1
|
Dore MD, Rafique MG, Yang TP, Zorman M, Platnich CM, Xu P, Trinh T, Rizzuto FJ, Cosa G, Li J, Guarné A, Sleiman HF. Heat-activated growth of metastable and length-defined DNA fibers expands traditional polymer assembly. Nat Commun 2024; 15:4384. [PMID: 38782917 PMCID: PMC11116425 DOI: 10.1038/s41467-024-48722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Biopolymers such as nucleic acids and proteins exhibit dynamic backbone folding, wherein site-specific intramolecular interactions determine overall structure. Proteins then hierarchically assemble into supramolecular polymers such as microtubules, that are robust yet dynamic, constantly growing or shortening to adjust to cellular needs. The combination of dynamic, energy-driven folding and growth with structural stiffness and length control is difficult to achieve in synthetic polymer self-assembly. Here we show that highly charged, monodisperse DNA-oligomers assemble via seeded growth into length-controlled supramolecular fibers during heating; when the temperature is lowered, these metastable fibers slowly disassemble. Furthermore, the specific molecular structures of oligomers that promote fiber formation contradict the typical theory of block copolymer self-assembly. Efficient curling and packing of the oligomers - or 'curlamers' - determine morphology, rather than hydrophobic to hydrophilic ratio. Addition of a small molecule stabilises the DNA fibers, enabling temporal control of polymer lifetime and underscoring their potential use in nucleic-acid delivery, stimuli-responsive biomaterials, and soft robotics.
Collapse
Affiliation(s)
- Michael D Dore
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | | | - Tianxiao Peter Yang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Marlo Zorman
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Casey M Platnich
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Pengfei Xu
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Tuan Trinh
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Felix J Rizzuto
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47906, USA
| | - Alba Guarné
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada.
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Mohapatra D, Patra SA, Pattanayak PD, Sahu G, Sasamori T, Dinda R. Monomeric copper(II) complexes with unsymmetrical salen environment: Synthesis, characterization and study of biological activities. J Inorg Biochem 2024; 253:112497. [PMID: 38290220 DOI: 10.1016/j.jinorgbio.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Three new ONNO-donor tetradentate unsymmetrical salen ligands were synthesized by using o-phenyl diamine with substituted salicylaldehydes followed by a two-step reaction methodology. These three ligands by reaction with Cu(OAc)2.4H2O produced three new monomeric Cu(II) complexes, [CuII(L1-3)] (1-3). Elemental analysis, IR, UV-vis, NMR, and HR-ESI-MS techniques were used to analyze and characterize all the synthesized ligands and their corresponding metal complexes. Molecular structures of 1-3 were confirmed by the single-crystal-XRD analysis. Furthermore, the DNA binding ability of these complexes was checked through UV-vis, fluorescence spectroscopy, and also by circular dichroism studies. All the complexes were found to show an intercalation mode of binding with the Kb value in the range of 104-105 M-1. Finally, 1-3 was tested against two malignant (HeLa and A549) and non-cancerous (NIH-3T3) cell lines to check their in vitro antiproliferative activities. Among all, 1 is the most cytotoxic of the series having IC50 values of 5.7 ± 0.9 and 6.0 ± 0.3 μM against HeLa and A549 cell lines, respectively. This result is also consistent with the DNA binding order. Furthermore, the apoptotic mode of cell death of all the complexes was also evaluated by DAPI, AO/EB, and Annexin V-FITC/PI double staining assays.
Collapse
Affiliation(s)
- Deepika Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Takahiro Sasamori
- University of Tsukuba, Institute of Natural Sciences B-506, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
3
|
Brumett R, Danai L, Coffman A, Radwan Y, Teter M, Hayth H, Doe E, Pranger K, Thornburgh S, Dittmer A, Li Z, Kim TJ, Afonin KA, Khisamutdinov EF. Design and Characterization of Compact, Programmable, Multistranded Nonimmunostimulatory Nucleic Acid Nanoparticles Suitable for Biomedical Applications. Biochemistry 2024; 63:312-325. [PMID: 38271599 DOI: 10.1021/acs.biochem.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We report a thorough investigation of the role of single-stranded thymidine (ssT) linkers in the stability and flexibility of minimal, multistranded DNA nanostructures. We systematically explore the impact of varying the number of ssTs in three-way junction motifs (3WJs) on their formation and properties. Through various UV melting experiments and molecular dynamics simulations, we demonstrate that while the number of ssTs minimally affects thermodynamic stability, the increasing ssT regions significantly enhance the structural flexibility of 3WJs. Utilizing this knowledge, we design triangular DNA nanoparticles with varying ssTs, all showing exceptional assembly efficiency except for the 0T triangle. All triangles demonstrate enhanced stability in blood serum and are nonimmunostimulatory and nontoxic in mammalian cell lines. The 4T 3WJ is chosen as the building block for constructing other polygons due to its enhanced flexibility and favorable physicochemical characteristics, making it a versatile choice for creating cost-effective, stable, and functional DNA nanostructures that can be stored in the dehydrated forms while retaining their structures. Our study provides valuable insights into the design and application of nucleic acid nanostructures, emphasizing the importance of understanding stability and flexibility in the realm of nucleic acid nanotechnology. Our findings suggest the intricate connection between these ssTs and the structural adaptability of DNA 3WJs, paving the way for more precise design and engineering of nucleic acid nanosystems suitable for broad biomedical applications.
