1
|
Ajay Krishna MS, Ashitha KT, Bhat MP, Rudrappa M, Sandhya KS, Lima NC, Basavaraja D, Varughese S, Nayaka S, Somappa SB. Dual-acting β-Aminothiochromones: Design, synthesis, and evaluation as antimicrobial and anti-angiogenic agents. Bioorg Med Chem Lett 2025; 120:130140. [PMID: 39971201 DOI: 10.1016/j.bmcl.2025.130140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
The quest for novel antimicrobials is critical due to emerging resistance by new microorganism strains. In these circumstances, we designed and synthesized a series of β-aminothiochromones by employing an aziridines ring-opening strategy to discover antimicrobial agents that are effective against multidrug-resistant (MDR) bacteria. Structures of the compounds [3(a-m) and 3a(a-o)] were well characterized and confirmed by the spectroscopic, analytical and single crystal X-ray analysis. Further, we conducted the in vitro antimicrobial assessment studies against selected Gram-positive, and Gram-negative bacterial strains and two fungal strains. In preliminary screening, all synthesized compounds exhibited moderate activity compared to tested standard drugs Ampicillin, Ciprofloxacin and Fluconazole wherein, 3 m and 3ae displayed higher anti-microbial activities. In addition, these analogues exhibited anti-angiogenic properties on HepG2 cells. The in-silico studies on promising hits, 3 m and 3ae on proteins DNA gyrase and Topoisomerase IV indicate that these hybrids possess better binding energy in comparison with standard drugs. Thus, based on in vitro and silico studies, the newly synthesized compounds appear to be potential scaffolds for antimicrobial and anti-angiogenic drug discovery initiatives.
Collapse
Affiliation(s)
- M S Ajay Krishna
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K T Ashitha
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Muthuraj Rudrappa
- Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - K S Sandhya
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - N C Lima
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India
| | - D Basavaraja
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Varughese
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreenivasa Nayaka
- Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Karale UB, Shinde A, Gaikwad VR, Kalari S, Gourishetti K, Radhakrishnan M, Poornachandra Y, Amanchy R, Chakravarty S, Andugulapati SB, Rode HB. Iron mediated reductive cyclization/oxidation for the generation of chemically diverse scaffolds: An approach in drug discovery. Bioorg Chem 2023; 139:106698. [PMID: 37418784 DOI: 10.1016/j.bioorg.2023.106698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Chemically diverse scaffolds represent a main source of biologically important starting points in drug discovery. Herein, we report the development of such diverse scaffolds from nitroarene/ nitro(hetero)arenes using a key synthetic strategy. In a pilot-scale study, the synthesis of 10 diverse scaffolds was achieved. The 1,7-phenanthroline, thiazolo[5,4-f]quinoline, 2,3-dihydro-1H-pyrrolo[2,3-g]quinoline, pyrrolo[3,2-f]quinoline, 1H-[1,4]oxazino[3,2-g]quinolin-2(3H)-one, [1,2,5]oxadiazolo[3,4-h]quinoline, 7H-pyrido[2,3-c]carbazole, 3H-pyrazolo[4,3-f]quinoline, pyrido[3,2-f]quinoxaline were obtained from nitro hetero arenes in ethanol using iron-acetic acid treatment followed by reaction under oxygen atmosphere. This diverse library is compliant with the rule of five for drug-likeness. The mapping of chemical space represented by these scaffolds revealed a significant contribution to the underrepresented chemical diversity. Crucial to the development of this approach was the mapping of biological space covered by these scaffolds which revealed neurotropic and prophylactic anti-inflammatory activities. In vitro, neuro-biological assays revealed that compounds 14a and 15a showed excellent neurotropic potential and neurite growth compared to controls. Further, anti-inflammatory assays (in vitro and in vivo models) exhibited that Compound 16 showed significant anti-inflammatory activity by attenuating the LPS-induced TNF-α and CD68 levels by modulating the NFkB pathway. In addition, treatment with compound 16 significantly ameliorated the LPS-induced sepsis conditions, and pathological abnormalities (in lung and liver tissues) and improved the survival of the rats compared to LPS control. Owing to their chemical diversity along with bioactivities, it is envisaged that new quality pre-clinical candidates will be generated in the above therapeutic areas using identified leads.
Collapse
Affiliation(s)
- Uttam B Karale
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Akash Shinde
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Vikas R Gaikwad
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Saradhi Kalari
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Karthik Gourishetti
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Mydhili Radhakrishnan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Yedla Poornachandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Ramars Amanchy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Sumana Chakravarty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Sai Balaji Andugulapati
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Haridas B Rode
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
3
|
Yang J, Cai Y, Zhao K, Xie H, Chen X. Concepts and applications of chemical fingerprint for hit and lead screening. Drug Discov Today 2022; 27:103356. [PMID: 36113834 DOI: 10.1016/j.drudis.2022.103356] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/28/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Molecular fingerprints are used to represent chemical (structural, physicochemical, etc.) properties of large-scale chemical sets in a low computational cost way. They have a prominent role in transforming chemical data sets into consistent input formats (bit strings or numeric values) suitable for in silico approaches. In this review, we summarize and classify common and state-of-the-art fingerprints into eight different types (dictionary based, circular, topological, pharmacophore, protein-ligand interaction, shape based, reinforced, and multi). We also highlight applications of fingerprints in early drug research and development (R&D). Thus, this review provides a guide for the selection of appropriate fingerprints of compounds (or ligand-protein complexes) for use in drug R&D.
Collapse
Affiliation(s)
- Jingbo Yang
- Department of Pharmagenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Yiyang Cai
- Department of Pharmagenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Kairui Zhao
- Department of Pharmagenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081 Harbin, Heilongjiang, China
| | - Hongbo Xie
- Department of Pharmagenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081 Harbin, Heilongjiang, China.
