallo-clusters. Schleyer illustrated that Nucleus-Independent Chemical Shifts (NICS) were among the most authoritative criteria for aromaticity. Ugalde discussed the earlier developments of all-metal aromatic compounds with all possible shapes. Besides the theoretical predictions, many stable all-metal aromatic trinuclear clusters have been isolated as the metallic analogues of either the σ-aromatic molecule's [H3]+ ion or the π-aromatic molecule's [C3H3]+ ion. Different from Hoffman's opinion on all-metal aromaticity, triangular all-metal aromatics were found to hold great potential in applications in coordination chemistry, catalysis, and material science. Triangular all-metal aromatics, which were theoretically proved to conform to the Hückel (4n + 2) rule and possess the smallest aromatic ring, could also play roles as stable ligands during the formation of all-metal sandwiches. The triangular and sandwich-shaped all-metal aromatics have not yet been specifically summarized despite their diversity of existence, puissant developments and various interesting applications. These findings are different from the public opinion that all-metal aromatics would be limited to further applications due to their overstated difficulties in synthesis and uncertain stabilities. Our review will specifically focus on the summarization of theoretical predictions, feasible syntheses and isolations, and multiple applications of triangular and sandwich shaped all-metal aromatics. The appropriateness and necessities of this review will emphasize and disseminate their importance and applications forcefully and in a timely manner.
Collapse
Affiliation(s)
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China;
| |
Collapse
|
9
|
Zhu X, Li Y, Luo H, Li J, Hua Y, Liu G, Li L, Liu R. Propargylic Dialkyl Effect for Cyclobutene Formation through Ir(III)-Catalyzed Cycloisomerization of 1,6-Enynes. Org Lett 2024; 26:966-970. [PMID: 38270400 DOI: 10.1021/acs.orglett.3c04330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The propargylic dialkyl effect (PDAE) has a significant impact on the cyclization reaction of enynes, partly reflected in changing the types of products. Herein, we described the influence of the propargylic dialkyl effect on the Ir(III)-catalyzed cycloisomerization of 1,6-enynes to provide strained cyclobutenes. A series of substituted 1,6-enynes were proved to be excellent substrate candidates in the presence of [Cp*IrCl2]2 in toluene. Mechanistic investigation, based on deuterium labeling experiments and control experiments, indicated that the propargylic dialkyl effect might boost C(sp)-H activation by preventing the coordination of active iridium species to the C(sp)≡C(sp) bond of enynes. This finding contributes to the fundamental understanding of enyne cyclization reactions and offers valuable insight into the propargylic dialkyl effect.
Collapse
Affiliation(s)
- Xuanyu Zhu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Yi Li
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Hongtao Luo
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Jing Li
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Yuhui Hua
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Guohua Liu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Lingling Li
- Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Liu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
10
|
Wang C, Zhu D, Wu R, Zhu S. Dirhodium-Catalyzed Enantioselective Synthesis of Difluoromethylated Cyclopropanes via Enyne Cycloisomerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306404. [PMID: 38087930 PMCID: PMC10870034 DOI: 10.1002/advs.202306404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Indexed: 02/17/2024]
Abstract
(Difluoromethylated cyclopropane represents an important motif, which is widely found in bioactive and functional molecules. Despite significant progress in modern chemistry, the atom-economic and enantioselective synthesis of difluoromethylated cyclopropanes is still challenging. Herein, an Rh2 (II)-catalyzed asymmetric enyne cycloisomerization is described to construct chiral difluoromethylated cyclopropane derivatives with up to 99% yield and 99% ee in low catalyst loading (0.2 mol%), which can be easily transformed into highly functionalized difluoromethylated cyclopropanes with vicinal all-carbon quaternary stereocenters by ozonolysis. Mechanistic studies and the crystal structures of alkyne-dirhodium complexes reveal that the cooperative weak hydrogen bondings between the substrates and the dirhodium catalyst may play key roles in this reaction.).
Collapse
Affiliation(s)
- Chuntao Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Dong Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Rui Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
- School of Chemistry and Chemical EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
- State Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
11
|
Sutro JL, Fürstner A. Total Synthesis of the Allenic Macrolide (+)-Archangiumide. J Am Chem Soc 2024; 146:2345-2350. [PMID: 38241031 PMCID: PMC10835656 DOI: 10.1021/jacs.3c13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Archangiumide is the first known macrolide natural product comprising an endocyclic allene. For the ring strain that this linear substructure might entail, it was planned to unveil the allene at a very late stage of the projected total synthesis; in actual fact, this was achieved as the last step of the longest linear sequence by using an otherwise globally deprotected substrate. This unconventional timing was made possible by a gold catalyzed rearrangement of a macrocyclic propargyl benzyl ether derivative that uses a -PMB group as latent hydride source to unveil the signature cycloallene; the protecting group therefore gains a strategic role beyond its mere safeguarding function. Although the gold catalyzed reaction per se is stereoablative, the macrocyclic frame of the target was found to impose high selectivity and a stereoconvergent character on the transformation. The required substrate was formed by ring closing alkyne metathesis (RCAM) with the aid of a new air-stable molybdenum alkylidyne catalyst.
Collapse
Affiliation(s)
- Jack L. Sutro
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
12
|
Cataffo A, Peña-López M, Pedrazzani R, Echavarren AM. Chiral Auxiliary Approach for Gold(I)-Catalyzed Cyclizations. Angew Chem Int Ed Engl 2023; 62:e202312874. [PMID: 37872748 DOI: 10.1002/anie.202312874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Two different classes of stereoselective cyclizations have been developed using a chiral auxiliary approach with commercially available [JohnPhosAu(MeCN)SbF6 ] as catalyst. First, a stereoselective cascade cyclization of 1,5-enynes was achieved using the Oppolzer camphorsultam as chiral auxiliary. In this case, a one-pot cyclization-hydrolysis sequence was developed to directly afford enantioenriched spirocyclic ketones. Then, the stereoselective alkoxycyclization of 1,6-enynes was mediated by an Evans-type oxazolidinone. A reduction-hydrolysis sequence was selected to remove the auxiliary to give enantioenriched β-tetralones. DFT studies confirmed that the steric clash between the chiral auxiliary and alkene accounts for the experimentally observed diastereoselective cyclization through the Si face.
