1
|
Wang S, Walker-Gibbons R, Watkins B, Flynn M, Krishnan M. A charge-dependent long-ranged force drives tailored assembly of matter in solution. NATURE NANOTECHNOLOGY 2024; 19:485-493. [PMID: 38429493 PMCID: PMC11026162 DOI: 10.1038/s41565-024-01621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
The interaction between charged objects in solution is generally expected to recapitulate two central principles of electromagnetics: (1) like-charged objects repel, and (2) they do so regardless of the sign of their electrical charge. Here we demonstrate experimentally that the solvent plays a hitherto unforeseen but crucial role in interparticle interactions, and importantly, that interactions in the fluid phase can break charge-reversal symmetry. We show that in aqueous solution, negatively charged particles can attract at long range while positively charged particles repel. In solvents that exhibit an inversion of the net molecular dipole at an interface, such as alcohols, we find that the converse can be true: positively charged particles may attract whereas negatives repel. The observations hold across a wide variety of surface chemistries: from inorganic silica and polymeric particles to polyelectrolyte- and polypeptide-coated surfaces in aqueous solution. A theory of interparticle interactions that invokes solvent structuring at an interface captures the observations. Our study establishes a nanoscopic interfacial mechanism by which solvent molecules may give rise to a strong and long-ranged force in solution, with immediate ramifications for a range of particulate and molecular processes across length scales such as self-assembly, gelation and crystallization, biomolecular condensation, coacervation, and phase segregation.
Collapse
Affiliation(s)
- Sida Wang
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Rowan Walker-Gibbons
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Bethany Watkins
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Melissa Flynn
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Madhavi Krishnan
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, Oxford, UK.
| |
Collapse
|
2
|
Ruixuan H, Majee A, Dobnikar J, Podgornik R. Electrostatic interactions between charge regulated spherical macroions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:115. [PMID: 38019363 DOI: 10.1140/epje/s10189-023-00373-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023]
Abstract
We study the interaction between two charge regulating spherical macroions with dielectric interior and dissociable surface groups immersed in a monovalent electrolyte solution. The charge dissociation is modelled via the Frumkin-Fowler-Guggenheim isotherm, which allows for multiple adsorption equilibrium states. The interactions are derived from the solutions of the mean-field Poisson-Boltzmann type theory with charge regulation boundary conditions. For a range of conditions we find symmetry breaking transitions from symmetric to asymmetric charge distribution exhibiting annealed charge patchiness, which results in like-charge attraction even in a univalent electrolyte-thus fundamentally modifying the nature of electrostatic interactions in charge-stabilized colloidal suspensions.
Collapse
Affiliation(s)
- Hu Ruixuan
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Arghya Majee
- Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany
| | - Jure Dobnikar
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Songshan Lake Materials Laboratory, Guangdong, 523808, Dongguan, China
| | - Rudolf Podgornik
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, China.
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Bespalova M, Öz R, Westerlund F, Krishnan M. Single-Molecule Trapping and Measurement in a Nanostructured Lipid Bilayer System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13923-13934. [PMID: 36326814 PMCID: PMC9671048 DOI: 10.1021/acs.langmuir.2c02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The repulsive electrostatic force between a biomolecule and a like-charged surface can be geometrically tailored to create spatial traps for charged molecules in solution. Using a parallel-plate system composed of silicon dioxide surfaces, we recently demonstrated single-molecule trapping and high precision molecular charge measurements in a nanostructured free energy landscape. Here we show that surfaces coated with charged lipid bilayers provide a system with tunable surface properties for molecular electrometry experiments. Working with molecular species whose effective charge and geometry are well-defined, we demonstrate the ability to quantitatively probe the electrical charge density of a supported lipid bilayer. Our findings indicate that the fraction of charged lipids in nanoslit lipid bilayers can be significantly different from that in the precursor lipid mixtures used to generate them. We also explore the temporal stability of bilayer properties in nanofluidic systems. Beyond their relevance in molecular measurement, such experimental systems offer the opportunity to examine lipid bilayer formation and wetting dynamics on nanostructured surfaces.