Collapse
Affiliation(s)
- Ross Brumett
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Leyla Danai
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Abigail Coffman
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Yasmine Radwan
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Megan Teter
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Hannah Hayth
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Erwin Doe
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Katelynn Pranger
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Sable Thornburgh
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Allison Dittmer
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Zhihai Li
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Tae Jin Kim
- Department of Physical Sciences, West Virginia University Institute of Technology, Beckley, West Virginia 25801, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil F Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
4
|
Chen K, Jiang M, Liu J, Huang D, Yang YR. DNA nanostructures as biomolecular scaffolds for antigen display. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1921. [PMID: 37562787 DOI: 10.1002/wnan.1921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
Nanoparticle-based vaccines offer a multivalent approach for antigen display, efficiently activating T and B cells in the lymph nodes. Among various nanoparticle design strategies, DNA nanotechnology offers an innovative alternative platform, featuring high modularity, spatial addressing, nanoscale regulation, high functional group density, and lower self-antigenicity. This review delves into the potential of DNA nanostructures as biomolecular scaffolds for antigen display, addressing: (1) immunological mechanisms behind nanovaccines and commonly used nanoparticles in their design, (2) techniques for characterizing protein NP-antigen complexes, (3) advancements in DNA nanotechnology and DNA-protein assembly approach, (4) strategies for precise antigen presentation on DNA scaffolds, and (5) current applications and future possibilities of DNA scaffolds in antigen display. This analysis aims to highlight the transformative potential of DNA nanoscaffolds in immunology and vaccinology. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Kun Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ming Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Jin Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Deli Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuhe R Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
6
|
Li C, Wang Y, Li PF, Fu Q. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Acta Biomater 2023; 160:1-13. [PMID: 36764595 DOI: 10.1016/j.actbio.2023.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Nucleic acid nanomaterials with good biocompatibility, biodegradability, and programmability have important applications in biomedical field. Nucleic acid nanomaterials are usually combined with some inorganic nanomaterials to improve their biological stability. However, undefined toxic side effects of composite nanocarriers hamper their application in vivo. As a nanotool capable of avoiding potential biotoxicity, nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in the field of biomedicine in recent years. Rolling circle amplification (RCA) is an isothermal enzymatic nucleic acid amplification technology for large-scale production of periodic DNA/RNA with pre-designed desirable structures and functions. RCA products with different functional parts can be customized by changing the sequence of the circular template, thereby generating complex multifunctional DNA nanostructures, such as DNA nanowire, nanoflower, origami, nanotube, nanoribbon, etc. More importantly, RCA products as nonnicked building blocks can enhance the biostability of DNA nanostructures, especially in vivo. These RCA products-based nucleic acid nanostructures can be used as scaffolds or nanocarriers to interact or load with metal nanoparticles, proteins, lipids, cationic polymers, therapeutic nucleic acids or drugs, etc. This paper reviews the assembly strategies of RCA based DNA nanostructures with different shape and their applications in biosensing, bioimaging and biomedicine. Finally, the development prospects of the nucleic acid nanomaterials in clinical diagnosis and treatment of diseases are described. STATEMENT OF SIGNIFICANCE: As a nanotool capable of avoiding potential biotoxicity, nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in the field of biomedicine in recent years. Rolling circle amplification (RCA) is an isothermal enzymatic nucleic acid amplification technology for large-scale production of periodic DNA/RNA with pre-designed desirable structures and functions. This paper reviews the construction of various shapes of pure nucleic acid nanomaterials based on RCA products and their applications in biosensing, bioimaging and biomedicine. This will promote the development of biocompatible DNA nanovehicles and their further application in living systems, including bioimaging, molecular detection, disease diagnosis and drug delivery, finally producing a significant impact in the field of nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
7
|
Zhang L, Chu M, Ji C, Tan J, Yuan Q. Preparation, applications, and challenges of functional DNA nanomaterials. NANO RESEARCH 2022; 16:3895-3912. [PMID: 36065175 PMCID: PMC9430014 DOI: 10.1007/s12274-022-4793-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
As a carrier of genetic information, DNA is a versatile module for fabricating nanostructures and nanodevices. Functional molecules could be integrated into DNA by precise base complementary pairing, greatly expanding the functions of DNA nanomaterials. These functions endow DNA nanomaterials with great potential in the application of biomedical field. In recent years, functional DNA nanomaterials have been rapidly investigated and perfected. There have been reviews that classified DNA nanomaterials from the perspective of functions, while this review primarily focuses on the preparation methods of functional DNA nanomaterials. This review comprehensively introduces the preparation methods of DNA nanomaterials with functions such as molecular recognition, nanozyme catalysis, drug delivery, and biomedical material templates. Then, the latest application progress of functional DNA nanomaterials is systematically reviewed. Finally, current challenges and future prospects for functional DNA nanomaterials are discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| |
Collapse
|
8
|
Takada T, Shimobaki N, Naruo M, Nakamura M, Yamana K. Photoresponsive porphyrin‐DNA complexes constructed through intercalation‐like binding. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tadao Takada
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry 2167 Shosha 671-2280 Himeji, Hyogo JAPAN
| | - Nao Shimobaki
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| | - Moe Naruo
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| | - Mitsunobu Nakamura
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| | - Kazushige Yamana
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| |
Collapse
|
9
|
Xiong H, Liu L, Wang Y, Jiang H, Wang X. Engineered Aptamer-Organic Amphiphile Self-Assemblies for Biomedical Applications: Progress and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104341. [PMID: 34622570 DOI: 10.1002/smll.202104341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Currently, nucleic acid aptamers are exploited as robust targeting ligands in the biomedical field, due to their specific molecular recognition, little immunogenicity, low cost, ect. Thanks to the facile chemical modification and high hydrophilicity, aptamers can be site-specifically linked with hydrophobic moieties to prepare aptamer-organic amphiphiles (AOAs), which spontaneously assemble into aptamer-organic amphiphile self-assemblies (AOASs). These polyvalent self-assemblies feature with enhanced target-binding ability, increased resistance to nuclease, and efficient cargo-loading, making them powerful platforms for bioapplications, including targeted drug delivery, cell-based cancer therapy, biosensing, and bioimaging. Besides, the morphology of AOASs can be elaborately manipulated for smarter biomedical functions, by regulating the hydrophilicity/hydrophobicity ratio of AOAs. Benefiting from the boom in DNA synthesis technology and nanotechnology, various types of AOASs, including aptamer-polymer amphiphile self-assemblies, aptamer-lipid amphiphile self-assemblies, aptamer-cell self-assemblies, ect, have been constructed with great biomedical potential. Particularly, stimuli-responsive AOASs with transformable structure can realize site-specific drug release, enhanced tumor penetration, and specific target molecule detection. Herein, the general synthesis methods of oligonucleotide-organic amphiphiles are firstly summarized. Then recent progress in different types of AOASs for bioapplications and strategies for morphology control are systematically reviewed. The present challenges and future perspectives of this field are also discussed.
Collapse
Affiliation(s)
- Hongjie Xiong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
10
|
Liu W, Duan H, Zhang D, Zhang X, Luo Q, Xie T, Yan H, Peng L, Hu Y, Liang L, Zhao G, Xie Z, Hu J. Concepts and Application of DNA Origami and DNA Self-Assembly: A Systematic Review. Appl Bionics Biomech 2021; 2021:9112407. [PMID: 34824603 PMCID: PMC8610680 DOI: 10.1155/2021/9112407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023] Open
Abstract
With the arrival of the post-Moore Era, the development of traditional silicon-based computers has reached the limit, and it is urgent to develop new computing technology to meet the needs of science and life. DNA computing has become an essential branch and research hotspot of new computer technology because of its powerful parallel computing capability and excellent data storage capability. Due to good biocompatibility and programmability properties, DNA molecules have been widely used to construct novel self-assembled structures. In this review, DNA origami is briefly introduced firstly. Then, the applications of DNA self-assembly in material physics, biogenetics, medicine, and other fields are described in detail, which will aid the development of DNA computational model in the future.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Huaichuan Duan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Derong Zhang
- School of Marxism, Chengdu Vocational & Technical College of Industry, Chengdu 610081, China
| | - Xun Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Qing Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Tao Xie
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Hailian Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Li Liang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Zhenjian Xie
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Jianping Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| |
Collapse
|
11
|
Ji W, Li X, Xiao M, Sun Y, Lai W, Zhang H, Pei H, Li L. DNA-Scaffolded Disulfide Redox Network for Programming Drug-Delivery Kinetics. Chemistry 2021; 27:8745-8752. [PMID: 33778987 DOI: 10.1002/chem.202100149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 12/11/2022]
Abstract
In response to specific stimuli, dynamic covalent materials enable the generation of new structures by reversibly forming/breaking chemical bonds, thus showing great potential for application in controlled drug release. However, using dynamic covalent chemistry to program drug-delivery kinetics remains challenging. Herein, an in situ polymerization-generated DNA-scaffolded disulfide redox network (DdiSRN) is reported in which nucleic acids are used as a scaffold for dynamic disulfide bonds. The constructed DdiSRN allows selective release of loading cargos inside cancer cells in response to redox stimuli. Moreover, the density of disulfide bonds in network can be tuned by precise control over their position and number on DNA scaffolds. As a result, drug-delivery kinetics can be programmed with a half-life, t1/2 , decreasing from 8.3 to 4.4 h, thus facilitating keeping an adequate drug concentration within the therapeutic window. Both in vitro and in vivo studies confirm that co-delivery of DOX and siRNA in combination with fast drug release inside cells using this DdiSRN enhances the therapeutic effect on multidrug-resistant cancer. This nontrivial therapeutic platform enabling kinetic control provides a good paradigm for precision cancer medicine.
