1
|
Hu X, Chen W, Li S, Sun J, Du K, Xia Q, Feng F. Diiron Dithiolate Complex Induced Helical Structure of Histone and Application in Photochemical Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19691-19699. [PMID: 31117424 DOI: 10.1021/acsami.9b01866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Very-lysine-rich calf thymus histone proteins form disordered structure and hydrophobic interaction-driven aggregates in weakly acidic solution. We reported that the conjugation of diiron dithiolate complex to the lysine residues induced formation of helical conformation and condensed nanoassemblies with a high loading capacity up to 18.7 wt %. The incorporated diiron dithiolate complex showed photocatalytic activity for hydrogen evolution in aqueous solutions, with a turnover number (based on [FeFe] catalyst moiety) up to 359 that was more than 6 times that of the free catalyst. The increase of helical conformation in proteins was well correlated to the increasing enhancement of photocatalytic activity. We demonstrated that the [FeFe]-hydrogenase-mimic biohybrid system based on the photocatalyst-induced protein conformational conversion and reassembly is efficient for hydrogen generation regardless of the relatively large size.
Collapse
Affiliation(s)
- Xiantao Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Weijian Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Shuyi Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jian Sun
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Qiuyu Xia
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
2
|
Wezynfeld NE, Bossak K, Goch W, Bonna A, Bal W, Frączyk T. Human annexins A1, A2, and A8 as potential molecular targets for Ni(II) ions. Chem Res Toxicol 2014; 27:1996-2009. [PMID: 25330107 DOI: 10.1021/tx500337w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nickel is harmful for humans, but molecular mechanisms of its toxicity are far from being fully elucidated. One of such mechanisms may be associated with the Ni(II)-dependent peptide bond hydrolysis, which occurs before Ser/Thr in Ser/Thr-Xaa-His sequences. Human annexins A1, A2, and A8, proteins modulating the immune system, contain several such sequences. To test if these proteins are potential molecular targets for nickel toxicity we characterized the binding of Ni(II) ions and hydrolysis of peptides Ac-KALTGHLEE-am (A1-1), Ac-TKYSKHDMN-am (A1-2), and Ac-GVGTRHKAL-am (A1-3), from annexin A1, Ac-KMSTVHEIL-am (A2-1) and Ac-SALSGHLET-am (A2-2), from annexin A2, and Ac-VKSSSHFNP-am (A8-1), from annexin A8, using UV-vis and circular dichroism (CD) spectroscopies, potentiometry, isothermal titration calorimetry, high-performance liquid chromatography (HPLC), and electrospray ionization mass spectrometry (ESI-MS). We found that at physiological conditions (pH 7.4 and 37 °C) peptides A1-2, A1-3, A8-1, and to some extent A2-2 bind Ni(II) ions sufficiently strongly in 4N complexes and are hydrolyzed at sufficiently high rates to justify the notion that these annexins can undergo nickel hydrolysis in vivo. These results are discussed in the context of specific biochemical interactions of respective proteins. Our results also expand the knowledge about Ni(II) binding to histidine peptides by determination of thermodynamic parameters of this process and spectroscopic characterization of 3N complexes. Altogether, our results indicate that human annexins A1, A2, and A8 are potential molecular targets for nickel toxicity and help design appropriate cellular studies.
Collapse
Affiliation(s)
- Nina E Wezynfeld
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
3
|
Malandrinos G, Hadjiliadis N. Cu(II)–histones interaction related to toxicity-carcinogenesis. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Zoroddu MA, Peana M, Medici S, Potocki S, Kozlowski H. Ni(ii) binding to the 429–460 peptide fragment from human Toll like receptor (hTLR4): a crucial role for nickel-induced contact allergy? Dalton Trans 2014; 43:2764-71. [DOI: 10.1039/c3dt52187g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Medici S, Peana M, Nurchi VM, Zoroddu MA. The involvement of amino acid side chains in shielding the nickel coordination site: an NMR study. Molecules 2013; 18:12396-414. [PMID: 24108401 PMCID: PMC6269899 DOI: 10.3390/molecules181012396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 11/16/2022] Open
Abstract
Coordination of proteins and peptides to metal ions is known to affect their properties, often by a change in their structural organization. Side chains of the residues directly involved in metal binding or very close to the coordination centre may arrange themselves around it, in such a way that they can, for instance, disrupt the protein functions or stabilize a metal complex by shielding it from the attack of water or other small molecules. The conformation of these side chains may be crucial to different biological or toxic processes. In our research we have encountered such behaviour in several cases, leading to interesting results for our purposes. Here we give an overview on the structural changes involving peptide side chains induced by Ni(II) coordination. In this paper we deal with a number of peptides, deriving from proteins containing one or more metal coordinating sites, which have been studied through a series of NMR experiments in their structural changes caused by Ni(II) complexation. Several peptides have been included in the study: short sequences from serum albumin (HSA), Des-Angiotensinogen, the 30-amino acid tail of histone H4, some fragments from histone H2A and H2B, the initial fragment of human protamine HP2 and selected fragments from prion and Cap43 proteins. NMR was the election technique for gathering structural information. Experiments performed for this purpose included 1D 1H and 13C, and 2D HSQC, COSY, TOCSY, NOESY and ROESY acquisitions, which allowed the calculation of the Ni(II) complexes structural models.