Collapse
Affiliation(s)
- Andrea Cataffo
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Miguel Peña-López
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Riccardo Pedrazzani
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
13
|
Dutta U, Prakash G, Devi K, Borah K, Zhang X, Maiti D. Directing group assisted para-selective C-H alkynylation of unbiased arenes enabled by rhodium catalysis. Chem Sci 2023; 14:11381-11388. [PMID: 37886091 PMCID: PMC10599460 DOI: 10.1039/d3sc03528j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Regioselective C-H alkynylation of arenes via C-H activation is challenging yet a highly desirable transformation. In this regard, directing group assisted C(sp2)-H alkynylation of arenes offers a unique opportunity to ensure precise regioselectivity. While the existing methods are mainly centered around ortho-C-H alkynylation and a few for meta-C-H alkynylation, the DG-assisted para-selective C-H alkynylation is yet to be reported. Herein we disclose the first report on Rh-catalyzed para-C-H alkynylation of sterically and electronically unbiased arenes. The para-selectivity is achieved with the assistance of a cyano-based directing template and the selectivity remained unaltered irrespective of the steric and electronic influence of the substituents. The post-synthetic modification of synthesized para-alkynylated arenes is also demonstrated. The mechanistic intricacies of the developed protocol are elucidated through experimental and computational studies.
Collapse
Affiliation(s)
- Uttam Dutta
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Gaurav Prakash
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Kirti Devi
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Kongkona Borah
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) Singapore Singapore
| | - Debabrata Maiti
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| |
Collapse
|
14
|
Sorroche A, Moreno S, Elena Olmos M, Monge M, López-de-Luzuriaga JM. Deciphering the Primary Role of Au⋅⋅⋅H-X Hydrogen Bonding in Gold Catalysis. Angew Chem Int Ed Engl 2023; 62:e202310314. [PMID: 37615519 DOI: 10.1002/anie.202310314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Au⋅⋅⋅H-X (X=N or C) hydrogen bonding is gaining increasing interest, both in the study of its intrinsic nature and in their operability in different fields. While the role of these interactions has been studied in the stabilization of gold(I) complexes, their role during the minimum free energy reaction pathway of a given catalytic process remains unexplored. We report herein that complex [Au(C≡CPh)(pip)] (pip=piperidine) catalyses the A3 -coupling reaction for the synthesis of propargylamines, thanks to the ability of Au(I) to promote weak hydrogen bonding interactions with the reactants along the free energy profile. Density Functional Theory (DFT) calculations show that these Au⋅⋅⋅H-X interactions play a directing role in the catalysed A3 -coupling. Topological non-covalent interactions (NCI), interaction region indicator (IRI) and quantum theory of atoms in molecules (QTAIM) analysis in real space of the electron density provide a description of these interactions accurately.
Collapse
Affiliation(s)
- Alba Sorroche
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Sonia Moreno
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - M Elena Olmos
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Miguel Monge
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - José M López-de-Luzuriaga
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| |
Collapse
|
15
|
Bourehil L, Soep C, Seng S, Dutrannoy S, Igoudjil S, Forté J, Gontard G, Lesage D, Bertrand B, Dossmann H. Bond-Dissociation Energies to Probe Pyridine Electronic Effects on Organogold(III) Complexes: From Methodological Developments to Application in π-Backdonation Investigation and Catalysis. Inorg Chem 2023; 62:13304-13314. [PMID: 37560906 DOI: 10.1021/acs.inorgchem.3c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
In this work, we report on the synthesis of several organogold(III) complexes based on 4,4'-diterbutylbiphenyl (C^C) and 2,6-bis(4-terbutylphenyl)pyridine (C^N^C) ligands and bond with variously substituted pyridine ligands (pyrR). Altogether, 33 complexes have been prepared and studied with mass spectrometry using higher-energy collision dissociation (HCD) in an Orbitrap mass spectrometer. A complete methodology including the kinetic modeling of the dissociation process based on the Rice-Ramsperger-Kassel-Marcus (RRKM) statistical method is proposed to obtain critical energies E0 of the pyrR loss for all complexes. The capacity of these E0 values to describe the pyridine ligand effect is further explored, at the same time as more classical descriptors such as 1H pyridinic NMR shift variation upon coordination and Au-NpyrR bond length measured by X-ray diffraction. An extensive theoretical work, including density functional theory (DFT) and domain-based local pair natural orbital coupled-cluster theory (DLPNO-CCSD(T)) methods, is also carried out to provide bond-dissociation energies, which are compared to experimental results. Results show that dissociation energy outperforms other descriptors, in particular to describe ligand effects over a large electronic effect range as seen by confronting the results to the pyrR pKa values. Further insights into the Au-NpyrR bond are obtained through an energy decomposition analysis (EDA) study, which confirms the isolobal character of Au+ with H+. Finally, the correlation between the lability of the pyridine ligands toward the catalytic efficiency of the complexes could be demonstrated in an intramolecular hydroarylation reaction of alkyne. The results were rationalized considering both pre-catalyst activation and catalyst reactivity. This study establishes the possibility of correlating dissociation energy, which is a gas-phase descriptor, with condensed-phase parameters such as catalysis efficiency. It therefore holds great potential for inorganic and organometallic chemistry by opening a convenient and easy way to evaluate the electronic influence of a ligand toward a metallic center.