Collapse
Affiliation(s)
- Maria Bespalova
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OxfordOX1 3QZ, United Kingdom
| | - Robin Öz
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96Gothenburg, Sweden
| | - Fredrik Westerlund
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, 412 96Gothenburg, Sweden
| | - Madhavi Krishnan
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OxfordOX1 3QZ, United Kingdom
- The
Kavli Institute for Nanoscience Discovery, Sherrington Road, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
4
|
Petretto E, Ong QK, Olgiati F, Mao T, Campomanes P, Stellacci F, Vanni S. Monovalent ion-mediated charge-charge interactions drive aggregation of surface-functionalized gold nanoparticles. NANOSCALE 2022; 14:15181-15192. [PMID: 36214308 PMCID: PMC9585526 DOI: 10.1039/d2nr02824g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Monolayer-protected metal nanoparticles (NPs) are not only promising materials with a wide range of potential industrial and biological applications, but they are also a powerful tool to investigate the behaviour of matter at nanoscopic scales, including the stability of dispersions and colloidal systems. This stability is dependent on a delicate balance between attractive and repulsive interactions that occur in the solution, and it is described in quantitative terms by the classic Derjaguin-Landau-Vewey-Overbeek (DLVO) theory, that posits that aggregation between NPs is driven by van der Waals interactions and opposed by electrostatic interactions. To investigate the limits of this theory at the nanoscale, where the continuum assumptions required by the DLVO theory break down, here we investigate NP dimerization by computing the Potential of Mean Force (PMF) of this process using fully atomistic MD simulations. Serendipitously, we find that electrostatic interactions can lead to the formation of metastable NP dimers at physiological ion concentrations. These dimers are stabilized by complexes formed by negatively charged ligands belonging to distinct NPs that are bridged by positively charged monovalent ions present in solution. We validate our findings by collecting tomographic EM images of NPs in solution and by quantifying their radial distribution function, that shows a marked peak at interparticle distance comparable with that of MD simulations. Taken together, our results suggest that not only van der Waals interactions, but also electrostatic interactions mediated by monovalent ions at physiological concentrations, contribute to attraction between nano-sized charged objects at very short length scales.
Collapse
Affiliation(s)
- Emanuele Petretto
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Quy K Ong
- Institute of Materials, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Francesca Olgiati
- Institute of Materials, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Ting Mao
- Institute of Materials, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
5
|
Majcher MJ, Himbert S, Vito F, Campea MA, Dave R, Vetergaard Jensen G, Rheinstadter MC, Smeets NMB, Hoare T. Investigating the Kinetics and Structure of Network Formation in Ultraviolet-Photopolymerizable Starch Nanogel Network Hydrogels via Very Small-Angle Neutron Scattering and Small-Amplitude Oscillatory Shear Rheology. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. Majcher
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Sebastian Himbert
- Department of Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Francesco Vito
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Matthew A. Campea
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Ridhdhi Dave
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Grethe Vetergaard Jensen
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, United States
| | - Maikel C. Rheinstadter
- Department of Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Niels M. B. Smeets
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
6
|
Walker-Gibbons R, Kubincová A, Hünenberger PH, Krishnan M. The Role of Surface Chemistry in the Orientational Behavior of Water at an Interface. J Phys Chem B 2022; 126:4697-4710. [PMID: 35726865 PMCID: PMC9251758 DOI: 10.1021/acs.jpcb.2c01752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/18/2022] [Indexed: 11/30/2022]
Abstract