Collapse
Affiliation(s)
- Wei Ji
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Xiaodan Li
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Mingshu Xiao
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yueyang Sun
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Wei Lai
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademic University, 20520, Turku, Finland
| | - Hao Pei
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Li Li
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| |
Collapse
|
12
|
Liang X, Liu M, Komiyama M. Recognition of Target Site in Various Forms of DNA and RNA by Peptide Nucleic Acid (PNA): From Fundamentals to Practical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
13
|
Pérez‐Romero A, Domínguez‐Martín A, Galli S, Santamaría‐Díaz N, Palacios O, Dobado JA, Nyman M, Galindo MA. Single‐Stranded DNA as Supramolecular Template for One‐Dimensional Palladium(II) Arrays. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Antonio Pérez‐Romero
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - Alicia Domínguez‐Martín
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - Simona Galli
- 2 Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Noelia Santamaría‐Díaz
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - Oscar Palacios
- Departament de Química Facultat de Ciències Universitat Autònoma de Barcelona Campus Bellaterra s/n 08193 Cerdanyola del Vallès, Barcelona Spain
| | - José A. Dobado
- Grupo de Modelización y Diseño Molecular Departamento de Química Orgánica Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - May Nyman
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Miguel A. Galindo
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| |
Collapse
|
14
|
Pérez‐Romero A, Domínguez‐Martín A, Galli S, Santamaría‐Díaz N, Palacios O, Dobado JA, Nyman M, Galindo MA. Single‐Stranded DNA as Supramolecular Template for One‐Dimensional Palladium(II) Arrays. Angew Chem Int Ed Engl 2021; 60:10089-10094. [DOI: 10.1002/anie.202015554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/15/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Antonio Pérez‐Romero
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - Alicia Domínguez‐Martín
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - Simona Galli
- 2 Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Noelia Santamaría‐Díaz
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - Oscar Palacios
- Departament de Química Facultat de Ciències Universitat Autònoma de Barcelona Campus Bellaterra s/n 08193 Cerdanyola del Vallès, Barcelona Spain
| | - José A. Dobado
- Grupo de Modelización y Diseño Molecular Departamento de Química Orgánica Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| | - May Nyman
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Miguel A. Galindo
- Departamento de Química Inorgánica. Unidad de Excelencia de Química Aplicada a Biomedicina y, Medioambiente Universidad de Granada Avda Fuentenueva s/n 18071 Granada Spain
| |
Collapse
|
15
|
Gonzàlez-Rosell A, Cerretani C, Mastracco P, Vosch T, Copp SM. Structure and luminescence of DNA-templated silver clusters. NANOSCALE ADVANCES 2021; 3:1230-1260. [PMID: 36132866 PMCID: PMC9417461 DOI: 10.1039/d0na01005g] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure-property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter Mastracco
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
- Department of Physics and Astronomy, University of California Irvine California 92697-4575 USA
| |
Collapse
|
16
|
MU J, YANG JL, ZHANG DW, JIA Q. Progress in Preparation of Metal Nanoclusters and Their Application in Detection of Environmental Pollutants. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60082-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Lee HJ, Kim BH. Pyrene-Modified Guanine Cluster Probes Forming DNA/RNA Hybrid Three-Way Junctions for Imaging of Intracellular MicroRNAs. ACS APPLIED BIO MATERIALS 2021; 4:1668-1676. [PMID: 35014514 DOI: 10.1021/acsabm.0c01476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression in cells; high levels of expression are associated with various cancers. In this paper, we describe PyA-modified nucleic acid probes that can detect intracellular miRNAs by forming DNA/RNA hybrid three-way junction structures containing a fluorescent scaffold-a so-called G-cluster. This G-cluster featured two mismatched strands, four guanine residues, and one fluorescent adenine residue having a pyrene moiety covalently connected at the 8-position through an acetylene linker. The scaffold underwent a dramatic shift in its emission wavelength when two mismatched strands formed a duplex, similar to the behavior of an adenine pentad system (A-cluster). We applied the G-cluster scaffold in a three-way junction system to probe for miRNAs; its red-shifted fluorescence intensity and stability were greater than those reported previously for A-cluster three-way junction probes. Furthermore, confocal microscopy of cancer cell lines revealed bright fluorescence emissions in response to the miRNAs in the cells. Thus, this system can be applied intracellularly as a potential fluorescent probe for the detection of various biologically important nucleic acids.
Collapse
Affiliation(s)
- Ha Jung Lee
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
18
|
Lone MS, Bhat PA, Afzal S, Chat OA, Dar AA. Energy transduction through FRET in self-assembled soft nanostructures based on surfactants/polymers: current scenario and prospects. SOFT MATTER 2021; 17:425-446. [PMID: 33400748 DOI: 10.1039/d0sm01625j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The self-assembled systems of surfactants/polymers, which are capable of supporting energy funneling between fluorophores, have recently gained significant attraction. Surfactant and polymeric micelles form nanoscale structures spanning a radius of 2-10 nm are generally suitable for the transduction of energy among fluorophores. These systems have shown great potential in Förster resonance energy transfer (FRET) due to their unique characteristics of being aqueous based, tendency to remain self-assembled, spontaneous formation, tunable nature, and responsiveness to different external stimuli. This review presents current developments in the field of energy transfer, particularly the multi-step FRET processes in the self-assembled nanostructures of surfactants/polymers. The part one of this review presents a background and brief overview of soft systems and discusses certain aspects of the self-assemblies of surfactants/polymers and their co-solubilization property to bring fluorophores to close proximity to transduce energy. The second part of this review deals with single-step and multi-step FRET in the self-assemblies of surfactants/polymers and links FRET systems with advanced smart technologies including multicolor formation, data encryption, and artificial antenna systems. This review also discusses the diverse examples in the literature to present the emerging applications of FRET. Finally, the prospects regarding further improvement of FRET in self-assembled soft systems are outlined.