Collapse
Affiliation(s)
- Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy; E-Mails: (S.M.); (M.P.); (V.M.N.)
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy; E-Mails: (S.M.); (M.P.); (V.M.N.)
| | - Valeria Marina Nurchi
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Maria Antonietta Zoroddu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy; E-Mails: (S.M.); (M.P.); (V.M.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-079-229529; Fax: +39-079-228720
| |
Collapse
|
6
|
Peana M, Medici S, Nurchi VM, Crisponi G, Zoroddu MA. Nickel binding sites in histone proteins: Spectroscopic and structural characterization. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
du Preez LL, Patterton HG. Secondary structures of the core histone N-terminal tails: their role in regulating chromatin structure. Subcell Biochem 2013; 61:37-55. [PMID: 23150245 DOI: 10.1007/978-94-007-4525-4_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The core histone N-terminal tails dissociate from their binding positions in nucleosomes at moderate salt concentrations, and appear unstructured in the crystal. This suggested that the tails contributed minimally to chromatin structure. However, in vitro studies have shown that the tails were involved in a range of intra- and inter-nucleosomal as well as inter-fibre contacts. The H4 tail, which is essential for chromatin compaction, was shown to contact an adjacent nucleosome in the crystal. Acetylation of H4K16 was shown to abolish the ability of a nucleosome array to fold into a 30 nm fibre. The application of secondary structure prediction software has suggested the presence of extended structured regions in the histone tails. Molecular Dynamics studies have further shown that sections of the H3 and H4 tails assumed α-helical and β-strand content that was enhanced by the presence of DNA, and that post-translational modifications of the tails had a major impact on these structures. Circular dichroism and NMR showed that the H3 and H4 tails exhibited significant α-helical content, that was increased by acetylation of the tail. There is thus strong evidence, both from biophysical and from computational approaches, that the core histones tails, particularly that of H3 and H4, are structured, and that these structures are influenced by post-translational modifications. This chapter reviews studies on the position, binding sites and secondary structures of the core histone tails, and discusses the possible role of the histone tail structures in the regulation of chromatin organization, and its impact on human disease.
Collapse
Affiliation(s)
- Louis L du Preez
- Advanced Biomolecular Research Cluster, University of the Free State, 339, Bloemfontein, 9300, South Africa
| | | |
Collapse
|
8
|
Zavitsanos K, Nunes AM, Malandrinos G, Hadjiliadis N. DNA strand breakage induced by CuII and NiII, in the presence of peptide models of histone H2B. J Inorg Biochem 2011; 105:1329-37. [PMID: 21864811 DOI: 10.1016/j.jinorgbio.2011.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 11/20/2022]
Abstract
In the present study we used the plasmid relaxation assay, a very sensitive method for detection of DNA strand breaks in vitro, in order to evaluate the role of peptide fragments of histone H2B in DNA strand breakage induced by copper and nickel. We have found that in the presence of peptides modeling the histone fold domain (H2B(32-62) and H2B(63-93)) as well as the N-terminal tail (H2B(1-31)) of histone H2B there is an increased DNA damage by Cu(2+)/H(2)O(2) and Ni(2+)/H(2)O(2) reaction mixtures. On the contrary, the C-terminal tail (H2B(94-125)) seems to have a protective role on the attack of ROS species to DNA. We have rendered our findings to the interactions of the peptides with DNA, as well as with the metal.
Collapse
Affiliation(s)
- Kimon Zavitsanos
- Department of Chemistry, University of Ioannina, Ioannina, Greece
| | | | | | | |
Collapse
|
9
|
Zavitsanos K, Nunes AM, Malandrinos G, Hadjiliadis N. Copper effective binding with 32–62 and 94–125 peptide fragments of histone H2B. J Inorg Biochem 2011; 105:102-10. [DOI: 10.1016/j.jinorgbio.2010.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/29/2022]
|
10
|
Nunes AM, Zavitsanos K, Del Conte R, Malandrinos G, Hadjiliadis N. The Possible Role of 94−125 Peptide Fragment of Histone H2B in Nickel-Induced Carcinogenesis. Inorg Chem 2010; 49:5658-68. [DOI: 10.1021/ic1005665] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Mónica Nunes
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Kimon Zavitsanos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Rebecca Del Conte
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 0019, Sesto Fiorentino, Italy
| | | | - Nick Hadjiliadis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
11
|
Nunes AM, Zavitsanos K, Malandrinos G, Hadjiliadis N. Coordination of Cu2+and Ni2+ with the histone model peptide of H2B N-terminal tail (1-31 residues): A spectroscopic study. Dalton Trans 2010; 39:4369-81. [DOI: 10.1039/b927157k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|