Collapse
Affiliation(s)
- Lyna Bourehil
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
- Synchrotron SOLEIL, L'Orme des Merisiers, St Aubin, BP 48, F-91192 Gif-sur-Yvette, France
| | - Clément Soep
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Sopheak Seng
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany
| | - Sarah Dutrannoy
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Stacy Igoudjil
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Jérémy Forté
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Geoffrey Gontard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Denis Lesage
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Benoît Bertrand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Héloïse Dossmann
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| |
Collapse
|
16
|
Wu X, Sun Y, Zeng Y, Li X. Mechanistic Insights into Oxazolone Synthesis by Bimetallic Au-Pd-Catalyzed Catalysis and Catalyst Design: DFT Investigations. J Org Chem 2023. [PMID: 37449782 DOI: 10.1021/acs.joc.3c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Bimetallic synergistic catalysis is one of the most effective and powerful strategies for the synthesis of oxazolones, an important species in organic synthesis. In this work, the mechanism of AuCl(PMe3)/AgOTf-Pd(0) ([Au-Pd]) bimetallic catalyst-catalyzed oxazolone synthesis using N-alkynyl carbamates as precursors was studied in detail by DFT calculations and the catalytic performances of a series of bimetallic catalysts were evaluated. The results show that the reaction begins from the [Au]-catalyzed cycloisomerization of N-alkynyl carbamates. After the five-membered intermediate is formed, the [Pd(0)]-catalyzed cycle starts, which contains three steps: oxidation addition, transmetalation, and reductive elimination. The whole reaction belongs to a catalyzed catalysis, and the reductive elimination is the rate-determining step. In the transmetalation process, both the [Pd(0)] catalyst and the ionic bridge are necessary. For the [Au-Pd]-catalyzed process, it is Cl- as the bridge, not OTf-. The cheaper metal compound, AgCl(PMe3), can serve as the alternative of AuCl(PMe3) to co-catalyze with the [Pd(0)] catalyst for the title reaction.
Collapse
Affiliation(s)
- Xueju Wu
- College of Chemistry and Material Science, Hubei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Yuanyuan Sun
- College of Chemistry and Material Science, Hubei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Yanli Zeng
- College of Chemistry and Material Science, Hubei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Xiaoyan Li
- College of Chemistry and Material Science, Hubei Key Laboratory of Inorganic and Nano-Materials, National Demonstration Center for Experimental Chemistry, Hebei Normal University, Shijiazhuang 050024, P. R. China
| |
Collapse
|
17
|
Zuccarello G, Nannini LJ, Arroyo-Bondía A, Fincias N, Arranz I, Pérez-Jimeno AH, Peeters M, Martín-Torres I, Sadurní A, García-Vázquez V, Wang Y, Kirillova MS, Montesinos-Magraner M, Caniparoli U, Núñez GD, Maseras F, Besora M, Escofet I, Echavarren AM. Enantioselective Catalysis with Pyrrolidinyl Gold(I) Complexes: DFT and NEST Analysis of the Chiral Binding Pocket. JACS AU 2023; 3:1742-1754. [PMID: 37388697 PMCID: PMC10301678 DOI: 10.1021/jacsau.3c00159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023]
Abstract
A new generation of chiral gold(I) catalysts based on variations of complexes with JohnPhos-type ligands with a remote C2-symmetric 2,5-diarylpyrrolidine have been synthesized with different substitutions at the top and bottom aryl rings: from replacing the phosphine by a N-heterocyclic carbene (NHC) to increasing the steric hindrance with bis- or tris-biphenylphosphine scaffolds, or by directly attaching the C2-chiral pyrrolidine in the ortho-position of the dialkylphenyl phosphine. The new chiral gold(I) catalysts have been tested in the intramolecular [4+2] cycloaddition of arylalkynes with alkenes and in the atroposelective synthesis of 2-arylindoles. Interestingly, simpler catalysts with the C2-chiral pyrrolidine in the ortho-position of the dialkylphenyl phosphine led to the formation of opposite enantiomers. The chiral binding pockets of the new catalysts have been analyzed by DFT calculations. As revealed by non-covalent interaction plots, attractive non-covalent interactions between substrates and catalysts direct specific enantioselective folding. Furthermore, we have introduced the open-source tool NEST, specifically designed to account for steric effects in cylindrical-shaped complexes, which allows predicting experimental enantioselectivities in our systems.
Collapse
Affiliation(s)
- Giuseppe Zuccarello
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Leonardo J. Nannini
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Ana Arroyo-Bondía
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Nicolás Fincias
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Isabel Arranz
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Alba H. Pérez-Jimeno
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Matthias Peeters
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Inmaculada Martín-Torres
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Anna Sadurní
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Víctor García-Vázquez
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Yufei Wang
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Mariia S. Kirillova
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Marc Montesinos-Magraner
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Ulysse Caniparoli
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Gonzalo D. Núñez
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Feliu Maseras
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Maria Besora
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Imma Escofet
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Antonio M. Echavarren
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| |
Collapse
|
18
|
Badeji AA, Liu Y, Oladipo SD, Osinubi AD. Computational insights into the mechanisms and origins of switchable selectivity in gold(i)-catalyzed annulation of ynamides with isoxazoles via 6π-electrocyclizations of azaheptatrienyl cations. RSC Adv 2023; 13:18025-18037. [PMID: 37323448 PMCID: PMC10265590 DOI: 10.1039/d3ra02839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Electrocyclizations of acyclic conjugated π-motifs have emerged as a versatile and effective strategy for accessing various ring systems with excellent functional group tolerability and controllable selectivity. Typically, the realization of 6π-electrocyclization of heptatrienyl cations to afford seven-membered motif has proven difficult due to the high-energy state of the cyclizing seven-membered intermediate. Instead, it undergoes the Nazarov cyclization, affording a five-membered pyrrole product. However, the incorporation of a Au(i)-catalyst, a nitrogen atom and tosylamide group in the heptatrienyl cations unexpectedly circumvented the aforementioned high energy state to afford a seven-membered azepine product via 6π-electrocyclization in the annulation of 3-en-1-ynamides with isoxazoles. Therefore, extensive computational studies were carried out to investigate the mechanism of Au(i)-catalyzed [4+3] annulation of 3-en-1-ynamides with dimethylisoxazoles to produce a seven-membered 4H-azepine via the 6π-electrocyclization of azaheptatrienyl cations. Computational results showed that after the formation of the key α-imino gold carbene intermediate, the annulation of 3-en-1-ynamides with dimethylisoxazole occurs via the unusual 6π-electrocyclization to afford a seven-membered 4H-azepine exclusively. However, the annulation of 3-cyclohexen-1-ynamides with dimethylisoxazole occurs via the commonly proposed aza-Nazarov cyclization pathway to majorly generate five-membered pyrrole derivatives. The results from the DFT predictive analysis revealed that the key factors responsible for the different chemo-, and regio-selectivities observed are the cooperating effect of the tosylamide group on C1, the uninterrupted π-conjugation pattern of the α-imino gold(i) carbene and the substitution pattern at the cyclization termini. The Au(i)-catalyst is believed to assist in the stabilization of the azaheptatrienyl cation.