Collapse
Affiliation(s)
- Mohd Sajid Lone
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar-190006, J&K, India.
| | - Parvaiz Ahmad Bhat
- Department of Chemistry, Government Degree College, Pulwama-192301, J&K, India.
| | - Saima Afzal
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar-190006, J&K, India.
| | - Oyais Ahmad Chat
- Department of Chemistry, Government Degree College, Pulwama-192301, J&K, India.
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar-190006, J&K, India.
| |
Collapse
|
19
|
Verma V, Maikhuri VK, Khatri V, Singh A, Prasad AK. Synthesis of hexopyranosyl pyrimidine homonucleosides. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1836224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vineet Verma
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Vipin K. Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Vinod Khatri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Pt. Neki Ram Sharma Govt. College, Rohtak, India
| | - Ankita Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Ashok K. Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
20
|
Lilienthal S, Fischer A, Liao WC, Cazelles R, Willner I. Single and Bilayer Polyacrylamide Hydrogel-Based Microcapsules for the Triggered Release of Loads, Logic Gate Operations, and Intercommunication between Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31124-31136. [PMID: 32551490 DOI: 10.1021/acsami.0c06711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A method to assemble loaded stimuli-responsive DNA-polyacrylamide hydrogel-stabilized microcapsules is presented. The method involves coating substrate-loaded CaCO3 microparticles, functionalized with nucleic acid promoter units, and cross-linking DNA-modified polyacrylamide chains on the microcapsules, using the hybridization chain reaction (HCR) to yield the DNA-cross-linked hydrogel coating. Dissolution of the CaCO3 particles generated the substrate-loaded hydrogel-protected microcapsules. The microcapsule-hydrogel shells include engineered stimuli-responsive oligonucleotide cross-linkers that control the stiffness of the hydrogel shells, allowing the triggered release of the loads. One approach includes the incorporation of cofactor-dependent DNAzyme units into the cross-linked hydrogel layers (cofactor = Mg2+ ions, Zn2+ ions, or histidine) as stimuli-responsive units. Cleavage of the cross-linking DNAzyme substrates by the respective cofactors yields hydrogel coatings with a reduced stiffness and higher porosity that allow the release of the loads. A further approach involved the application of the HCR process to assemble the bilayer hydrogel microcapsules that are unlocked by two cooperative triggers. Bilayer microcapsules consisting of a K+ ions-stabilized G-quadruplex/18-crown-6-ether (CE) responsive layer and a Mg2+ ion DNAzyme-responsive layers are presented. Unlocking and locking of the G-quadruplex cross-linked layer by 18-crown-6-ether and K+ ions, respectively, in the presence of Mg2+ ions allow the switchable controlled release of the load. In addition, the intercommunication of two kinds of stimuli-responsive bilayer hydrogel microcapsules carrying two different loads (tetramethylrhodamine-dextran, TMR-D, and CdSe/ZnS quantum dots) is demonstrated. The intercommunication process involves the stimuli-triggered generation of "information transfer" strands from one microcapsule to another that activate the release of the loads.
Collapse
Affiliation(s)
- Sivan Lilienthal
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Amit Fischer
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Wei-Ching Liao
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Remi Cazelles
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
21
|
Stable Hg(II)-mediated base pairs with a phenanthroline-derived nucleobase surrogate in antiparallel-stranded DNA. J Biol Inorg Chem 2020; 25:647-654. [PMID: 32277288 PMCID: PMC7239801 DOI: 10.1007/s00775-020-01788-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Metal-mediated base pairs involving artificial nucleobases have emerged as a promising means for the site-specific functionalization of nucleic acids with metal ions. In this context, a GNA-appended (GNA: glycol nucleic acid) nucleoside analogue containing the artificial nucleobase 1H-imidazo[4,5-f][1,10]phenanthroline (P) has already been applied successfully in a variety of homo- and heteroleptic metal-mediated base pairs, mainly involving Ag(I) ions. Herein, we report a thorough investigation of the Hg(II)-binding properties of P when incorporated into antiparallel-stranded DNA duplexes. The artificial nucleobase P is able to form Hg(II)-mediated homoleptic base pairs of the type P-Hg(II)-P with a [2 + 2] coordination environment. In addition, the heteroleptic P-Hg(II)-T pair was investigated. The addition of a stoichiometric amount of Hg(II) to a duplex comprising either a P:P pair or a P:T pair stabilizes the DNA duplex by 4.3 °C and 14.5 °C, respectively. The P-Hg(II)-T base pair, hence, represents the most stabilizing non-organometallic Hg(II)-mediated base pair reported to date. The formation of the Hg(II)-mediated base pairs was investigated by means of temperature-dependent UV spectroscopy and CD spectroscopy.
Collapse
|
22
|
Surin M, Ulrich S. From Interaction to Function in DNA-Templated Supramolecular Self-Assemblies. ChemistryOpen 2020; 9:480-498. [PMID: 32328404 PMCID: PMC7175023 DOI: 10.1002/open.202000013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
DNA-templated self-assembly represents a rich and growing subset of supramolecular chemistry where functional self-assemblies are programmed in a versatile manner using nucleic acids as readily-available and readily-tunable templates. In this review, we summarize the different DNA recognition modes and the basic supramolecular interactions at play in this context. We discuss the recent results that report the DNA-templated self-assembly of small molecules into complex yet precise nanoarrays, going from 1D to 3D architectures. Finally, we show their emerging functions as photonic/electronic nanowires, sensors, gene delivery vectors, and supramolecular catalysts, and their growing applications in a wide range of area from materials to biological sciences.
Collapse
Affiliation(s)
- Mathieu Surin
- Laboratory for Chemistry of Novel MaterialsCenter of Innovation and Research in Materials and Polymers (CIRMAP)University of Mons-UMONS7000MonsBelgium
| | | |
Collapse
|
23
|
Hu X, Lindner JO, Würthner F. Stepwise Folding and Self-Assembly of a Merocyanine Folda-Pentamer. J Am Chem Soc 2020; 142:3321-3325. [PMID: 32003980 DOI: 10.1021/jacs.9b12599] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we report a synthetic protocol toward a merocyanine (MC) pentamer 1 which represents the first merocyanine oligomer longer than a dimer. By continuously decreasing the solvent polarity, we demonstrate the stepwise folding from partially folded monomeric and dimeric MC subunits (in chloroform) up to the full pentamer π-stack (in 75% methylcyclohexane/25% chloroform) and a subsequent self-assembly of pentamer 1 into larger aggregates (in 80% methylcyclohexane/20% chloroform). This hierarchical structure formation process became possible due to the predominant dipole-dipole interactions among MC dyes that allowed for a precise modulation of the energy landscape by the solvent polarity. This unprecedented stepwise control of dye assembly via hierarchical dipole-dipole interactions opens the door for a more precise control of dye-dye interactions in artificial multichromophoric ensembles.
