1
|
Functionalization of Conductive Polymers through Covalent Postmodification. Polymers (Basel) 2022; 15:polym15010205. [PMID: 36616554 PMCID: PMC9824246 DOI: 10.3390/polym15010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Organic chemical reactions have been used to functionalize preformed conducting polymers (CPs). The extensive work performed on polyaniline (PANI), polypyrrole (PPy), and polythiophene (PT) is described together with the more limited work on other CPs. Two approaches have been taken for the functionalization: (i) direct reactions on the CP chains and (ii) reaction with substituted CPs bearing reactive groups (e.g., ester). Electrophilic aromatic substitution, SEAr, is directly made on the non-conductive (reduced form) of the CPs. In PANI and PPy, the N-H can be electrophilically substituted. The nitrogen nucleophile could produce nucleophilic substitutions (SN) on alkyl or acyl groups. Another direct reaction is the nucleophilic conjugate addition on the oxidized form of the polymer (PANI, PPy or PT). In the case of PT, the main functionalization method was indirect, and the linking of functional groups via attachment to reactive groups was already present in the monomer. The same is the case for most other conducting polymers, such as poly(fluorene). The target properties which are improved by the functionalization of the different polymers is also discussed.
Collapse
|
2
|
Kumar PN, Kolay A, Kumar SK, Patra P, Aphale A, Srivastava AK, Deepa M. Counter Electrode Impact on Quantum Dot Solar Cell Efficiencies. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27688-27700. [PMID: 27700023 DOI: 10.1021/acsami.6b08921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The counter electrode (CE), despite being as relevant as the photoanode in a quantum dot solar cell (QDSC), has hardly received the scientific attention it deserves. In this study, nine CEs (single-walled carbon nanotubes (SWCNTs), tungsten oxide (WO3), poly(3,4-ethylenedioxythiophene) (PEDOT), copper sulfide (Cu2S), candle soot, functionalized multiwalled carbon nanotubes (F-MWCNTs), reduced tungsten oxide (WO3-x), carbon fabric (C-Fabric), and C-Fabric/WO3-x) were prepared by using low-cost components and facile procedures. QDSCs were fabricated with a TiO2/CdS film which served as a common photoanode for all CEs. The power conversion efficiencies (PCEs) were 2.02, 2.1, 2.79, 2.88, 2.95, 3.78, 3.66, 3.96, and 4.6%, respectively, and the incident photon to current conversion efficiency response was also found to complement the PCE response. Among all CEs employed here, C-Fabric/WO3-x outperforms all the other CEs, for the synergy between C-Fabric and WO3-x comes to the fore during cell operation. The low sheet resistance of C-Fabric and its high surface area due to the meshlike morphology enables high WO3-x loading during electrodeposition, and the good electrocatalytic activity of WO3-x, the very low overpotential, and its high electrical conductivity that facilitate electron transfer to the electrolyte are responsible for the superior PCE. WO3-based electrodes have not been used until date in QDSCs; the ease of fabrication of WO3 films and their good chemical stability and scalability also favor their application to QDSCs. Futuristic possibilities for other novel composite CEs are also discussed. We anticipate this study to be useful for a well-rounded development of high-performance QDSCs.
Collapse
Affiliation(s)
- P Naresh Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad , Kandi, Sangareddy 502285, Telangana, India
| | - Ankita Kolay
- Department of Chemistry, Indian Institute of Technology Hyderabad , Kandi, Sangareddy 502285, Telangana, India
| | - S Krishna Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad , Kandi, Sangareddy 502285, Telangana, India
| | | | | | | | - Melepurath Deepa
- Department of Chemistry, Indian Institute of Technology Hyderabad , Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
3
|
Exploring the flexible chemistry of 4-fluoro-3-nitrophenyl azide for biomolecule immobilization and bioconjugation. Anal Bioanal Chem 2016; 408:6945-56. [PMID: 27485627 DOI: 10.1007/s00216-016-9803-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/08/2016] [Accepted: 07/16/2016] [Indexed: 01/22/2023]
Abstract
Bioconjugation and functionalization of polymer surfaces are two major tasks in materials chemistry which are accomplished using a variety of coupling agents. Immobilization of biomolecules onto polymer surfaces and the construction of bioconjugates are essential requirements of many biochemical assays and chemical syntheses. Different linkers with a variety of functional groups are used for these purposes. Among them, the benzophenones, aryldiazirines, and arylazides represent the most commonly used photolinker to produce the desired chemical linkage upon their photo-irradiation. In this review, we describe the versatile applications of 4-fluoro-3-nitrophenyl azide, one of the oldest photolinkers used for photoaffinity labeling in the late 1960s. Surprisingly, this photolinker, historically known as 1-fluoro-2-nitro-4-azidobenzene (FNAB), has remained unexplored for a long time because of apprehension that FNAB forms ring-expanded dehydroazepine as a major product and hence cannot activate an inert polymer. The first evidence of photochemical activation of an inert surface by FNAB through nitrene insertion reaction was reported in 2001, and the FNAB-activated surface was found to conjugate a biomolecule without any catalyst, reagent, or modification. FNAB has distinct advantages over perfluorophenyl azide derivatives, which are contemporary nitrene-generating photolinkers, because of its simple, single-step preparation and ease of thermochemical and photochemical reactions with versatile polymers and biomolecules. Covering these aspects, the present review highlights the flexible chemistry of FNAB and its applications in the field of surface engineering, immobilization of biomolecules such as antibodies, enzymes, cells, carbohydrates, oligonucleotides, and DNA aptamers, and rapid diagnostics. Graphical Abstract An overview of the FNAB-engineered activated polymer surfaces for covalent ligation of versatile biomolecules.