Collapse
Affiliation(s)
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Nantong University 9 Seyuan Road Nantong 226019 China
| | - Segun D Oladipo
- Department of Chemical Sciences, Olabisi Onabanjo University 2002 Ago-Iwoye Nigeria
| | | |
Collapse
|
19
|
Kim DK, Keum M, Yun H, Kim I, Joo JM, Lee C. Carbofunctionalization of Terminal Alkynes via Rhodium Catalysis Enabling Formations of Four Different Bonds. Org Lett 2023; 25:2024-2029. [PMID: 36930814 DOI: 10.1021/acs.orglett.3c00341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Described here is the oxygenative carbofunctionalization of terminal alkynes mediated by combined rhodium catalysis that enables regioselective quadruple formation of C-C, C-H, C-O, and C-heteroatom bonds. Mechanistic studies suggest that a disubstituted rhodium vinylidene complex is generated upon C-C bond formation at the terminal alkyne with tethered electrophiles such as alkyl halides, aldehydes, imines, and Michael acceptors. Subsequent intermolecular transfer oxygenation of the rhodium vinylidene with pyridine N-oxide generates a rhodium-complexed ketene intermediate that reacts with a variety of heteroatom nucleophiles to give rise to cyclic carboxylic acid derivatives.
Collapse
Affiliation(s)
- Dae-Kwon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjung Keum
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Heekyung Yun
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Insu Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Min Joo
- Department of Chemistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chulbom Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
Fürstner A. How to Break the Law:
trans
‐Hydroboration and
gem
‐Hydroboration of Alkynes. Isr J Chem 2023. [DOI: 10.1002/ijch.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
21
|
Gao S, Wang C, Yang J, Zhang J. Cobalt-catalyzed enantioselective intramolecular reductive cyclization via electrochemistry. Nat Commun 2023; 14:1301. [PMID: 36894526 PMCID: PMC9998880 DOI: 10.1038/s41467-023-36704-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Transition-metal catalyzed asymmetric cyclization of 1,6-enynes has emerged as a powerful method for the construction of carbocycles and heterocycles. However, very rare examples worked under electrochemical conditions. We report herein a Co-catalyzed enantioselective intramolecular reductive coupling of enynes via electrochemistry using H2O as hydride source. The products were obtained in good yields with high regio- and enantioselectivities. It represents the rare progress on the cobalt-catalyzed enantioselective transformation via electrochemistry with a general substrate scope. DFT studies explored the possible reaction pathways and revealed that the oxidative cyclization of enynes by LCo(I) is more favorable than oxidative addition of H2O or other pathways.
Collapse
Affiliation(s)
- Shiquan Gao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing, 312000, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China. .,Fudan Zhangjiang Institute, Shanghai, 201203, China.
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
| |
Collapse
|
22
|
Dong M, Qi L, Qian J, Yu S, Tong X. Pd(0)-Catalyzed Asymmetric 7- Endo Hydroacyloxylative Cyclization of 1,6-Enyne Enabled by an Anion Ligand-Directed Strategy. J Am Chem Soc 2023; 145:1973-1981. [PMID: 36638241 DOI: 10.1021/jacs.2c12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Despite diversity in reaction mechanisms, the palladium-catalyzed cyclization of 1,6-enyne generally proceeds in a 5-exo manner. Herein, we report the development of a Pd(0)-catalyzed hydroacyloxylative cyclization of 1,6-enyne in either 7-endo-trig or 6-exo-trig fashion when paired with an appropriate dihaloacetic acid reactant, such as F2HCCO2H and Cl2HCCO2H. Using the combination of Pd2(dba)3 and a chiral phosphine ligand, the hydroacyloxylative cyclization of 1,6-enyne bearing a 1,1-disubstituted alkene moiety readily gives highly enantiopure seven-membered heterocycles while the reaction of those having a 1,2-disubstituted alkene affords six-membered rings with moderate enantioselectivity. Preliminary experimental studies suggest a reaction mechanism featuring an unusual E-to-Z vinyl-Pd(II) isomerization and alkene trans-oxypalladation, which is proven to be governed by the rationally selected carboxylate.
Collapse
Affiliation(s)
- Ming Dong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China.,School of Petrochemical Engineering, Changzhou University, Gehu Road, Changzhou 213164, China
| | - Linjun Qi
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China.,School of Petrochemical Engineering, Changzhou University, Gehu Road, Changzhou 213164, China
| |
Collapse
|
23
|
Single-Atom Catalysts: Preparation and Applications in Environmental Catalysis. Catalysts 2022. [DOI: 10.3390/catal12101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Due to the expensive price and the low reserve of noble metals in nature, much attention has been paid to single-atom catalysts (SACs)—especially single-atom noble metal catalysts—owing to their maximum atomic utilization and dispersion. The emergence of SACs greatly decreases the amount of precious metals, improves the catalytic activity, and makes the catalytic process progressively economic and sustainable. However, the most remarkable challenge is the active sites and their stability against migration and aggregation under practical conditions. This review article summarizes the preparation strategies of SACs and their catalytic applications for the oxidation of methane, carbon monoxide, and volatile organic compounds (VOCs) and the reduction of nitrogen oxides. Furthermore, the perspectives and challenges of SACs in future research and practical applications are proposed. It is envisioned that the results summarized in this review will stimulate the interest of more researchers in developing SACs that are effective in catalyzing the reactions related to the environmental pollution control.
Collapse
|
24
|
Heckershoff R, May G, Däumer J, Eberle L, Krämer P, Rominger F, Rudolph M, Mulks FF, Hashmi ASK. Entropy-Induced Selectivity Switch in Gold Catalysis: Fast Access to Indolo[1,2-a]quinolines. Chemistry 2022; 28:e202201816. [PMID: 35699266 DOI: 10.1002/chem.202201816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/07/2023]
Abstract
New N-heterocyclic compounds for organic functional materials and their efficient syntheses are highly demanded. A surprising entropy-induced selectivity switch in the gold-catalyzed intramolecular hydroarylation of 2-ethynyl N-aryl indoles was found and its exploitation led to straightforward syntheses of indolo[1,2-a]quinolines. Experimental and computational mechanistic investigations gave insight into this uncommon selectivity phenomenon and into the special reactivity of the indolo[1,2-a]quinolines. The high functional group tolerance of this methodology enabled access to a diverse scope with high yields. In addition, bidirectional approaches, post-functionalization reactions, and π-extension of the core structure were feasible. An in-depth study of the photophysical properties explored the structure-effect relationship for different derivatives and revealed a high potential of these compounds for future applications as functional materials.