Collapse
Affiliation(s)
- Xiaobo Hu
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Joachim O Lindner
- Center for Nanosystems Chemistry , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Frank Würthner
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany.,Center for Nanosystems Chemistry , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| |
Collapse
|
24
|
Darley E, Singh JKD, Surace NA, Wickham SFJ, Baker MAB. The Fusion of Lipid and DNA Nanotechnology. Genes (Basel) 2019; 10:E1001. [PMID: 31816934 PMCID: PMC6947036 DOI: 10.3390/genes10121001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Lipid membranes form the boundary of many biological compartments, including organelles and cells. Consisting of two leaflets of amphipathic molecules, the bilayer membrane forms an impermeable barrier to ions and small molecules. Controlled transport of molecules across lipid membranes is a fundamental biological process that is facilitated by a diverse range of membrane proteins, including ion-channels and pores. However, biological membranes and their associated proteins are challenging to experimentally characterize. These challenges have motivated recent advances in nanotechnology towards building and manipulating synthetic lipid systems. Liposomes-aqueous droplets enclosed by a bilayer membrane-can be synthesised in vitro and used as a synthetic model for the cell membrane. In DNA nanotechnology, DNA is used as programmable building material for self-assembling biocompatible nanostructures. DNA nanostructures can be functionalised with hydrophobic chemical modifications, which bind to or bridge lipid membranes. Here, we review approaches that combine techniques from lipid and DNA nanotechnology to engineer the topography, permeability, and surface interactions of membranes, and to direct the fusion and formation of liposomes. These approaches have been used to study the properties of membrane proteins, to build biosensors, and as a pathway towards assembling synthetic multicellular systems.
Collapse
Affiliation(s)
- Es Darley
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
| | - Jasleen Kaur Daljit Singh
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- School of Chemical and Biomolecular Engineering, University of Sydney, Camperdown 2006, Australia
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
| | - Natalie A. Surace
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
| | - Shelley F. J. Wickham
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
- School of Physics, University of Sydney, Camperdown 2006, Australia
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| |
Collapse
|
25
|
Li J, Lin L, Yu J, Zhai S, Liu G, Tian L. Fabrication and Biomedical Applications of “Polymer-Like” Nucleic Acids Enzymatically Produced by Rolling Circle Amplification. ACS APPLIED BIO MATERIALS 2019; 2:4106-4120. [DOI: 10.1021/acsabm.9b00622] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Shiyao Zhai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Guoyuan Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
26
|
Comberlato A, Paloja K, Bastings MMC. Nucleic acids presenting polymer nanomaterials as vaccine adjuvants. J Mater Chem B 2019; 7:6321-6346. [PMID: 31460563 DOI: 10.1039/c9tb01222b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most vaccines developed today include only the antigens that best stimulate the immune system rather than the entire virus or microbe, which makes vaccine production and use safer and easier, though they lack potency to induce acceptable immunity and long-term protection. The incorporation of additional immune stimulating components, named adjuvants, is required to generate a strong protective immune response. Nucleic acids (DNA and RNA) and their synthetic analogs are promising candidates as vaccine adjuvants activating Toll-like receptors (TLRs). Additionally, in the last few years several nanocarriers have emerged as platforms for targeted co-delivery of antigens and adjuvants. In this review, we focus on the recent developments in polymer nanomaterials presenting nucleic acids as vaccine adjuvants. We aim to compare the effectiveness of the various classes of polymers in immune modulating materials (nanoparticles, dendrimers, single-chain particles, nanogels, polymersomes and DNA-based architectures). In particular, we address the critical role of parameters such as size, shape, complexation and release of TLR ligands, cellular uptake, stability, toxicity and potential importance of spatial control in ligand presentation.
Collapse
Affiliation(s)
- Alice Comberlato
- IMX/IBI, EPFL, EPFL-STI-IMX-PBL MXC 340 Station 12, Lausanne, 1015, Switzerland.
| | - Kaltrina Paloja
- IMX/IBI, EPFL, EPFL-STI-IMX-PBL MXC 340 Station 12, Lausanne, 1015, Switzerland.
| | - Maartje M C Bastings
- IMX/IBI, EPFL, EPFL-STI-IMX-PBL MXC 340 Station 12, Lausanne, 1015, Switzerland.
| |
Collapse
|
27
|
Chen K, Fu T, Sun W, Huang Q, Zhang P, Zhao Z, Zhang X, Tan W. DNA-supramolecule conjugates in theranostics. Theranostics 2019; 9:3262-3279. [PMID: 31244953 PMCID: PMC6567960 DOI: 10.7150/thno.31885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
The elegant properties of deoxyribonucleic acid (DNA), such as accurate recognition, programmability and addressability, make it a well-defined and promising material to develop various molecular probes, drug delivery carriers and theranostic systems for cancer diagnosis and therapy. In addition, supramolecular chemistry, also termed "chemistry beyond the molecule", is a promising research field that aims to develop functional chemical systems by bringing discrete molecular components together in a manner that invokes noncovalent intermolecular forces, such as hydrophobic interaction, hydrogen bonding, metal coordination, and shape or size matching. Thus, DNA-supramolecule conjugates (DSCs) combine accurate recognition, programmability and addressability of DNA with the greater toolbox of supramolecular chemistry. This review discusses the applications of DSCs in sensing, protein activity regulation, cell behavior manipulation, and biomedicine.
Collapse
Affiliation(s)
- Kun Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Qin Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Pengge Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai (P. R. China)
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
28
|
Shigi N, Mizuno Y, Kunifuda H, Matsumura K, Komiyama M. Promotion of Single-Strand Invasion of PNA to Double-Stranded DNA by Pseudo-Complementary Base Pairing. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Narumi Shigi
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuki Mizuno
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science & Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Hiroko Kunifuda
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kazunari Matsumura
- Department of Materials Science & Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
29
|
Beck K, Reslow-Jacobsen C, Hornum M, Henriksen C, Nielsen P. A double-headed nucleotide with two cytosines: DNA with condensed information and improved duplex stability. Bioorg Med Chem Lett 2019; 29:740-743. [PMID: 30655212 DOI: 10.1016/j.bmcl.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
Double-headed nucleotide monomers are capable of condensing the genetic information of DNA. Herein, a double-headed nucleotide with two cytosine bases (CC) is constructed. The additional cytosine is connected through a methylene linker to the 2'-position of arabinocytidine. The nucleotide is incorporated into oligonucleotides and its effect on duplex stability is studied. For single incorporations, a thermal stabilization of 4.0 °C is found as compared to the unmodified duplex and it is shown that both nucleobases of CC participate in Watson-Crick base pairing. In combination with the previously published UT monomer, it is also shown that multiple incorporations are tolerated. For instance, a 16-mer sequence is targeted by a 13-mer oligonucleotide by using one CC and two UT monomers without compromising the overall duplex stability. Finally, the potential of double-headed nucleotides in triplex-forming oligonucleotides is studied, however, with the conclusion that the present design is not well-suited for this function.