| | - Xiujie Chen
- Department of Pharmagenomics, College of Bioinformatics Science and Technology, Harbin Medical University, 150081 Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Murali K, Prasad KJR. A Direct and Divergent Entrance to Aza Heterocycles On 3‐Amino Carbazole. ChemistrySelect 2022. [DOI: 10.1002/slct.202104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Karunanidhi Murali
- Department of Chemistry Bharathiar University Coimbatore 641046 India
- Department of Chemistry Federal University of Minas Gerais Belo Horizonte 31270-901, MG Brazil
| | | |
Collapse
|
5
|
Jaithum K, Tummatorn J, Boekfa B, Thongsornkleeb C, Chainok K, Ruchirawat S. Diastereoselective Synthesis of Spirocyclic Ether from
ortho
‐Carbonylarylacetylenols via Silver‐Catalyzed Cyclization under Acidic Conditions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kanokwan Jaithum
- Center of Excellence on Environmental Health and Toxicology (EHT) Ministry of Education 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Jumreang Tummatorn
- Center of Excellence on Environmental Health and Toxicology (EHT) Ministry of Education 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
- Laboratory of Medicinal Chemistry Chulabhorn Research Institute 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Bundet Boekfa
- Department of Chemistry Faculty of Liberal Arts and Science Kasetsart University Kamphaeng Saen Campus Nakhon Pathom 73140 Thailand
| | - Charnsak Thongsornkleeb
- Center of Excellence on Environmental Health and Toxicology (EHT) Ministry of Education 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
- Laboratory of Organic Synthesis Chulabhorn Research Institute 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA) Faculty of Science and Technology Thammasat University Pathum Thani 12121 Thailand
| | - Somsak Ruchirawat
- Center of Excellence on Environmental Health and Toxicology (EHT) Ministry of Education 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
- Laboratory of Medicinal Chemistry Chulabhorn Research Institute 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| |
Collapse
|
6
|
Lenci E, Baldini L, Trabocchi A. Diversity-oriented synthesis as a tool to expand the chemical space of DNA-encoded libraries. Bioorg Med Chem 2021; 41:116218. [PMID: 34030087 DOI: 10.1016/j.bmc.2021.116218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
DNA-encoded libraries (DEL) represent a powerful technology for generating compound collections for drug discovery campaigns, that have allowed for the selection of many hit compounds over last three decades. However, the application of split-and-pool combinatorial methodologies, as well as the limitation imposed by DNA-compatible chemistry, has often brought to a limited exploration of the chemical space, with an over-representation of flat aromatic or peptide-like structures, whereas a higher scaffold complexity is generally associated with a more successful biological activity of the library. In this context, the application of Diversity-Oriented Synthesis, capable of creating sp3-rich molecular entities even starting from simple flat building blocks, can represent an efficient strategy to significantly broaden the chemical space explored by DELs. In this review, we present selected examples of DNA-compatible complexity-generating reactions that can be applied for the generation of DNA-encoded DOS libraries, including: (i) multicomponent reactions; (ii) C-H/C-X functionalization; (iii) tandem approaches; (iv) cycloadditions; (v) reactions introducing privileged elements. Also, selected case studies on the generation of DELs with high scaffold diversity are discussed, reporting their application in drug discovery programs.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Baldini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Viale Morgagni 85, 50134 Florence, Italy.
| |
Collapse
|
7
|
Nayak A, Saxena H, Bathula C, Kumar T, Bhattacharjee S, Sen S, Gupta A. Diversity-oriented synthesis derived indole based spiro and fused small molecules kills artemisinin-resistant Plasmodium falciparum. Malar J 2021; 20:100. [PMID: 33596950 PMCID: PMC7891021 DOI: 10.1186/s12936-021-03632-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite numerous efforts to eradicate the disease, malaria continues to remain one of the most dangerous infectious diseases plaguing the world. In the absence of any effective vaccines and with emerging drug resistance in the parasite against the majority of anti-malarial drugs, the search for new drugs is urgently needed for effective malaria treatment. METHODS The goal of the present study was to examine the compound library, based on indoles generated through diversity-oriented synthesis belonging to four different architecture, i.e., 1-aryltetrahydro/dihydro-β-carbolines and piperidine/pyrrolidine-fused indole derivatives, for their in vitro anti-plasmodial activity. Trifluoroacetic acid catalyzed transformation involving tryptamine and various aldehydes/ketones provided the library. RESULTS Among all the compounds screened, 1-aryltetrahydro-β-carbolines 2 and 3 displayed significant anti-plasmodial activity against both the artemisinin-sensitive and artemisinin-resistant strain of Plasmodium falciparum. It was observed that these compounds inhibited the overall parasite growth in intra-erythrocytic developmental cycle (IDC) via reactive oxygen species-mediated parasitic death and thus could be potential anti-malarial compounds. CONCLUSION Overall the compounds 2 and 3 identified in this study shows promising anti-plasmodial activity that can kill both artemisinin-sensitive and artemisinin-resistant strains of P. falciparum.
Collapse
Affiliation(s)
- Akshaykumar Nayak
- Epigenetics & Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Uttar Pradesh, NH-91, Tehsil-Dadri, Greater Noida, 201314, India
| | - Himani Saxena
- Epigenetics & Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Uttar Pradesh, NH-91, Tehsil-Dadri, Greater Noida, 201314, India
| | - Chandramohan Bathula
- Department of Chemistry, Shiv Nadar University, Uttar Pradesh, Tehsil-Dadri, Greater Noida, 201314, India
| | - Tarkeshwar Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Subhabrata Sen
- Department of Chemistry, Shiv Nadar University, Uttar Pradesh, Tehsil-Dadri, Greater Noida, 201314, India.
| | - Ashish Gupta
- Epigenetics & Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Uttar Pradesh, NH-91, Tehsil-Dadri, Greater Noida, 201314, India.
| |
Collapse
|
8
|
Cuevas F, Saavedra CJ, Romero‐Estudillo I, Boto A, Ordóñez M, Vergara I. Structural Diversity using Hyp “Customizable Units”: Proof‐of‐Concept Synthesis of Sansalvamide‐Related Antitumoral Peptides. European J Org Chem 2021; 2021:933-943. [DOI: 10.1002/ejoc.202001427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 01/06/2025]
Abstract
AbstractThe potential of “customizable units” to generate structural diversity for biological screenings is highlighted in this proof‐of‐concept synthesis of new peptides related to the potent antitumoral Sansalvamide A. Using L‐4‐hydroxyproline (Hyp) as a customizable unit in a linear parent peptide, an improved procedure for selective peptide modification was developed. A divergent Hyp scission‐reductive amination process was carried out, affording five linear peptides with cationic residues, and notably, an N‐alkyl moiety that affected the conformation of the peptide. After two steps (saponification and macrocyclization), sixteen differently N1‐substituted linear and cyclic peptides were obtained. For the first time, the activity of the linear and cyclic compounds was compared. Not only some linear analogs but also cyclic compounds with scarcely studied cationic residues were active against MCF7 breast cancer line. Thus, the structural diversity generated from customizable units can be valuable in drug discovery.