Collapse
Affiliation(s)
- Robin Heckershoff
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Garrett May
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Janika Däumer
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Petra Krämer
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Florian F Mulks
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141 (Republic of, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
25
|
Tan YX, Li S, Song L, Zhang X, Wu YD, Sun J. Ruthenium-Catalyzed Geminal Hydroborative Cyclization of Enynes. Angew Chem Int Ed Engl 2022; 61:e202204319. [PMID: 35596681 DOI: 10.1002/anie.202204319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Disclosed here is the first geminal (gem-) hydroborative cyclization of enynes. Different from known hydroborative cyclizations, this process adds hydrogen and boron to the same position, leading to a new reaction mode. With [Cp*RuCl]4 as catalyst, a range of gem-hydroborated bicyclic products bearing a cyclopropane unit could be rapidly assembled from simple enyne substrates. Control experiments and density functional theory (DFT) calculations provided important insights into the reaction mechanism. Notably, two major competing pathways may operate with substrate-dependence. 1,6-Enynes favor initial oxidative cyclometalation to form a ruthenacyclopentene intermediate prior to engaging hydroborane, while other enynes (e.g., 1,7-enynes) that lack strong propensity toward cyclization prefer initial alkyne gem-(H,B)-addition to form an α-boryl ruthenium carbene followed by intramolecular olefin cyclopropanation. This process also represents the first ruthenium-catalyzed enyne hydroborative cyclization.
Collapse
Affiliation(s)
- Yun-Xuan Tan
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
26
|
Li Y, Tung CH, Xu Z. Synthesis of Benzofuran Derivates via a Gold-Catalyzed Claisen Rearrangement Cascade. Org Lett 2022; 24:5829-5834. [PMID: 35912957 DOI: 10.1021/acs.orglett.2c02388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel method toward a facile synthesis of diverse benzofuran derivates from easily obtained quinols and alkynyl esters has been reported. A gold-catalyzed intermolecular alkoxylation/Claisen rearrangement/condensation cascade was involved. The introduction of difluorodiphenylsilane as a water-trapping reagent in the reaction leads to a higher yield.
Collapse
Affiliation(s)
- Yankun Li
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Shandong University, No. 27 Shanda South Road, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Shandong University, No. 27 Shanda South Road, Jinan 250100, China
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Shandong University, No. 27 Shanda South Road, Jinan 250100, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Jónsson HF, Sethio D, Wolf J, Huber SM, Fiksdahl A, Erdelyi M. Halogen Bond Activation in Gold Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helgi Freyr Jónsson
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim 7491, Norway
| | - Daniel Sethio
- Department of Chemistry─BMC, Uppsala University, Uppsala SE-751 23, Sweden
| | - Julian Wolf
- Faculty of Chemistry and Biochemistry, Organic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Stefan M. Huber
- Faculty of Chemistry and Biochemistry, Organic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Anne Fiksdahl
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim 7491, Norway
| | - Mate Erdelyi
- Department of Chemistry─BMC, Uppsala University, Uppsala SE-751 23, Sweden
| |
Collapse
|
28
|
Tan YX, Li S, Song L, Zhang X, Wu YD, Sun J. Ruthenium‐Catalyzed Geminal Hydroborative Cyclization of Enynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yun-Xuan Tan
- Hong Kong University of Science and Technology School of Science Department of Chemistry HONG KONG
| | - Shijia Li
- Hong Kong University of Science and Technology School of Science Department of Chemistry HONG KONG
| | - Lijuan Song
- Harbin Institute of Technology Shenzhen School of Science CHINA
| | - Xinhao Zhang
- Peking University Shenzhen Graduate School Lab of Computational Chemistry and Drug Design CHINA
| | - Yun-Dong Wu
- Peking University Shenzhen Graduate School Lab of Computational Chemistry and Drug Design CHINA
| | - Jianwei Sun
- Hong Kong University of Science and Technology Department of Chemistry Clear Water Bay Hong Kong HONG KONG
| |
Collapse
|
29
|
Heckershoff R, Schnitzer T, Diederich T, Eberle L, Krämer P, Rominger F, Rudolph M, Hashmi ASK. Efficient Synthesis of Dipyrrolobenzenes and Dipyrrolopyrazines via Bidirectional Gold Catalysis: a Combined Synthetic and Photophysical Study. J Am Chem Soc 2022; 144:8306-8316. [PMID: 35471963 DOI: 10.1021/jacs.2c02394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
New N-heterocyclic fluorophores are sought-after compounds for organic electronic devices. Here, we report on a straightforward synthesis to access meta/para-dipyrrolobenzenes and para-dipyrrolopyrazines in high yields using a bidirectional gold-catalyzed cyclization strategy. The versatility of our reaction protocol was showcased by preparing dipyrroloarenes with different substituents, various functional groups, and in a multitude of substitution patterns. Furthermore, we showed that the dipyrroloarenes can be post-modified by N-alkylation to improve the solubility or bromination to yield precursors for further derivatization via cross-coupling. Investigation of the photophysical properties of the─mostly unprecedented─dipyrroloarenes identified strong blue emitters such as the diphenyl meta-dipyrrolobenzene with a quantum yield of 98%. Moreover, we showed that changes in the solvent polarity or interactions with Lewis acids such as borane can be used to fine-tune the photophysical properties of the fluorophores.