Collapse
Affiliation(s)
- Kasper Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Charlotte Reslow-Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Christian Henriksen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
30
|
Xiao T, Xu L, Wang J, Li ZY, Sun XQ, Wang L. Biomimetic folding of small organic molecules driven by multiple non-covalent interactions. Org Chem Front 2019. [DOI: 10.1039/c9qo00089e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The supramolecular self-folding of UPy-based monomers with low molecular weight driven by multiple non-covalent interactions has been developed.
Collapse
Affiliation(s)
- Tangxin Xiao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Lixiang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Jie Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Zheng-Yi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Xiao-Qiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Leyong Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| |
Collapse
|
31
|
DNA-Based Super-Resolution Microscopy: DNA-PAINT. Genes (Basel) 2018; 9:genes9120621. [PMID: 30544986 PMCID: PMC6315775 DOI: 10.3390/genes9120621] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Super-resolution microscopies, such as single molecule localization microscopy (SMLM), allow the visualization of biomolecules at the nanoscale. The requirement to observe molecules multiple times during an acquisition has pushed the field to explore methods that allow the binding of a fluorophore to a target. This binding is then used to build an image via points accumulation for imaging nanoscale topography (PAINT), which relies on the stochastic binding of a fluorescent ligand instead of the stochastic photo-activation of a permanently bound fluorophore. Recently, systems that use DNA to achieve repeated, transient binding for PAINT imaging have become the cutting edge in SMLM. Here, we review the history of PAINT imaging, with a particular focus on the development of DNA-PAINT. We outline the different variations of DNA-PAINT and their applications for imaging of both DNA origamis and cellular proteins via SMLM. Finally, we reflect on the current challenges for DNA-PAINT imaging going forward.
Collapse
|
32
|
Zhao Z, Du T, Liang F, Liu S. Amphiphilic DNA Organic Hybrids: Functional Materials in Nanoscience and Potential Application in Biomedicine. Int J Mol Sci 2018; 19:E2283. [PMID: 30081520 PMCID: PMC6121482 DOI: 10.3390/ijms19082283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Due to the addressability and programmability, DNA has been applied not merely in constructing static elegant nanostructures such as two dimensional and three dimensional DNA nanostructures but also in designing dynamic nanodevices. Moreover, DNA could combine with hydrophobic organic molecules to be a new amphiphilic building block and then self-assemble into nanomaterials. Of particular note, a recent state-of-the-art research has turned our attention to the amphiphilic DNA organic hybrids including small molecule modified DNA (lipid-DNA, fluorescent molecule-DNA, etc.), DNA block copolymers, and DNA-dendron hybrids. This review focuses mainly on the development of their self-assembly behavior and their potential application in nanomaterial and biomedicine. The potential challenges regarding of the amphiphilic DNA organic hybrids are also briefly discussed, aiming to advance their practical applications in nanoscience and biomedicine.
Collapse
Affiliation(s)
- Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Ting Du
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
33
|
Shoji T, Fukutomi H, Okada Y, Chiba K. Artificial bioconjugates with naturally occurring linkages: the use of phosphodiester. Beilstein J Org Chem 2018; 14:1946-1955. [PMID: 30112100 PMCID: PMC6071721 DOI: 10.3762/bjoc.14.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022] Open
Abstract
Artificial orthogonal bond formations such as the alkyne–azide cycloaddition have enabled selective bioconjugations under mild conditions, yet naturally occurring linkages between native functional groups would be more straightforward to elaborate bioconjugates. Herein, we describe the use of a phosphodiester bond as a versatile option to access various bioconjugates. An opposite activation strategy, involving 5’-phosphitylation of the supported oligonucleotides, has allowed several biomolecules that possess an unactivated alcohol to be directly conjugated. It should be noted that there is no need to pre-install artificial functional groups and undesired and unpredictable perturbations possibly caused by bioconjugation can be minimized.
Collapse
Affiliation(s)
- Takao Shoji
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hiroki Fukutomi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yohei Okada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
34
|
Jash B, Müller J. Concomitant Site-Specific Incorporation of Silver(I) and Mercury(II) Ions into a DNA Duplex. Chemistry 2018; 24:10636-10640. [DOI: 10.1002/chem.201802470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Biswarup Jash
- Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstrasse 28/30 48149 Münster Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstrasse 28/30 48149 Münster Germany
| |
Collapse
|
35
|
Bag SS, Gogoi H. Design of "Click" Fluorescent Labeled 2'-deoxyuridines via C5-[4-(2-Propynyl(methyl)amino)]phenyl Acetylene as a Universal Linker: Synthesis, Photophysical Properties, and Interaction with BSA. J Org Chem 2018; 83:7606-7621. [PMID: 29877080 DOI: 10.1021/acs.joc.7b03097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microenvironment-sensitive fluorescent nucleosides present attractive advantages over single-emitting dyes for sensing inter-biomolecular interactions involving DNA. Herein, we report the rational design and synthesis of triazolyl push-pull fluorophore-labeled uridines via the intermediacy of C5-[4-(2-propynyl(methyl)amino)]phenyl acetylene as a universal linker. The synthesized nucleosides showed interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) features. A few of them also exhibited dual-emitting characteristics evidencing our designing concept. The HOMO-LUMO distribution showed that the emissive states of these nucleosides were characterized with more significant electron redistribution between the C5-[4-(2-propynyl(methyl)amino)]phenyl triazolyl donor moiety and the aromatic chromophores linked to it, leading to modulated emission property. The solvent polarity sensitivity of these nucleosides was also tested. The synthesized triazolyl benzonitrile (10C), naphthyl (10E), and pyrenyl (10G) nucleosides were found to exhibit interesting ICT and dual (LE/ICT) emission properties. The dual-emitting pyrenyl nucleoside maintained a good ratiometric response in the BSA protein microenvironment, enabling the switch-on ratiometric sensing of BSA as the only protein biomolecule. Thus, it is expected that the new fluorescent nucleoside analogues would be useful in designing DNA probes for nucleic acid analysis or studying DNA-protein interactions via a drastic change in fluorescence response due to a change in micropolarity.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory, Department of Chemistry , Indian Institute of Technology Guwahati 781039 , India
| | - Hiranya Gogoi
- Bioorganic Chemistry Laboratory, Department of Chemistry , Indian Institute of Technology Guwahati 781039 , India
| |
Collapse
|
36
|