Collapse
Affiliation(s)
- Fernando Cuevas
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206- La Laguna Tenerife Spain
- BIOSIGMA SL c/Antonio Dominguez Afonso 16 38003- S/C Tenerife Spain
| | - Ivan Romero‐Estudillo
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
- Catedrático CONACYT-CIQ-UAEM México
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206- La Laguna Tenerife Spain
| | - Mario Ordóñez
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
| | - Irene Vergara
- Departamento de Ciencias Químico-Biológicas Universidad de las Américas Puebla, ExHda Sta. Catarina Mártir s/n San Andrés Cholula Puebla 72820 México
| |
Collapse
|
9
|
Yao T, Wang B, He D, Zhang X, Li X, Fang R. Ligand-Controlled Palladium-Catalyzed Chemoselective Multicomponent Reaction of Olefin-Tethered Aryl Halides, Isocyanides, and Carboxylic Acids: Diversified Synthesis of Imides. Org Lett 2020; 22:6784-6789. [DOI: 10.1021/acs.orglett.0c02297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tuanli Yao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Bo Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Dan He
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiang Li
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Ran Fang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Luo J, Chen G, Chen S, Li Z, Zhao Y, Liu Y. One‐Pot Tandem Protocol for the Synthesis of 1,3‐Bis(β‐aminoacrylate)‐Substituted 2‐Mercaptoimidazole Scaffolds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jian Luo
- School of Chemistry and Chemical EngineeringGuangzhou University Guangzhou 510006 China
| | - Guo‐Shu Chen
- School of Chemistry and Chemical EngineeringGuangzhou University Guangzhou 510006 China
| | - Shu‐Jie Chen
- School of Chemistry and Chemical EngineeringGuangzhou University Guangzhou 510006 China
| | - Zhao‐Dong Li
- Department of Applied Chemistry, College of Materials and EnergySouth China Agricultural University Guangzhou 510642 China)
| | - Yu‐Lei Zhao
- School of Chemistry and Chemical EngineeringQufu Normal University Jining Shi, Qufu 273165 China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical EngineeringGuangzhou University Guangzhou 510006 China
| |
Collapse
|
11
|
Freudenreich JJ, Bartlett S, Robertson NS, Kidd SL, Forrest S, Sore HF, Galloway WRJD, Welch M, Spring DR. Divergent Synthesis of Novel Cylindrocyclophanes that Inhibit Methicillin-Resistant Staphylococcus aureus (MRSA). ChemMedChem 2020; 15:1289-1293. [PMID: 32424962 PMCID: PMC7522682 DOI: 10.1002/cmdc.202000179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 12/29/2022]
Abstract
The cylindrocyclophanes are a family of macrocyclic natural products reported to exhibit antibacterial activity. Little is known about the structural basis of this activity due to the challenges associated with their synthesis or isolation. We hypothesised that structural modification of the cylindrocyclophane scaffold could streamline their synthesis without significant loss of activity. Herein, we report a divergent synthesis of the cylindrocyclophane core enabling access to symmetrical macrocycles by means of a catalytic, domino cross-metathesis-ring-closing metathesis cascade, followed by late-stage diversification. Phenotypic screening identified several novel inhibitors of methicillin-resistant Staphylococcus aureus. The most potent inhibitor has a unique tetrabrominated [7,7]paracyclophane core with no known counterpart in nature. Together these illustrate the potential of divergent synthesis using catalysis and unbiased screening methods in modern antibacterial discovery.
Collapse
Affiliation(s)
| | - Sean Bartlett
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Naomi S. Robertson
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Sarah L. Kidd
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Suzie Forrest
- Department of BiochemistryUniversity of CambridgeDowning SiteCambridgeCB2 1QWUK
| | - Hannah F. Sore
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Martin Welch
- Department of BiochemistryUniversity of CambridgeDowning SiteCambridgeCB2 1QWUK
| | - David R. Spring
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
12
|
Kidd SL, Fowler E, Reinhardt T, Compton T, Mateu N, Newman H, Bellini D, Talon R, McLoughlin J, Krojer T, Aimon A, Bradley A, Fairhead M, Brear P, Díaz-Sáez L, McAuley K, Sore HF, Madin A, O'Donovan DH, Huber KVM, Hyvönen M, von Delft F, Dowson CG, Spring DR. Demonstration of the utility of DOS-derived fragment libraries for rapid hit derivatisation in a multidirectional fashion. Chem Sci 2020; 11:10792-10801. [PMID: 34094333 PMCID: PMC8162264 DOI: 10.1039/d0sc01232g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Organic synthesis underpins the evolution of weak fragment hits into potent lead compounds. Deficiencies within current screening collections often result in the requirement of significant synthetic investment to enable multidirectional fragment growth, limiting the efficiency of the hit evolution process. Diversity-oriented synthesis (DOS)-derived fragment libraries are constructed in an efficient and modular fashion and thus are well-suited to address this challenge. To demonstrate the effective nature of such libraries within fragment-based drug discovery, we herein describe the screening of a 40-member DOS library against three functionally distinct biological targets using X-Ray crystallography. Firstly, we demonstrate the importance for diversity in aiding hit identification with four fragment binders resulting from these efforts. Moreover, we also exemplify the ability to readily access a library of analogues from cheap commercially available materials, which ultimately enabled the exploration of a minimum of four synthetic vectors from each molecule. In total, 10-14 analogues of each hit were rapidly accessed in three to six synthetic steps. Thus, we showcase how DOS-derived fragment libraries enable efficient hit derivatisation and can be utilised to remove the synthetic limitations encountered in early stage fragment-based drug discovery.
Collapse
Affiliation(s)
- Sarah L Kidd
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Elaine Fowler
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Till Reinhardt
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Thomas Compton
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Natalia Mateu
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Hector Newman
- School of Life Sciences, University of Warwick Coventry UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Dom Bellini
- School of Life Sciences, University of Warwick Coventry UK
| | - Romain Talon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
| | - Joseph McLoughlin
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Tobias Krojer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford UK
| | - Anthony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
| | - Anthony Bradley
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Michael Fairhead
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
| | - Paul Brear
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Laura Díaz-Sáez
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford UK
| | - Katherine McAuley
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Hannah F Sore
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Andrew Madin
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | | | - Kilian V M Huber
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
- Department of Biochemistry, University of Johannesburg Auckland Park 2006 South Africa
| | | | - David R Spring
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
13
|
Computational-aided design of a library of lactams through a diversity-oriented synthesis strategy. Bioorg Med Chem 2020; 28:115539. [PMID: 32503698 DOI: 10.1016/j.bmc.2020.115539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Small molecule libraries for virtual screening are becoming a well-established tool for the identification of new hit compounds. As for experimental assays, the library quality, defined in terms of structural complexity and diversity, is crucial to increase the chance of a successful outcome in the screening campaign. In this context, Diversity-Oriented Synthesis has proven to be very effective, as the compounds generated are structurally complex and differ not only for the appendages, but also for the molecular scaffold. In this work, we automated the design of a library of lactams by applying a Diversity-Oriented Synthesis strategy called Build/Couple/Pair. We evaluated the novelty and diversity of these compounds by comparing them with lactam moieties contained in approved drugs, natural products, and bioactive compounds from ChEMBL. Finally, depending on their scaffold we classified them into β-, γ-, δ-, ε-, and isolated, fused, bridged and spirolactam groups and we assessed their drug-like and lead-like properties, thus providing the value of this novel in silico designed library for medicinal chemistry applications.
Collapse
|
14
|
Muthukrishnan I, Karuppasamy M, Vachan BS, Rajput D, Subbiah N, Uma Maheswari C, Sridharan V. Chemodivergent synthesis of functionalized methanodibenzo[b,f][1,5]diazocin-13-ylmethanones and tetrahydroquinolines via solvent-dependent AB2 and A2B2 multicomponent annulation reactions. Org Chem Front 2020. [DOI: 10.1039/d0qo00449a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A solvent-dependent chemodivergent approach was developed for the synthesis of 6,12-methanodibenzo[b,f][1,5]diazocin-13-ylmethanones and 2,3,4-trisubstituted 1,2,3,4-tetrahydroquinolines involving two distinct AB2 and A2B2 multicomponent processes.