Collapse
|
4
|
Potential Cycling Stability of Composite Films of Graphene Derivatives and Poly(3,4-ethylenedioxythiophene). ELECTROANAL 2015. [DOI: 10.1002/elan.201400572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Scavetta E, Mazzoni R, Mariani F, Margutta RG, Bonfiglio A, Demelas M, Fiorilli S, Marzocchi M, Fraboni B. Dopamine amperometric detection at a ferrocene clicked PEDOT:PSS coated electrode. J Mater Chem B 2014; 2:2861-2867. [PMID: 32261480 DOI: 10.1039/c4tb00169a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemically modified electrodes are widely employed in electroanalytical chemistry and an important goal is to strongly anchor redox mediators on the electrode surface. In this work, indium tin oxide (ITO) electrodes have been coated with PEDOT:PSS that has been ferrocene-functionalized, by a two-step procedure consisting of the electrodeposition of PEDOT-N3 followed by copper-catalyzed azide-alkyne cycloaddition of ethynylferrocene. The coated electrodes have been characterized by XPS, showing successful ferrocene immobilization, by AFM, and by cyclic voltammetry (CV), which is dominated by the stable and highly reversible response of ferrocene. The electrocatalytical performance of the device is assessed by analyzing 3,4-dihydroxyphenyl ethylamine, also commonly known as dopamine (DA). The sensor presents a linear range between 0.01 and 0.9 mM, a mean sensitivity of 196 mA M-1 cm-2 and a limit of detection (LoD) of 1 µM.
Collapse
Affiliation(s)
- E Scavetta
- Dipartimento di Chimica Industriale 'Toso Montanari', Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kant R, Islam MM. Theory of single potential step absorbance transient at an optically transparent rough and finite fractal electrode: EC′ mechanism. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Neubauer D, Scharpf J, Pasquarelli A, Mizaikoff B, Kranz C. Combined in situ atomic force microscopy and infrared attenuated total reflection spectroelectrochemistry. Analyst 2013; 138:6746-52. [DOI: 10.1039/c3an01169k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Bu HB, Götz G, Reinold E, Vogt A, Schmid S, Segura JL, Blanco R, Gómez R, Bäuerle P. Efficient post-polymerization functionalization of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) via ‘click’-reaction. Tetrahedron 2011. [DOI: 10.1016/j.tet.2010.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Nie G, Zhou L, Yang H. Electrosynthesis of a new polyindole derivative obtained from 5-formylindole and its electrochromic properties. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11723h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Huang JH, Hsu CY, Hu CW, Chu CW, Ho KC. The influence of charge trapping on the electrochromic performance of poly(3,4-alkylenedioxythiophene) derivatives. ACS APPLIED MATERIALS & INTERFACES 2010; 2:351-359. [PMID: 20356180 DOI: 10.1021/am900752m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper describes the electrochromic properties of a series of poly(3,4-alkylenedioxythiophene) (PXDOT) derivatives featuring various ring sizes and substitutions. The presence of a bulky group on the monomer resulted in a polymer possessing a more-open morphology, which promoted reversible ionic transfer. We used an electrochemical quartz crystal microbalance and cyclic voltammetry to investigate the properties of these polymers. We found that both cations and anions were involved in the charge compensation process. Furthermore, PXDOT derivatives possessing larger ring sizes and/or longer alkyl substituents exhibited less trapping of ions within the polymer during the redox process. The long-term electrochromic stability of these PXDOTs depended strongly on the number of trapped ions. Although the transmittance attenuation of poly(3,4-ethylenedioxythiophene) (PEDOT) decreased from 53 to 42%, we observed no significant decay for poly(diethyl-3,4-dihydro-2H-thieno[3,4-b]-[1,4]dioxepine) (PProDOT-Et(2)) after 400 cycles.
Collapse
Affiliation(s)
- Jen-Hsien Huang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Huang JH, Yang CY, Hsu CY, Chen CL, Lin LY, Wang RR, Ho KC, Chu CW. Solvent-annealing-induced self-organization of poly(3-hexylthiophene), a high-performance electrochromic material. ACS APPLIED MATERIALS & INTERFACES 2009; 1:2821-8. [PMID: 20356162 DOI: 10.1021/am900573q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We have systematically studied the self-organization of poly(3-hexylthiophene) (P3HT), an electrochromic material, upon control of the solvent evaporation rate. We characterized these polymer films using atomic force microscopy and X-ray diffraction measurements. Well-ordered P3HT structures were developed after solvent annealing; these highly crystalline structures exhibited enhanced electrochromic contrast and reduced resistance within the film, leading to larger coloration efficiencies and faster switching times. The optical contrast (Delta%T), coloration efficiency, and switching time of the P3HT films increased from 54.2%, 182.6 cm(2) C(-1), and 5.3 s, respectively, prior to solvent annealing to 64.8%, 293.5 cm(2) C(-1), and 3.2 s, respectively, after application of the solvent-annealing conditions.
Collapse
Affiliation(s)
- Jen-Hsien Huang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617
| | | | | | | | | | | | | | | |
Collapse
|