Liu K, Zheng L, Ma C, Göstl R, Herrmann A. DNA-surfactant complexes: self-assembly properties and applications. Chem Soc Rev 2018; 46:5147-5172. [PMID: 28686247 DOI: 10.1039/c7cs00165g] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the last few years, DNA-surfactant complexes have gained traction as unique and powerful materials for potential applications ranging from optoelectronics to biomedicine because they self-assemble with outstanding flexibility spanning packing modes from ordered lamellar, hexagonal and cubic structures to disordered isotropic phases. These materials consist of a DNA backbone from which the surfactants protrude as non-covalently bound side chains. Their formation is electrostatically driven and they form bulk films, lyotropic as well as thermotropic liquid crystals and hydrogels. This structural versatility and their easy-to-tune properties render them ideal candidates for assembly in bulk films, for example granting directional conductivity along the DNA backbone, for dye dispersion minimizing fluorescence quenching allowing applications in lasing and nonlinear optics or as electron blocking and hole transporting layers, such as in LEDs or photovoltaic cells, owing to their extraordinary dielectric properties. However, they do not only act as host materials but also function as a chromophore itself. They can be employed within electrochromic DNA-surfactant liquid crystal displays exhibiting remarkable absorptivity in the visible range whose volatility can be controlled by the external temperature. Concomitantly, applications in the biological field based on DNA-surfactant bulk films, liquid crystals and hydrogels are rendered possible by their excellent gene and drug delivery capabilities. Beyond the mere exploitation of their material properties, DNA-surfactant complexes proved outstandingly useful for synthetic chemistry purposes when employed as scaffolds for DNA-templated reactions, nucleic acid modifications or polymerizations. These promising examples are by far not exhaustive but foreshadow their potential applications in yet unexplored fields. Here, we will give an insight into the peculiarities and perspectives of each material and are confident to inspire future developments and applications employing this emerging substance class.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry of Chinese Academy of Sciences, 130022, Changchun, China
| | | | | | | | | |
Collapse
|
37
|
Mandal S, Hebenbrock M, Müller J. A dinuclear silver(I)-mediated base pair in DNA formed from 1, N 6 -ethenoadenine and thymine. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.05.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Ishiwari F, Shoji Y, Fukushima T. Supramolecular scaffolds enabling the controlled assembly of functional molecular units. Chem Sci 2018; 9:2028-2041. [PMID: 29719683 PMCID: PMC5896469 DOI: 10.1039/c7sc04340f] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
To assemble functional molecular units into a desired structure while controlling positional and orientational order is a key technology for the development of high-performance organic materials that exhibit electronic, optoelectronic, biological and even dynamic functions. For this purpose, we cannot rely simply on the inherent self-assembly properties of the target functional molecular units, since it is difficult to predict, based solely on the molecular structure, what structure will be achieved upon assembly. To address this issue, it would be useful to employ molecular building blocks with self-assembly structures that can be clearly predicted and defined, to make target molecular units assemble into a desired structure. To date, various motifs of molecular assemblies, polymers, discrete and/or three-dimensional metal-organic complexes, nanoparticles and metal/metal oxide substrates have been developed to create materials with particular structures and dimensionalities. In this perspective, we define such assembly motifs as "supramolecular scaffolds". The structure of supramolecular scaffolds can be classified in terms of dimensionality, and they range in size from nano- to macroscopic scales. Functional molecular units, when attached to supramolecular scaffolds either covalently or non-covalently, can be assembled into specific structures, thus enabling the exploration of new properties, which cannot be achieved with the target molecular units alone. Through the classification and overview of reported examples, we shed new light on supramolecular scaffolds for the rational design of organic and polymeric materials.
Collapse
Affiliation(s)
- Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science , Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan .
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science , Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan .
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science , Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan .
| |
Collapse
|
39
|
Marino N, Bruno R, Armentano D, De Munno G. Structural studies on Ba(II) adducts of the cytosine nucleobase and its derivative 1-Methylcytosine. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1437912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nadia Marino
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende, Italy
| | - Rosaria Bruno
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende, Italy
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende, Italy
| | - Giovanni De Munno
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende, Italy
| |
Collapse
|
40
|
Méndez‐Arriaga JM, Maldonado CR, Dobado JA, Galindo MA. Silver(I)‐Mediated Base Pairs in DNA Sequences Containing 7‐Deazaguanine/Cytosine: towards DNA with Entirely Metallated Watson–Crick Base Pairs. Chemistry 2018; 24:4583-4589. [DOI: 10.1002/chem.201705131] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- José M. Méndez‐Arriaga
- Departamento de Química InorgánicaUniversidad de Granada Avd Fuentenueva s/n 18071 Spain
| | - Carmen R. Maldonado
- Departamento de Química InorgánicaUniversidad de Granada Avd Fuentenueva s/n 18071 Spain
| | - José A. Dobado
- Grupo de Modelización y Diseño Molecular, Departamento de Química OrgánicaUniversidad de Granada Avd Fuentenueva s/n 18071 Spain
| | - Miguel A. Galindo
- Departamento de Química InorgánicaUniversidad de Granada Avd Fuentenueva s/n 18071 Spain
| |
Collapse
|
41
|
Appukutti N, Serpell CJ. High definition polyphosphoesters: between nucleic acids and plastics. Polym Chem 2018. [DOI: 10.1039/c8py00251g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nucleic acids and synthetic polyphosphoester materials have been distinct fields – this review shows how these areas now comprise a continuum.
Collapse
|
42
|
Chen S, Li Q, Wang X, Yang YW, Gao H. Multifunctional bacterial imaging and therapy systems. J Mater Chem B 2018; 6:5198-5214. [DOI: 10.1039/c8tb01519h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Advanced antibacterial materials are classified and introduced, and their applications in multimodal imaging and therapy are reviewed.
Collapse
Affiliation(s)
- Shuai Chen
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Qiaoying Li
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Xin Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ying-Wei Yang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hui Gao
- School of Chemistry and Chemical Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
43
|
Nakamura M, Jomura A, Takada T, Yamana K. Photocurrent Enhancement in DNA-Scaffolded Chromophore-Aggregate-Functionalized Systems Containing Multiple Types of Chromophores. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mitsunobu Nakamura
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Ayumi Jomura
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Tadao Takada
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Kazushige Yamana
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| |
Collapse
|
44
|
Müller J. Metal-mediated base pairs in parallel-stranded DNA. Beilstein J Org Chem 2017; 13:2671-2681. [PMID: 29564004 PMCID: PMC5753045 DOI: 10.3762/bjoc.13.265] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 01/03/2023] Open
Abstract
In nucleic acid chemistry, metal-mediated base pairs represent a versatile method for the site-specific introduction of metal-based functionality. In metal-mediated base pairs, the hydrogen bonds between complementary nucleobases are replaced by coordinate bonds to one or two transition metal ions located in the helical core. In recent years, the concept of metal-mediated base pairing has found a significant extension by applying it to parallel-stranded DNA duplexes. The antiparallel-stranded orientation of the complementary strands as found in natural B-DNA double helices enforces a cisoid orientation of the glycosidic bonds. To enable the formation of metal-mediated base pairs preferring a transoid orientation of the glycosidic bonds, parallel-stranded duplexes have been investigated. In many cases, such as the well-established cytosine-Ag(I)-cytosine base pair, metal complex formation is more stabilizing in parallel-stranded DNA than in antiparallel-stranded DNA. This review presents an overview of all metal-mediated base pairs reported as yet in parallel-stranded DNA, compares them with their counterparts in regular DNA (where available), and explains the experimental conditions used to stabilize the respective parallel-stranded duplexes.