Collapse
Affiliation(s)
- Isravel Muthukrishnan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Muthu Karuppasamy
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - B. S. Vachan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Diksha Rajput
- Department of Chemistry and Chemical Sciences
- Central University of Jammu
- Jammu-181143
- India
| | - Nagarajan Subbiah
- Department of Chemistry
- National Institute of Technology
- Warangal-506004
- India
| | - C. Uma Maheswari
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Vellaisamy Sridharan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| |
Collapse
|
15
|
Preparation and characterization of new inorganic–organic hybrid catalyst H
3
PMo
12
O
40
/Hyd‐SBA‐15 and its application in the domino multi‐component reaction. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
King TA, Stewart HL, Mortensen KT, North AJP, Sore HF, Spring DR. Cycloaddition Strategies for the Synthesis of Diverse Heterocyclic Spirocycles for Fragment-Based Drug Discovery. European J Org Chem 2019; 2019:5219-5229. [PMID: 31598091 PMCID: PMC6774287 DOI: 10.1002/ejoc.201900847] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 12/21/2022]
Abstract
In recent years the pharmaceutical industry has benefited from the advances made in fragment-based drug discovery (FBDD) with more than 30 fragment-derived drugs currently marketed or progressing through clinical trials. The success of fragment-based drug discovery is entirely dependent upon the composition of the fragment screening libraries used. Heterocycles are prevalent within marketed drugs due to the role they play in providing binding interactions; consequently, heterocyclic fragments are important components of FBDD libraries. Current screening libraries are dominated by flat, sp2-rich compounds, primarily owing to their synthetic tractability, despite the superior physicochemical properties displayed by more three-dimensional scaffolds. Herein, we report step-efficient routes to a number of biologically relevant, fragment-like heterocyclic spirocycles. The use of both electron-deficient and electron-rich 2-atom donors was explored in complexity-generating [3+2]-cycloadditions to furnish products in 3 steps from commercially available starting materials. The resulting compounds were primed for further fragment elaboration through the inclusion of synthetic handles from the outset of the syntheses.
Collapse
Affiliation(s)
- Thomas A. King
- Department of ChemistryUniversity of CambridgeLensfield Road1EWCambridgeCB21EW
| | - Hannah L. Stewart
- Department of ChemistryUniversity of CambridgeLensfield Road1EWCambridgeCB21EW
| | - Kim T. Mortensen
- Department of ChemistryUniversity of CambridgeLensfield Road1EWCambridgeCB21EW
| | - Andrew J. P. North
- Department of ChemistryUniversity of CambridgeLensfield Road1EWCambridgeCB21EW
| | - Hannah F. Sore
- Department of ChemistryUniversity of CambridgeLensfield Road1EWCambridgeCB21EW
| | - David R. Spring
- Department of ChemistryUniversity of CambridgeLensfield Road1EWCambridgeCB21EW
| |
Collapse
|
17
|
Metal‐Free Based Domino Approach to Pyrano‐Fused‐Pyrido[3,2,1‐
jk
]carbazolones: Antibacterial and Molecular Docking Studies. ChemistrySelect 2019. [DOI: 10.1002/slct.201902149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Safaei-Ghomi J, Bakhtiari A. Tungsten anchored onto functionalized SBA-15: an efficient catalyst for diastereoselective synthesis of 2-azapyrrolizidine alkaloid scaffolds. RSC Adv 2019; 9:19662-19674. [PMID: 35519375 PMCID: PMC9065583 DOI: 10.1039/c9ra02825k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/03/2019] [Indexed: 12/04/2022] Open
Abstract
We used a novel hybrid catalyst in chemo-, regio-, and diastereoselective multi-component reactions (MCR) for the synthesis of the 2-aza analogue of pyrrolizidine and spirooxindole-2-azapyrrolizidine derivatives. The nanocatalyst, W(iv)/NNBIA-SBA-15 [where NNBIA = N,N'-(ethane-1,2-diyl)bis(2-aminobenzamide)] was synthesized by covalent grafting on chloro-functionalized SBA-15. The synthesis process was followed by the anchoring of WCl6 to catch the desired catalyst. The quality of the catalyst was assessed using different analytical techniques such as X-ray diffraction spectroscopy (XRD), Fourier-transform infrared spectroscopy (FT-IR), N2 adsorption analysis, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), ammonia Temperature Programmed Desorption (TPD), X-Ray photoelectron spectroscopy (XPS) and thermogravimetric, differential thermal analysis (TGA-DTA). The catalyst, W(iv)/NNBIA-SBA-15, with high catalytic performance is a good candidate for the diastereoselective synthesis of 2-azapyrrolizidine alkaloid scaffolds. The catalyst could be recovered for reuse without noticeable loss of activity.
Collapse
Affiliation(s)
- Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P. O. Box 87317-51167 Kashan I. R. Iran +98 31 55552935 +98 31 55912385
| | - Atefeh Bakhtiari
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P. O. Box 87317-51167 Kashan I. R. Iran +98 31 55552935 +98 31 55912385
| |
Collapse
|
19
|
Si Y, Xu D, Bum-Erdene K, Ghozayel MK, Yang B, Clemons PA, Meroueh SO. Chemical Space Overlap with Critical Protein-Protein Interface Residues in Commercial and Specialized Small-Molecule Libraries. ChemMedChem 2019; 14:119-131. [PMID: 30548204 PMCID: PMC7175409 DOI: 10.1002/cmdc.201800537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/29/2018] [Indexed: 12/14/2022]
Abstract
There is growing interest in the use of structure-based virtual screening to identify small molecules that inhibit challenging protein-protein interactions (PPIs). In this study, we investigated how effectively chemical library members docked at the PPI interface mimic the position of critical side-chain residues known as "hot spots". Three compound collections were considered, a commercially available screening collection (ChemDiv), a collection of diversity-oriented synthesis (DOS) compounds that contains natural-product-like small molecules, and a library constructed using established reactions (the "screenable chemical universe based on intuitive data organization", SCUBIDOO). Three different tight PPIs for which hot-spot residues have been identified were selected for analysis: uPAR⋅uPA, TEAD4⋅Yap1, and CaV α⋅CaV β. Analysis of library physicochemical properties was followed by docking to the PPI receptors. A pharmacophore method was used to measure overlap between small-molecule substituents and hot-spot side chains. Fragment-like conformationally restricted small molecules showed better hot-spot overlap for interfaces with well-defined pockets such as uPAR⋅uPA, whereas better overlap was observed for more complex DOS compounds in interfaces lacking a well-defined binding site such as TEAD4⋅Yap1. Virtual screening of conformationally restricted compounds targeting uPAR⋅uPA and TEAD4⋅Yap1 followed by experimental validation reinforce these findings, as the best hits were fragment-like and had few rotatable bonds for the former, while no hits were identified for the latter. Overall, such studies provide a framework for understanding PPIs in the context of additional chemical matter and new PPI definitions.
Collapse
Affiliation(s)
- Yubing Si
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN, 46202, USA
| | - Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mona K Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
20
|
Konaklieva MI. Addressing Antimicrobial Resistance through New Medicinal and Synthetic Chemistry Strategies. SLAS DISCOVERY 2018; 24:419-439. [PMID: 30523713 DOI: 10.1177/2472555218812657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past century, a multitude of derivatives of structural scaffolds with established antimicrobial potential have been prepared and tested, and a variety of new scaffolds have emerged. The effectiveness of antibiotics, however, is in sharp decline because of the emergence of drug-resistant microorganisms. The prevalence of drug resistance, both in clinical and community settings, is a consequence of bacterial ingenuity in altering pathways and/or cell morphology, making it a persistent threat to human health. The fundamental ability of pathogens to survive in a multitude of habitats can be triggered by recognition of chemical signals that warn organisms of exposure to a potentially harmful environment. Host immune defenses, including reactive oxygen intermediates and antibacterial substances, are among the multitude of chemical signals that can subsequently trigger expression of phenotypes better adapted for survival in that hostile environment. Thus, resistance development appears to be unavoidable, which leads to the conclusion that developing an alternative perspective for treatment options is vital. This review will discuss emerging medicinal chemistry approaches for addressing the global multidrug resistance in the 21st century.