Collapse
Affiliation(s)
- Robin Heckershoff
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Tobias Schnitzer
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Het Kranenveld, 5600 MB Eindhoven, The Netherlands
| | - Tim Diederich
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Petra Krämer
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Rachor SG, Jaeger R, Braun T. Au(I) Fluorido Phosphine Complexes: Tools for the Hydrofluorination of Alkynes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Simon G. Rachor
- Humboldt-Universität zu Berlin: Humboldt-Universitat zu Berlin Chemistry GERMANY
| | - Ruben Jaeger
- Humboldt University of Berlin: Humboldt-Universitat zu Berlin Chemistry GERMANY
| | - Thomas Braun
- Humboldt University Chemistry Brook-Taylor Str. 2 12489 Berlin GERMANY
| |
Collapse
|
31
|
Song L, Liu C, Tian G, Van Meervelt L, Van der Eycken J, Van der Eycken EV. Late-stage diversification of peptidomimetics and oligopeptides via gold-catalyzed post-Ugi cyclization. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Navarro M, Alférez MG, de Sousa M, Miranda-Pizarro J, Campos J. Dicoordinate Au(I)-Ethylene Complexes as Hydroamination Catalysts. ACS Catal 2022; 12:4227-4241. [PMID: 35391904 PMCID: PMC8981211 DOI: 10.1021/acscatal.1c05823] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/12/2022] [Indexed: 01/22/2023]
Abstract
A series of gold(I)-ethylene π-complexes containing a family of bulky phosphine ligands has been prepared. The use of these sterically congested ligands is crucial to stabilize the gold(I)-ethylene bond and prevent decomposition, boosting up their catalytic performance in the highly underexplored hydroamination of ethylene. The precatalysts bearing the most sterically demanding phosphines showed the best results reaching full conversion to the hydroaminated products under notably mild conditions (1 bar of ethylene pressure at 60 °C). Kinetic analysis together with density functional theory calculations revealed that the assistance of a second molecule of the nucleophile as a proton shuttle is preferred even when using an extremely congested cavity-shaped Au(I) complex. In addition, we have measured a strong primary kinetic isotopic effect that is consistent with the involvement of X-H bond-breaking events in the protodeauration turnover-limiting step.
Collapse
Affiliation(s)
- Miquel Navarro
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Macarena G. Alférez
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Morgane de Sousa
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Juan Miranda-Pizarro
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Jesús Campos
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| |
Collapse
|
33
|
Jin H, Tong WY, Zhang J, Rudolph M, Rominger F, Shen X, Qu S, Hashmi ASK. Dichotomy of platinum(II) and gold(III) carbene intermediates switching from N- to O-selectivity. Nat Commun 2022; 13:1672. [PMID: 35354823 PMCID: PMC8967914 DOI: 10.1038/s41467-022-29326-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Pt(II) and Au(III)-mediated intermolecular divergent annulations of benzofurazans and ynamides highlighted the N- to O-selectivity of tunable metal carbene intermediates. PtCl2 with a bulky phosphite ligand resulted in the specific synthesis of six-membered quinoxaline N-oxides and successfully suppressed the in-situ deoxygenation of N-oxides. On the other hand, an unique gold(III) catalyst (2,6-di-MeO-PyrAuCl3) led to the five-membered ring products, benzimidazoles. A broad scope of functional groups was well compatible, delivering better yields and selectivities in contrast to conventional gold(I) catalysts. The different behavior of presumed platinum(II) and gold(III) carbenes with respect to chemoselectivity was intensively examined by experiments and DFT calculations. A detailed mechanistic study, based on DFT calculations, revealed that the highly electrophilic carbocation-like gold(III) carbene triggers an oxophilic cyclization, followed by a cascade ring contraction and acyl migration. On the contrary, the Pt carbene species is less cationic, favoring the formation of the six-membered ring via N-attack. Benzofurazan, a cyclic heterocycle, can form open-chain metal carbene species in the presence of suitable catalysts. Here the authors show divergent reactivity when using gold(III) and platinum(II) catalysts, and perform computational and experimental mechanistic studies to explain the differing reactivity
Collapse
Affiliation(s)
- Hongming Jin
- School of Pharmacy, Experiment Center for Science and Technology, Nanjing University of Chinese Medicine, Nanjing, China. .,Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Universität Heidelberg, Heidelberg, Germany.
| | - Wen-Yan Tong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Jing Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Universität Heidelberg, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Universität Heidelberg, Heidelberg, Germany
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuanglin Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Universität Heidelberg, Heidelberg, Germany.
| |
Collapse
|
34
|
Chan P, Baratay C, Li W, Mathiew M, Yu L, Kyne S, Rao W. Gold‐ and Brønsted Acid‐Catalysed Deacyloxylative Cycloaromatisation of 1,6‐Diyne Esters to 11H‐Benzo[a]fluorenes and 13H‐Indeno[1,2‐l]phenanthrenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Wenhai Li
- China Pharmaceutical University CHINA
| | | | - Lei Yu
- Monash University AUSTRALIA
| | | | | |
Collapse
|
35
|
Pérez-Sánchez JC, HERRERA RAQUELPEREZ, Gimeno MC. Ferrocenyl gold complexes as efficient catalysts. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - M. Concepción Gimeno
- Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza Química Inorgánica Pedro Cerbuna, 12 50009 Zaragoza SPAIN
| |
Collapse
|
36
|
Mamidala S, Aravilli RK, Vaarla K, Peddi SR, Gondru R, Manga V, Vedula RR. A Facile One-Pot, Three-Component Synthesis of a New Series of Thiazolyl Pyrazoles: Anticancer Evaluation, ADME and Molecular Docking Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2027788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Srikanth Mamidala
- Department of Chemistry, National Institute of Technology, Warangal, Telangana State, India
| | - R. Kowshik Aravilli
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Krishnaiah Vaarla
- Department of Chemistry, National Institute of Technology, Warangal, Telangana State, India
| | - Sudhir Reddy Peddi
- Department of Chemistry, Molecular Modeling and Medicinal Chemistry Group, University College of Science, Osmania University, Hyderabad, Telangana, India
| | - Ramesh Gondru
- Environmental Monitoring and Exposure Assessment (Air) Laboratory, ICMR − NIREH, Bhopal, Madhya Pradesh, India
| | - Vijjulatha Manga
- Department of Chemistry, Molecular Modeling and Medicinal Chemistry Group, University College of Science, Osmania University, Hyderabad, Telangana, India
| | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana State, India
| |
Collapse
|
37
|
Waniek SD, Förster C, Heinze K. Protic Ferrocenyl Acyclic Diamino Carbene Gold(I) Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sven D. Waniek
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Christoph Förster
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Katja Heinze
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
38
|
Merrett JT, Chen X, Kyne SH, Harode M, Chan PWH. Rhodium( i)-catalysed cycloisomerisation/6π electrocyclisation of 5-(ethynylamino)pent-2-yn-1-yl esters to 2,3-dihydrobenzo[ f]indoles. NEW J CHEM 2022. [DOI: 10.1039/d2nj01992b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rare instance in rhodium catalysis of an in situ formed rhodacycle that undergoes a formal 1,8-acyloxy migration-initiated reductive elimination.