Collapse
Affiliation(s)
- Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| |
Collapse
|
45
|
Hrdlicka PJ, Karmakar S. 25 years and still going strong: 2'-O-(pyren-1-yl)methylribonucleotides - versatile building blocks for applications in molecular biology, diagnostics and materials science. Org Biomol Chem 2017; 15:9760-9774. [PMID: 29135014 PMCID: PMC5711458 DOI: 10.1039/c7ob02152f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oligonucleotides (ONs) modified with 2'-O-(pyren-1-yl)methylribonucleotides have been explored for a range of applications in molecular biology, nucleic acid diagnostics, and materials science for more than 25 years. The first part of this review provides an overview of synthetic strategies toward 2'-O-(pyren-1-yl)methylribonucleotides and is followed by a summary of biophysical properties of nucleic acid duplexes modified with these building blocks. Insights from structural studies are then presented to rationalize the reported properties. In the second part, applications of ONs modified with 2'-O-(pyren-1-yl)methyl-RNA monomers are reviewed, which include detection of RNA targets, discrimination of single nucleotide polymorphisms, formation of self-assembled pyrene arrays on nucleic acid scaffolds, the study of charge transfer phenomena in nucleic acid duplexes, and sequence-unrestricted recognition of double-stranded DNA. The predictable binding mode of the pyrene moiety, coupled with the microenvironment-dependent properties and synthetic feasibility, render 2'-O-(pyren-1-yl)methyl-RNA monomers as a promising class of pyrene-functionalized nucleotide building blocks for new applications in molecular biology, nucleic acid diagnostics, and materials science.
Collapse
|
46
|
Takada T, Iwaki T, Nakamura M, Yamana K. Photoresponsive Electrodes Modified with DNA Duplexes Possessing a Porphyrin Dimer. Chemistry 2017; 23:18258-18263. [PMID: 29052264 DOI: 10.1002/chem.201704281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 12/29/2022]
Abstract
This work describes the formation of a porphyrin (Por) dimer using a DNA duplex as a scaffold and photocurrent generation from electrodes modified with a monolayer of Por-DNA conjugates. The solid-phase click reaction between an azide-porphyrin and oligonucleotide labeled with an ethynyl group on CPG support was utilized to conjugate the Por to the DNA. UV/Vis absorption and circular dichroism (CD) spectral studies revealed that the Por dimer can be formed through DNA hybridization and that through-space electronic interactions, characterized from the exciton-coupled absorption and the bisignate CD, can occur between the two Por molecules. Photoelectrochemical experiments were performed for the electrodes functionalized with a monolayer composed of the Por-DNA conjugates. It was found that the Por dimer on the electrode, which was designed to resemble the special pair in natural photosynthesis, shows efficient photocurrent generation in the presence of electron-acceptor reagents compared with the Por monomer. These findings strongly support the idea that the DNA structures could be useful to construct Por arrays, which is essential for the design of photo- and bio-electronic devices.
Collapse
Affiliation(s)
- Tadao Takada
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Toshihiro Iwaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Mitsunobu Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Kazushige Yamana
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| |
Collapse
|
47
|
Joseph J, Baumann KN, Koehler P, Zuehlsdorff TJ, Cole DJ, Weber J, Bohndiek SE, Hernández-Ainsa S. Distance dependent photoacoustics revealed through DNA nanostructures. NANOSCALE 2017; 9:16193-16199. [PMID: 29043366 DOI: 10.1039/c7nr05353c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular rulers that rely on the Förster resonance energy transfer (FRET) mechanism are widely used to investigate dynamic molecular processes that occur on the nanometer scale. However, the capabilities of these fluorescence molecular rulers are fundamentally limited to shallow imaging depths by light scattering in biological samples. Photoacoustic tomography (PAT) has recently emerged as a high resolution modality for in vivo imaging, coupling optical excitation with ultrasound detection. In this paper, we report the capability of PAT to probe distance-dependent FRET at centimeter depths. Using DNA nanotechnology we created several nanostructures with precisely positioned fluorophore-quencher pairs over a range of nanoscale separation distances. PAT of the DNA nanostructures showed distance-dependent photoacoustic signal enhancement and demonstrated the ability of PAT to reveal the FRET process deep within tissue mimicking phantoms. Further, we experimentally validated these DNA nanostructures as a novel and biocompatible strategy to augment the intrinsic photoacoustic signal generation capabilities of small molecule fluorescent dyes.
Collapse
Affiliation(s)
- James Joseph
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chiral multichromophoric supramolecular nanostructures assembled by single stranded DNA and RNA templates. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Mondal MK, Mukherjee S, Saha SK, Chowdhury P, Sinha Babu SP. Design and synthesis of reduced graphene oxide based supramolecular scaffold: A benign microbial resistant network for enzyme immobilization and cell growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1168-1177. [DOI: 10.1016/j.msec.2017.02.136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/15/2016] [Accepted: 02/24/2017] [Indexed: 01/21/2023]
|
50
|
Abstract
![]()
DNA is well-known as bearer of the genetic code.
Since its structure
elucidation nearly seven decades ago by Watson, Crick, Wilkins, and
Franklin, much has been learned about its detailed structure, function,
and genetic coding. The development of automated solid-phase synthesis,
and with it the availability of synthetic DNA with any desired sequence
in lengths of up to hundreds of bases in the best case, has contributed
much to the advancement of the field of DNA research. In addition,
classic organic synthesis has allowed introduction of a very large
number of modifications in the DNA in a sequence specific manner,
which have initially been targeted at altering the biological function
of DNA. However, in recent years DNA has become a very attractive
scaffold in supramolecular chemistry, where DNA is taken out of its
biological role and serves as both stick and glue molecule to assemble
novel functional structures with nanometer precision. The attachment
of functionalities to DNA has led to the creation of supramolecular
systems with applications in light harvesting, energy and electron
transfer, sensing, and catalysis. Functional DNA is clearly having
a significant impact in the field of bioinspired nanosystems. Of particular interest is the use of porphyrins in supramolecular
chemistry and bionanotechnology, because they are excellent functional
groups due to their electronic properties that can be tailored through
chemical modifications of the aromatic core or through insertion of
almost any metal of the periodic table into the central cavity. The
porphyrins can be attached either to the nucleobase, to the phosphate
group, or to the ribose moiety. Additionally, noncovalent templating
through Watson–Crick base pairing forms an alternative and
attractive approach. With this, the combination of two seemingly simple
molecules gives rise to a highly complex system with unprecedented
possibilities for modulation of function, and with it applications,
particularly when combined with other functional groups. Here, an
overview is given on the developments of using porphyrin modified
DNA for the construction of functional assemblies. Strategies for
the synthesis and characterization are presented alongside selected
applications where the porphyrin modification has proven to be particularly
useful and superior to other modifiers but also has revealed its limitations.
We also discuss implications on properties and behavior of the porphyrin–DNA,
where similar issues could arise when using other hydrophobic and
bulky substituents on DNA. This includes particularly problems regarding
synthesis of the building blocks, DNA synthesis, yields, solubility,
and intermolecular interactions.
Collapse
Affiliation(s)
- Eugen Stulz
- School of Chemistry & Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|