Collapse
|
21
|
Cilibrizzi A, Floresta G, Abbate V, Giovannoni MP. iVS analysis to evaluate the impact of scaffold diversity in the binding to cellular targets relevant in cancer. J Enzyme Inhib Med Chem 2018; 34:44-50. [PMID: 30362379 PMCID: PMC6211261 DOI: 10.1080/14756366.2018.1518960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study reports the application of inverse virtual screening (iVS) methodologies to identify cellular proteins as suitable targets for a library of heterocyclic small-molecules, with potential pharmacological implications. Standard synthetic procedures allow facile generation of these ligands showing a high degree of core scaffold diversity. Specifically, we have computationally investigated the binding efficacy of the new series for target proteins which are involved in cancer pathogenesis. As a result, nine macromolecules demonstrated efficient binding interactions for the molecular dataset, in comparison to the co-crystallised ligand for each target. Moreover, the iVS analysis led us to confirm that 27 analogues have high affinity for one or more examined cellular proteins. The additional evaluation of ADME and drug score for selected hits also highlights their capability as drug candidates, demonstrating valuable leads for further structure optimisation and biological studies.
Collapse
Affiliation(s)
- Agostino Cilibrizzi
- a Institute of Pharmaceutical Science , King's College London , London , UK.,b King's Forensics, School of Population Health & Environmental Sciences , King's College London , London , UK
| | - Giuseppe Floresta
- a Institute of Pharmaceutical Science , King's College London , London , UK.,c Department of Drug Sciences , University of Catania , Catania , Italy
| | - Vincenzo Abbate
- b King's Forensics, School of Population Health & Environmental Sciences , King's College London , London , UK
| | - Maria Paola Giovannoni
- d NEUROFARBA, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| |
Collapse
|
22
|
Khan RA. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm J 2018; 26:739-753. [PMID: 29991919 PMCID: PMC6036106 DOI: 10.1016/j.jsps.2018.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
The role and contributions of natural products chemistry in advancements of the physical and biological sciences, its interdisciplinary domains, and emerging of new avenues by providing novel applications, constructive inputs, thrust, comprehensive understanding, broad perspective, and a new vision for future is outlined. The developmental prospects in bio-medical, health, nutrition, and other interrelated sciences along with some of the emerging trends in the subject area are also discussed as part of the current review of the basic and core developments, innovation in techniques, advances in methodology, and possible applications with their effects on the sciences in general and natural products chemistry in particular. The overview of the progress and ongoing developments in broader areas of the natural products chemistry discipline, its role and concurrent economic and scientific implications, contemporary objectives, future prospects as well as impending goals are also outlined. A look at the natural products chemistry in providing scientific progress in various disciplines is deliberated upon.
Collapse
Affiliation(s)
- Riaz A. Khan
- Department of Medicinal Chemistry, Qassim University, Qassim 51452, Saudi Arabia
- Manav Rachna International University, National Capital Region, Faridabad, HR 121 004, India
| |
Collapse
|
23
|
Bhutia ZT, Das A, Biswas M, Chatterjee A, Banerjee M. 7-Oxa-4-thia-1-aza-bicyclo[3.2.1]octane 4,4-Dioxides: Mechanochemical Synthesis by Tandem Michael Addition-1,3-Dipolar Cycloaddition of Aldoximes and Evaluation of Antibacterial Activities. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Avijit Das
- Department of Biological Sciences; BITS; Goa Campus 403726 Pilani India
| | - Malabika Biswas
- Department of Biological Sciences; BITS; Goa Campus 403726 Pilani India
| | | | - Mainak Banerjee
- Department of Chemistry; BITS; Goa Campus 403726 Pilani India
| |
Collapse
|
24
|
Abstract
Natural products have served as powerful therapeutics against pathogenic bacteria since the golden age of antibiotics of the mid-20th century. However, the increasing frequency of antibiotic-resistant infections clearly demonstrates that new antibiotics are critical for modern medicine. Because combinatorial approaches have not yielded effective drugs, we propose that the development of new antibiotics around proven natural scaffolds is the best short-term solution to the rising crisis of antibiotic resistance. We analyze herein synthetic approaches aiming to reengineer natural products into potent antibiotics. Furthermore, we discuss approaches in modulating quorum sensing and biofilm formation as a nonlethal method, as well as narrow-spectrum pathogen-specific antibiotics, which are of interest given new insights into the implications of disrupting the microbiome.
Collapse
Affiliation(s)
- Sean E. Rossiter
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Madison H. Fletcher
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
25
|
Srinivasulu V, Mazitschek R, Kariem NM, Reddy A, Rabeh WM, Li L, O'Connor MJ, Al-Tel TH. Modular Bi-Directional One-Pot Strategies for the Diastereoselective Synthesis of Structurally Diverse Collections of Constrained β-Carboline-Benzoxazepines. Chemistry 2017; 23:14182-14192. [DOI: 10.1002/chem.201702495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research; University of Sharjah; P.O.Box 27272 Sharjah UAE
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital; Harvard Medical School; 185 Cambridge Street Boston MA 02114 USA
- Harvard T.H. Chan School of Public Health; Department of Immunology and Infectious Disease; Boston MA 02115 USA
| | - Noor M. Kariem
- Sharjah Institute for Medical Research; University of Sharjah; P.O.Box 27272 Sharjah UAE
| | - Amarnath Reddy
- Sharjah Institute for Medical Research; University of Sharjah; P.O.Box 27272 Sharjah UAE
| | - Wael M. Rabeh
- Core Technologies Platform; New York University Abu Dhabi; P O Box 129188 Saadiyat Island Abu Dhabi UAE
| | - Liang Li
- Core Technologies Platform; New York University Abu Dhabi; P O Box 129188 Saadiyat Island Abu Dhabi UAE
| | - Matthew John O'Connor
- Core Technologies Platform; New York University Abu Dhabi; P O Box 129188 Saadiyat Island Abu Dhabi UAE
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Research; University of Sharjah; P.O.Box 27272 Sharjah UAE
- College of Pharmacy; University of Sharjah; P.O. Box 27272 Sharjah UAE
| |
Collapse
|
26
|
Huck L, de la Hoz A, Díaz-Ortiz A, Alcázar J. Grignard Reagents on a Tab: Direct Magnesium Insertion under Flow Conditions. Org Lett 2017; 19:3747-3750. [PMID: 28657761 DOI: 10.1021/acs.orglett.7b01590] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An on-demand preparation of organomagnesium reagents is presented using a new flow protocol. The risks associated with the activation of magnesium are circumvented by a new on-column initiation procedure. Required amounts of solutions with a precise titration were obtained. Telescoped flow or batch reactions allow access to a diverse set of functional groups.