Collapse
Affiliation(s)
| | - Xiaoyu Chen
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Sara Helen Kyne
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Mandeep Harode
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | | |
Collapse
|
39
|
Escofet I, Zuccarello G, Echavarren AM. Gold-catalyzed enantioselective cyclizations and cycloadditions. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Zhao X, Ling Q, Cao G, Huo X, Zhao X, Su Y. Research Progress in the Cyclization Reactions with Propargyl Alcohols. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Ma Y, Ali HS, Hussein AA. A mechanistic study on the gold(i)-catalyzed cyclization of propargylic amide: revealing the impact of expanded-ring N-heterocyclic carbenes. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01617b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory (DFT) was applied to understand the mechanistic pathway of the gold(i)-catalyzed cyclization of propargylic amide, and to reveal the impact of expanded-ring N-heterocyclic carbenes.
Collapse
Affiliation(s)
- Yumiao Ma
- BSJ Institute, Haidian, Beijing, 100084, People's Republic of China
- Hangzhou Yanqu Information Technology Co., Ltd., Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province, 310003, People's Republic of China
| | - Hafiz Saqib Ali
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Kings Buildings, EH9 3FJ Edinburgh, UK
| | - Aqeel A. Hussein
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
42
|
Semleit N, Haberhauer G. Controlling the Gold(I)-Catalyzed 1,5-Allenene Reaction: Construction of Fused Rings with Excellent Diastereoselectivity. Org Lett 2021; 23:9635-9639. [PMID: 34806893 DOI: 10.1021/acs.orglett.1c03886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, the gold(I)-catalyzed reaction of 1,5-allenenes was controlled in such a way that instead of a [2 + 3] cycloaddition, a 5-exo-cyclization with the formation of a carbocation occurred. The latter could be trapped with both oxygen and carbon nucleophiles. In the investigated system, fused tricyclic frameworks with three contiguous stereocenters with excellent chemo- and diastereoselectivity in up to 95% yield were obtained.
Collapse
Affiliation(s)
- Nina Semleit
- Institut für Organische Chemie, Universität Duisburg-Essen, D-45117 Essen, Germany
| | - Gebhard Haberhauer
- Institut für Organische Chemie, Universität Duisburg-Essen, D-45117 Essen, Germany
| |
Collapse
|
43
|
Zhang C, Sun Q, Rudolph M, Rominger F, Hashmi ASK. Gold-Catalyzed Regiodivergent Annulations of Diazo-Alkynes Controlled by Et 3N(HF) 3. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Cheng Zhang
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Qiaoying Sun
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
44
|
Baire B, Yadav B. TfOH catalysed domino-double annulation of arenes with propargylic alcohols: a unified approach to indene polycyclic systems. Chem Commun (Camb) 2021; 57:12796-12799. [PMID: 34782905 DOI: 10.1039/d1cc05253e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and development of a TfOH catalysed domino strategy for the double annulation of arenes with propargylic alcohols for the rapid generation of indene based polycyclic systems is reported. The dehydration, intramolecular 6-endo-dig hydroarylation, and cationic cyclization were consecutively promoted by TfOH. The key features of this strategy are the formation of two C-C bonds, unified access to indene polycyclic systems, excellent yields (up to 95%), high atom economy (>90%), an operationally simple procedure, and water being the only byproduct. By extending this strategy, a two-step synthesis of the pentacyclic systems of hypoxylonol A (43% overall yield from α-tetralone), daldinone A (63% overall yield from β-tetralone) and spiro-tetracyclic framework of incarviatone A has also been achieved.
Collapse
Affiliation(s)
- Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamilnadu, India.
| | - Bhavna Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamilnadu, India.
| |
Collapse
|
45
|
Nandhu CT, Aneeja T, Anilkumar G. Gold‐Catalyzed Amination Reactions: Progress and Prospects. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chembil Thankachan Nandhu
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam, Kerala 686560 India
| | - Thaipparambil Aneeja
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam, Kerala 686560 India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam, Kerala 686560 India
- Advanced Molecular Materials Research centre (AMMRC) Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam, Kerala 686560 India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam, Kerala 686560 India
| |
Collapse
|
46
|
Platonov DN, Kholodkov DN, Goncharova IK, Belaya MA, Tkachev YV, Dorovatovskii PV, Volodin AD, Korlyukov AA, Tomilov YV, Arzumanyan AV, Novikov RA. Ionic Cyclopropenium-Derived Triplatinum Cluster Complex [(Ph3C3)2Pt3(MeCN)4]2+(BF4–)2: Synthesis, Structure, and Perspectives for Use as a Catalyst for Hydrosilylation Reactions. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dmitry N. Platonov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Dmitry N. Kholodkov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991, Moscow, Russian Federation
| | - Irina K. Goncharova
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russian Federation
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991, Moscow, Russian Federation
| | - Maria A. Belaya
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Yaroslav V. Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov st., 119991 Moscow, Russian Federation
| | - Pavel V. Dorovatovskii
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., 123182 Moscow, Russian Federation
| | - Alexander D. Volodin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991, Moscow, Russian Federation
| | - Alexander A. Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991, Moscow, Russian Federation
| | - Yury V. Tomilov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Ashot V. Arzumanyan
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russian Federation
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991, Moscow, Russian Federation
| | - Roman A. Novikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov st., 119991 Moscow, Russian Federation
| |
Collapse
|
47
|
Viñas-Lóbez J, Levitre G, de Aguirre A, Besnard C, Poblador-Bahamonde AI, Lacour J. Enabling Cyclization Strategies through Carbonyl-Ylide-Mediated Synthesis of Malonate Enol Ethers. ACS ORGANIC & INORGANIC AU 2021; 1:11-17. [PMID: 36855638 PMCID: PMC9954264 DOI: 10.1021/acsorginorgau.1c00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Malonate enol ethers are afforded in one step by condensation of cyclic ketones with α-diazomalonates under [CpRu(CH3CN)3][BArF] catalysis. The dual reactivity of these 2-vinyloxymalonates can be used to expand the classical range of cyclizations derived from carbonyl ylide intermediates.