Collapse
Affiliation(s)
- Lena Huck
- Janssen Research and Development, Janssen-Cilag, S.A. , C/Jarama 75, 45007 Toledo, Spain.,Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha , 13071 Ciudad Real, Spain
| | - Antonio de la Hoz
- Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha , 13071 Ciudad Real, Spain
| | - Angel Díaz-Ortiz
- Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha , 13071 Ciudad Real, Spain
| | - Jesus Alcázar
- Janssen Research and Development, Janssen-Cilag, S.A. , C/Jarama 75, 45007 Toledo, Spain
| |
Collapse
|
27
|
Manabe Y, Kasahara S, Takakura Y, Yang X, Takamatsu S, Kamada Y, Miyoshi E, Yoshidome D, Fukase K. Development of α1,6-fucosyltransferase inhibitors through the diversity-oriented syntheses of GDP-fucose mimics using the coupling between alkyne and sulfonyl azide. Bioorg Med Chem 2017; 25:2844-2850. [PMID: 28284868 DOI: 10.1016/j.bmc.2017.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 12/18/2022]
Abstract
We developed α1,6-fucosyltransferase (FUT8) inhibitors through a diversity-oriented synthesis. The coupling reaction between the fucose unit containing alkyne and the guanine unit containing sulfonyl azide under various conditions afforded a series of Guanosine 5'-diphospho-β-l-fucose (GDP-fucose) analogs. The synthesized compounds displayed FUT8 inhibition activity. A docking study revealed that the binding mode of the inhibitor synthesized with FUT8 was similar to that of GDP-fucose.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Satomi Kasahara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yohei Takakura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Xiaoxiao Yang
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shinji Takamatsu
- Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Kamada
- Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiji Miyoshi
- Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Yoshidome
- Schrödinger K.K., 17F Marunouchi Trust Tower North, 1-8-1 Marunouchi, Chiyoda-ku, Tokyo 100-0005, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
28
|
Srinivasulu V, Reddy A, Mazitschek R, Lukens AK, Wirth DF, Li L, Naumov P, O'Connor MJ, Al-Tel TH. Intramolecular Diaza-Diels-Alder Protocol: A New Diastereoselective and Modular One-Step Synthesis of Constrained Polycyclic Frameworks. Chemistry 2017; 23:4137-4148. [PMID: 27997727 DOI: 10.1002/chem.201605231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/18/2016] [Indexed: 12/29/2022]
Abstract
Phenotype-based screening of diverse compound collections generated by privileged substructure-based diversity-oriented synthesis (pDOS) is considered one of the prominent approaches in the discovery of novel drug leads. However, one key challenge that remains is the development of efficient and modular synthetic routes toward the facile access of privileged small-molecule libraries with skeletal and stereochemical complexity and drug-like properties. In this regard, a novel and diverse one-pot procedure for the diastereoselective synthesis of privileged polycyclic benzopyrans and benzoxepines is described herein. These unexplored chemotypes were accessed by utilizing an acid-mediated diaza-Diels-Alder reaction of 2-allyloxy- and/or homoallyloxy benzaldehyde with 2-aminoazine building blocks. Profiling of representative analogues against blood-stage Plasmodium falciparum parasites identified three lead candidates with low micromolar antimalarial activity.
Collapse
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Amarnath Reddy
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA.,Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute of Harvard and, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Amanda K Lukens
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute of Harvard and, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute of Harvard and, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Liang Li
- Core Technologies Platform, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, UAE
| | - Panče Naumov
- Department of Chemistry, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, UAE
| | - Matthew John O'Connor
- Core Technologies Platform, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, UAE
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE.,College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| |
Collapse
|
29
|
Bansode AH, Chimala P, Patil NT. Catalytic Branching Cascades in Diversity Oriented Synthesis. ChemCatChem 2016. [DOI: 10.1002/cctc.201600766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Avinash H. Bansode
- Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune - 411 008 India
| | - Prathyusha Chimala
- Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune - 411 008 India
| | - Nitin T. Patil
- Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune - 411 008 India
| |
Collapse
|
30
|
Eccleshare L, Lozada-Rodríguez L, Cooper P, Burroughs L, Ritchie J, Lewis W, Woodward S. Diversification of ortho-Fused Cycloocta-2,5-dien-1-one Cores and Eight- to Six-Ring Conversion by σ Bond C-C Cleavage. Chemistry 2016; 22:12542-7. [PMID: 27452351 DOI: 10.1002/chem.201601970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 11/11/2022]
Abstract
Sequential treatment of 2-C6 H4 Br(CHO) with LiC≡CR(1) (R(1) =SiMe3 , tBu), nBuLi, CuBr⋅SMe2 and HC≡CCHClR(2) [R(2) =Ph, 4-CF3 Ph, 3-CNPh, 4-(MeO2 C)Ph] at -50 °C leads to formation of an intermediate carbanion (Z)-1,2-C6 H4 {CA (=O)C≡CB R(1) }{CH=CH(CH(-) )R(2) } (4). Low temperatures (-50 °C) favour attack at CB leading to kinetic formation of 6,8-bicycles containing non-classical C-carbanion enolates (5). Higher temperatures (-10 °C to ambient) and electron-deficient R(2) favour retro σ-bond C-C cleavage regenerating 4, which subsequently closes on CA providing 6,6-bicyclic alkoxides (6). Computational modelling (CBS-QB3) indicated that both pathways are viable and of similar energies. Reaction of 6 with H(+) gave 1,2-dihydronaphthalen-1-ols, or under dehydrating conditions, 2-aryl-1-alkynylnaphthlenes. Enolates 5 react in situ with: H2 O, D2 O, I2 , allylbromide, S2 Me2 , CO2 and lead to the expected C-E derivatives (E=H, D, I, allyl, SMe, CO2 H) in 49-64 % yield directly from intermediate 5. The parents (E=H; R(1) =SiMe3 , tBu; R(2) =Ph) are versatile starting materials for NaBH4 and Grignard C=O additions, desilylation (when R(1) =SiMe) and oxime formation. The latter allows formation of 6,9-bicyclics via Beckmann rearrangement. The 6,8-ring iodides are suitable Suzuki precursors for Pd-catalysed C-C coupling (81-87 %), whereas the carboxylic acids readily form amides under T3P® conditions (71-95 %).
Collapse
Affiliation(s)
- Lee Eccleshare
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | - Phillippa Cooper
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Laurence Burroughs
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - John Ritchie
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Simon Woodward
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
31
|
Ciardiello JJ, Galloway WR, O'Connor CJ, Sore HF, Stokes JE, Wu Y, Spring DR. An expedient strategy for the diversity-oriented synthesis of macrocyclic compounds with natural product-like characteristics. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.10.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature 2016; 529:336-43. [PMID: 26791724 DOI: 10.1038/nature17042] [Citation(s) in RCA: 1438] [Impact Index Per Article: 159.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023]
Abstract
The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large. The evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens has made diseases that were once easily treatable deadly again. Unfortunately, accompanying the rise in global resistance is a failure in antibacterial drug discovery. Lessons from the history of antibiotic discovery and fresh understanding of antibiotic action and the cell biology of microorganisms have the potential to deliver twenty-first century medicines that are able to control infection in the resistance era.