Collapse
Affiliation(s)
- Júlia Viñas-Lóbez
- Department
of Organic Chemistry and Laboratoire de Cristallographie, University of Geneva, Geneva CH-1211, Switzerland
| | - Guillaume Levitre
- Department
of Organic Chemistry and Laboratoire de Cristallographie, University of Geneva, Geneva CH-1211, Switzerland
| | - Adiran de Aguirre
- Department
of Organic Chemistry and Laboratoire de Cristallographie, University of Geneva, Geneva CH-1211, Switzerland
| | - Céline Besnard
- Department
of Organic Chemistry and Laboratoire de Cristallographie, University of Geneva, Geneva CH-1211, Switzerland
| | - Amalia I. Poblador-Bahamonde
- Department
of Organic Chemistry and Laboratoire de Cristallographie, University of Geneva, Geneva CH-1211, Switzerland
| | - Jérôme Lacour
- Department
of Organic Chemistry and Laboratoire de Cristallographie, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
48
|
Navarro M, Miranda-Pizarro J, Moreno JJ, Navarro-Gilabert C, Fernández I, Campos J. A dicoordinate gold(I)-ethylene complex. Chem Commun (Camb) 2021; 57:9280-9283. [PMID: 34519292 PMCID: PMC8438763 DOI: 10.1039/d1cc02769g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of the exceptionally bulky tris-2-(4,4′-di-tert-butylbiphenylyl)phosphine ligand allows the isolation and complete characterization of the first dicoordinate gold(i)–ethylene adduct, filling a missing fundamental piece on the organometallic chemistry of gold. Besides, the bonding situation of this species has been investigated by means of state-of-the-art Density Functional Theory (DFT) calculations indicating that π-backdonation plays a minor role compared with tricoordinate analogues. The use of the exceptionally bulky tris-2-(4,4′-di-tert-butylbiphenylyl)phosphine ligand allows the isolation and complete characterization of the first dicoordinate gold(i)–ethylene adduct, filling a missing fundamental piece on the organometallic chemistry of gold.![]()
Collapse
Affiliation(s)
- Miquel Navarro
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain.
| | - Juan Miranda-Pizarro
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain.
| | - Juan J Moreno
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain.
| | - Carlos Navarro-Gilabert
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain.
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain.
| |
Collapse
|
49
|
Darmandeh H, Löffler J, Tzouras NV, Dereli B, Scherpf T, Feichtner K, Vanden Broeck S, Van Hecke K, Saab M, Cazin CSJ, Cavallo L, Nolan SP, Gessner VH. Au⋅⋅⋅H-C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angew Chem Int Ed Engl 2021; 60:21014-21024. [PMID: 34313367 PMCID: PMC8518757 DOI: 10.1002/anie.202108581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 01/15/2023]
Abstract
Secondary ligand-metal interactions are decisive in many catalytic transformations. While arene-gold interactions have repeatedly been reported as critical structural feature in many high-performance gold catalysts, we herein report that these interactions can also be replaced by Au⋅⋅⋅H-C hydrogen bonds without suffering any reduction in catalytic performance. Systematic experimental and computational studies on a series of ylide-substituted phosphines featuring either a PPh3 (Ph YPhos) or PCy3 (Cy YPhos) moiety showed that the arene-gold interaction in the aryl-substituted compounds is efficiently compensated by the formation of Au⋅⋅⋅H-C hydrogen bonds. The strongest interaction is found with the C-H moiety next to the onium center, which due to the polarization results in remarkably strong interactions with the shortest Au⋅⋅⋅H-C hydrogen bonds reported to date. Calorimetric studies on the formation of the gold complexes further confirmed that the Ph YPhos and Cy YPhos ligands form similarly stable complexes. Consequently, both ligands showed the same catalytic performance in the hydroamination, hydrophenoxylation and hydrocarboxylation of alkynes, thus demonstrating that Au⋅⋅⋅H-C hydrogen bonds are equally suited for the generation of highly effective gold catalysts than gold-arene interactions. The generality of this observation was confirmed by a comparative study between a biaryl phosphine ligand and its cyclohexyl-substituted derivative, which again showed identical catalytic performance. These observations clearly support Au⋅⋅⋅H-C hydrogen bonds as fundamental secondary interactions in gold catalysts, thus further increasing the number of design elements that can be used for future catalyst construction.
Collapse
Affiliation(s)
- Heidar Darmandeh
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Julian Löffler
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Busra Dereli
- Physical Sciences & Engineering Division (PSE)KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Sofie Vanden Broeck
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Luigi Cavallo
- Physical Sciences & Engineering Division (PSE)KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
50
|
Suárez‐Rodríguez T, Suárez‐Sobrino ÁL, Ballesteros A. Gold(I)-Catalyzed Intermolecular Formal [4+2] Cycloaddition of O-Aryl Ynol Ethers and Enol Ethers: Synthesis of Chromene Derivatives. Chemistry 2021; 27:13079-13084. [PMID: 34278626 PMCID: PMC8518403 DOI: 10.1002/chem.202102534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Gold(I)-catalyzed formal [4+2] cycloaddition of O-aryl ynol ethers 1 and enol ethers 2 is described. This intermolecular reaction between two electron-rich unsaturated systems takes place, under mild conditions, in the presence of 5 mol% [IPrAu(CH3 CN)]SbF6 as catalyst giving chromene derivatives with good yields. The cycloaddition is completely regio- and stereoselective, as well as versatile for both reactives. Silyl enol ethers can also react in the same way and under the same reaction conditions with quantitative yields. A plausible mechanism through a selective addition of the enol ether to the alkyne gold activated complex followed by an intramolecular aromatic electrophilic substitution is proposed. Several experimental results support the presence of a cationic oxonium intermediate prior to the aromatic substitution. The reaction represents a new entry to the chromene core.
Collapse
Affiliation(s)
- Tatiana Suárez‐Rodríguez
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| | - Ángel L. Suárez‐Sobrino
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| | - Alfredo Ballesteros
- Departamento de Química Orgánica e InorgánicaInstituto de Química Organometálica “Enrique Moles”Universidad de OviedoJulián ClaveríaOviedo, 833006-OviedoSpain
| |
Collapse
|