Collapse
Affiliation(s)
- Eric D Brown
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Gerard D Wright
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
33
|
Alcaide B, Almendros P, Martín-Montero R, Ruiz MP. Allene-Based Gold-Catalyzed Stereodivergent Synthesis of Azapolycyclic Derivatives of Unusual Structure. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201501145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Welford AJ, Caldwell JJ, Liu M, Richards M, Brown N, Lomas C, Tizzard GJ, Pitak MB, Coles SJ, Eccles SA, Raynaud FI, Collins I. Synthesis and Evaluation of a 2,11-Cembranoid-Inspired Library. Chemistry 2016; 22:5657-64. [PMID: 26929153 PMCID: PMC4869678 DOI: 10.1002/chem.201505093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/22/2023]
Abstract
The 2,11-cembranoid family of natural products has been used as inspiration for the synthesis of a structurally simplified, functionally diverse library of octahydroisobenzofuran-based compounds designed to augment a typical medicinal chemistry library screen. Ring-closing metathesis, lactonisation and SmI2 -mediated methods were exemplified and applied to the installation of a third ring to mimic the nine-membered ring of the 2,11-cembranoids. The library was assessed for aqueous solubility and permeability, with a chemical-space analysis performed for comparison to the family of cembranoid natural products and a sample set of a screening library. Preliminary investigations in cancer cells showed that the simpler scaffolds could recapitulate the reported anti-migratory activity of the natural products.
Collapse
Affiliation(s)
- Amanda J Welford
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - John J Caldwell
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Manjuan Liu
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Meirion Richards
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Nathan Brown
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Cara Lomas
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Graham J Tizzard
- UK National Crystallography Service, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mateusz B Pitak
- UK National Crystallography Service, University of Southampton, Southampton, SO17 1BJ, UK
| | - Simon J Coles
- UK National Crystallography Service, University of Southampton, Southampton, SO17 1BJ, UK
| | - Suzanne A Eccles
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Florence I Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| |
Collapse
|
35
|
Liu X, Lei Z, Liu D, Wang Z. Development of a sandwiched microarray platform for studying the interactions of antibiotics with Staphylococcus aureus. Anal Chim Acta 2016; 917:93-100. [PMID: 27026605 DOI: 10.1016/j.aca.2016.02.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 11/18/2022]
Abstract
It still confronts an outstanding challenge to screen efficient antibacterial drugs from millions of potential antibiotic candidates. In this regard, a sandwiched microarray platform has been developed to culture live bacteria and carry out high-throughput screening antibacterial drugs. The optimized lectin-hydrogel microarray can be used as an efficient bacterial capturing and culturing platform, which is beneficial to identify spots and collect data. At the same time, a matching drug-laden polyacrylamide microarray with Luria-Bertani (LB) culture medium can be generated automatically and accurately by using a standard non-contacting procedure. A large number of microscale culture chambers (more than 100 individual samples) between two microarrays can be formed by linking two aligned hydrogel spots using LB culture medium, where live bacteria can be co-cultured with drug candidates. Using Staphylococcus aureus (S. aureus) and four well-known antibiotics (amoxicillin, vancomycin, streptomycin and chloramphenicol) as model system, the MIC (minimum inhibitory concentration) values of the antibiotics can be determined by the drug induced change of bacterial growth, and the results demonstrate that the MIC values of amoxicillin, vancomycin and streptomycin are 1.7 μg mL(-1), 3.3 μg mL(-1) and 10.3 μg mL(-1), respectively.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Zhen Lei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
36
|
González-Calderón D, Mejía-Dionicio MG, Morales-Reza MA, Ramírez-Villalva A, Morales-Rodríguez M, Jauregui-Rodríguez B, Díaz-Torres E, González-Romero C, Fuentes-Benítes A. Azide-enolate 1,3-dipolar cycloaddition in the synthesis of novel triazole-based miconazole analogues as promising antifungal agents. Eur J Med Chem 2016; 112:60-65. [PMID: 26890112 DOI: 10.1016/j.ejmech.2016.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/19/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
Seven miconazole analogs involving 1,4,5-tri and 1,5-disubstituted triazole moieties were synthesized by azide-enolate 1,3-dipolar cycloaddition. The antifungal activity of these compounds was evaluated in vitro against four filamentous fungi, including Aspergillus fumigatus, Trichosporon cutaneum, Rhizopus oryzae, and Mucor hiemalis as well as three species of Candida spp. as yeast specimens. These pre-clinical studies suggest that compounds 4b, 4d and 7b can be considered as drug candidates for future complementary biological studies due to their good/excellent antifungal activities.
Collapse
Affiliation(s)
- Davir González-Calderón
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico.
| | - María G Mejía-Dionicio
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Marco A Morales-Reza
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Alejandra Ramírez-Villalva
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Macario Morales-Rodríguez
- Departamento de Microbiología, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Bertha Jauregui-Rodríguez
- Departamento de Microbiología, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Eduardo Díaz-Torres
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Carlos González-Romero
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Aydeé Fuentes-Benítes
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico.
| |
Collapse
|
37
|
Wu C, Zhao F, Du Y, Zhao L, Chen L, Wang J, Liu H. Highly selective intramolecular addition of C–N and S–N bonds to alkynes catalyzed by palladium: a practical access to two distinct functional indoles. RSC Adv 2016. [DOI: 10.1039/c6ra15945a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Palladium-catalyzed highly selective intramolecular addition of C–N and S–N bonds to alkynes has been achieved, and two distinct kinds of functional indoles were synthesized rapidly from the same set of substrates in a catalyst-controlled manner.
Collapse
Affiliation(s)
- Chenglin Wu
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- China
- CAS Key Laboratory of Receptor Research
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- People's Republic of China
| | - Yonglei Du
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Liang Zhao
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Liang Chen
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Jiang Wang
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- P. R. China
| | - Hong Liu
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- China
- CAS Key Laboratory of Receptor Research
| |
Collapse
|
38
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Abstract
The development of resistance to existing antimicrobials has created a threat to human health that is not being addressed through our current drug pipeline. Limitations with the use of commercial vendor libraries and natural products have created a need for new types of small molecules to be screened in antimicrobial assays. Diversity oriented synthesis (DOS) is a strategy for the efficient generation of compound collections with a high degree of structural diversity. Diversity-oriented synthesis molecules occupy the middle ground of both complexity and efficiency of synthesis between natural products and commercial libraries. In this review we focus upon the use of diversity-oriented synthesis compound collections for the discovery of new antimicrobial agents.
Collapse
|
40
|
Gui YY, Yang J, Qi LW, Wang X, Tian F, Li XN, Peng L, Wang LX. A cinchona alkaloid catalyzed enantioselective sulfa-Michael/aldol cascade reaction of isoindigos: construction of chiral bispirooxindole tetrahydrothiophenes with vicinal quaternary spirocenters. Org Biomol Chem 2015; 13:6371-9. [DOI: 10.1039/c5ob00774g] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enantioselective sulfa-Michael/aldol reaction of isoindigos has been successfully developed to afford bispirooxindole tetrahydrothiophenes with vicinal quaternary spirocenters.
Collapse
Affiliation(s)
- Yong-Yuan Gui
- Key Laboratory of Asymmetric Synthesis & Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P.R. China
| | - Jian Yang
- Key Laboratory of Asymmetric Synthesis & Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P.R. China
| | - Liang-Wen Qi
- Key Laboratory of Asymmetric Synthesis & Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P.R. China
| | - Xiao Wang
- Key Laboratory of Asymmetric Synthesis & Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P.R. China
| | - Fang Tian
- Key Laboratory of Asymmetric Synthesis & Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P.R. China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- China
| | - Lin Peng
- Key Laboratory of Asymmetric Synthesis & Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P.R. China
| | - Li-Xin Wang
- Key Laboratory of Asymmetric Synthesis & Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- P.R. China
| |
Collapse
|
41
|
Alza E, Laraia L, Ibbeson BM, Collins S, Galloway WRJD, Stokes JE, Venkitaraman AR, Spring DR. Synthesis of a novel polycyclic ring scaffold with antimitotic properties via a selective domino Heck-Suzuki reaction. Chem Sci 2015; 6:390-396. [PMID: 28966765 PMCID: PMC5586250 DOI: 10.1039/c4sc02547d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/03/2014] [Indexed: 01/20/2023] Open
Abstract
The synthesis of a previously undescribed sp3-rich 6-5-5-6 tetracyclic ring scaffold using a palladium catalysed domino Heck-Suzuki reaction is reported. This reaction is high-yielding, selective for the domino process over the direct Suzuki reaction and tolerant towards a variety of boronic acids. The novel scaffold can also be accessed via domino Heck-Stille and radical cyclisations. Compounds based around this scaffold were found to be effective antimitotic agents in a human cancer cell line. Detailed phenotypic profiling showed that the compounds affected the congression of chromosomes to give mitotic arrest and apoptotic cell death. Thus, a novel structural class of antimitotic agents that does not disrupt the tubulin network has been identified.
Collapse
Affiliation(s)
- Esther Alza
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
| | - Luca Laraia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
- MRC Cancer Unit , University of Cambridge , Hutchison/MRC Research Centre , Biomedical Campus , Hills Road , Cambridge , CB2 0XZ , UK
| | - Brett M Ibbeson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
| | - Súil Collins
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
| | - Warren R J D Galloway
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
| | - Jamie E Stokes
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
- MRC Cancer Unit , University of Cambridge , Hutchison/MRC Research Centre , Biomedical Campus , Hills Road , Cambridge , CB2 0XZ , UK
| | - Ashok R Venkitaraman
- MRC Cancer Unit , University of Cambridge , Hutchison/MRC Research Centre , Biomedical Campus , Hills Road , Cambridge , CB2 0XZ , UK
| | - David R Spring
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 336498
| |
Collapse
|
42
|
Grossmann A, Bartlett S, Janecek M, Hodgkinson JT, Spring DR. Diversity-Oriented Synthesis of Drug-Like Macrocyclic Scaffolds Using an Orthogonal Organo- and Metal Catalysis Strategy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406865] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Grossmann A, Bartlett S, Janecek M, Hodgkinson JT, Spring DR. Diversity-Oriented Synthesis of Drug-Like Macrocyclic Scaffolds Using an Orthogonal Organo- and Metal Catalysis Strategy. Angew Chem Int Ed Engl 2014; 53:13093-7. [DOI: 10.1002/anie.201406865] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 01/05/2023]
|
44
|
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:25-64. [PMID: 25232278 PMCID: PMC4159373 DOI: 10.4137/pmc.s14459] [Citation(s) in RCA: 871] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed.
Collapse
Affiliation(s)
- Richard J Fair
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Berlin, Germany
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
45
|
Biased and unbiased strategies to identify biologically active small molecules. Bioorg Med Chem 2014; 22:4474-89. [DOI: 10.1016/j.bmc.2014.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022]
|
46
|
Dai W, Lu H, Li X, Shi F, Tu SJ. Diastereo- and Enantioselective Construction of a Bispirooxindole Scaffold Containing a Tetrahydro-β-carboline Moiety through an Organocatalytic Asymmetric Cascade Reaction. Chemistry 2014; 20:11382-9. [DOI: 10.1002/chem.201402485] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 11/11/2022]
|
47
|
Mehrparvar S, Balalaie S, Rabbanizadeh M, Rominger F, Ghabraie E. Synthesis of functionalized chromones through sequential reactions in aqueous media. Org Biomol Chem 2014; 12:5757-65. [PMID: 24968923 DOI: 10.1039/c4ob00618f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient sequential four-component reaction of chromone carbaldehydes, Meldrum's acid, 4-hydroxyl coumarin or 6-methyl-4-hydroxyl-pyrone and primary alcohols is reported which leads to 5a-i in aqueous media. Replacing the primary alcohol with isopropyl alcohol and tert-butyl alcohol results in different products 10 and 11. The environmentally friendly features, good to high yields and easy work-up are advantages of this approach.
Collapse
Affiliation(s)
- Saber Mehrparvar
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| | | | | | | | | |
Collapse
|
48
|
Cunha S, Santos AO, Menezes Correia JT, Sabino JR. Formal aza-[3+3] versus aza-[3+2] cycloadditions of heterocyclic enaminones with maleic anhydride and maleimides: skeletally diverse synthesis of pyrrolizidinones, indolizidinones, and pyrroloazepinones. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.10.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
49
|
Rachakonda V, Alla M, Kotipalli SS, Ummani R. Design, diversity-oriented synthesis and structure activity relationship studies of quinolinyl heterocycles as antimycobacterial agents. Eur J Med Chem 2013; 70:536-47. [PMID: 24189497 DOI: 10.1016/j.ejmech.2013.10.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 11/26/2022]
Abstract
The current study reports design and diversity oriented synthesis of novel bis heterocycles with a common 2-methyl, C-4 unsubstituted quinoline moiety as the central key heterocycle. Employing reagent based skeletal diversity approach; a facile synthesis of bis heterocycles with different heterocyclic rings at C-3 position of the quinoline moiety has been accomplished. A broad range of heterocyclic frameworks thus obtained were evaluated for their antimycobacterial activity. The active scaffolds were further explored by a parallel library generation in order to establish SAR. Further, low cytotoxicity against A549 cell line enhances the potential of the synthesized molecules as promising antimycobacterial agents.
Collapse
Affiliation(s)
- Venkatesham Rachakonda
- Crop Protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 607, Andhra Pradesh, India
| | | | | | | |
Collapse
|
50
|
Ibrahim-Ouali M, Romero E. Synthesis of various secosteroidal macrocycles by ring-closing metathesis. Steroids 2013; 78:651-61. [PMID: 23583599 DOI: 10.1016/j.steroids.2013.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/05/2013] [Accepted: 03/23/2013] [Indexed: 11/20/2022]
Abstract
We set out to describe an efficient and versatile method for preparing secosteroidal macrocycles from cholic acid, via an oxidative ring-expansion/ring-opening sequence and a ring-closing metathesis reaction as the key steps. The characteristic ¹H and ¹³C NMR spectroscopic features of the synthesized compounds are reported.
Collapse
Affiliation(s)
- Malika Ibrahim-Ouali
- CNRS Institut des Sciences Moléculaires de Marseille UMR 7313, Aix Marseille Université, 13397 Marseille, France.
| | | |
Collapse
|