Molecular dynamics studies have demonstrated that molecular water at an interface, with either a gas or a solid, displays anisotropic orientational behavior in contrast to its bulk counterpart. This effect has been recently implicated in the like-charge attraction problem for colloidal particles in solution. Here, negatively charged particles in solution display a long-ranged attraction where continuum electrostatic theory predicts monotonically repulsive interactions, particularly in solutions with monovalent salt ions at low ionic strength. Anisotropic orientational behavior of solvent molecules at an interface gives rise to an excess interfacial electrical potential which we suggest generates an additional solvation contribution to the total free energy that is traditionally overlooked in continuum descriptions of interparticle interactions in solution. In the present investigation we perform molecular dynamics simulation based calculations of the interfacial potential using realistic surface models representing various chemistries as well as different solvents. Similar to previous work that focused on simple model surfaces constructed by using oxygen atoms, we find that solvents at more realistic model surfaces exhibit substantial anisotropic orientational behavior. We explore the dependence of the interfacial solvation potential on surface properties such as surface group chemistry and group density at silica and carboxylated polystyrene interfaces. For water, we note surprisingly good agreement between results obtained for a simple O-atom wall and more complex surface models, suggesting a general qualitative consistency of the interfacial solvation effect for surfaces in contact with water. In contrast, for an aprotic solvent such as DMSO, surface chemistry appears to exert a stronger influence on the sign and magnitude of the interfacial solvation potential. The study carries broad implications for molecular-scale interactions and may find relevance in explaining a range of phenomena in soft-matter physics and cell biology.
Collapse
Affiliation(s)
- Rowan Walker-Gibbons
- Physical
& Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Alžbeta Kubincová
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Philippe H. Hünenberger
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Madhavi Krishnan
- Physical
& Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
7
|
Yudovich S, Marzouqe A, Kantorovitsch J, Teblum E, Chen T, Enderlein J, Miller EW, Weiss S. Electrically Controlling and Optically Observing the Membrane Potential of Supported Lipid Bilayers. Biophys J 2022; 121:2624-2637. [PMID: 35619563 DOI: 10.1016/j.bpj.2022.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022] Open
Abstract
Supported lipid bilayers are a well-developed model system for the study of membranes and their associated proteins, such as membrane channels, enzymes, and receptors. These versatile model membranes can be made from various components, ranging from simple synthetic phospholipids to complex mixtures of constituents, mimicking the cell membrane with its relevant physiochemical and molecular phenomena. In addition, the high stability of supported lipid bilayers allows for their study via a wide array of experimental probes. In this work, we describe a platform for supported lipid bilayers that is accessible both electrically and optically, and demonstrate direct optical observation of the transmembrane potential of supported lipid bilayers. We show that the polarization of the supported membrane can be electrically controlled and optically probed using voltage-sensitive dyes. Membrane polarization dynamics is understood through electrochemical impedance spectroscopy and the analysis of an equivalent electrical circuit model. In addition, we describe the effect of the conducting electrode layer on the fluorescence of the optical probe through metal-induced energy transfer, and show that while this energy transfer has an adverse effect on the voltage sensitivity of the fluorescent probe, its strong distance dependency allows for axial localization of fluorescent emitters with ultrahigh accuracy. We conclude with a discussion on possible applications of this platform for the study of voltage-dependent membrane proteins and other processes in membrane biology and surface science.
Collapse
Affiliation(s)
- Shimon Yudovich
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | - Adan Marzouqe
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Joseph Kantorovitsch
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Eti Teblum
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Tao Chen
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, Germany
| | - Evan W Miller
- Departments of Chemistry, Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Shimon Weiss
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel; Departments of Chemistry and Biochemistry, Physiology, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095.
| |
Collapse
|
8
|
Kumar M, Singh A, Del Secco B, Baranov MV, van den Bogaart G, Sacanna S, Thutupalli S. Assembling anisotropic colloids using curvature-mediated lipid sorting. SOFT MATTER 2022; 18:1757-1766. [PMID: 35072193 DOI: 10.1039/d1sm01517f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of colloid supported lipid bilayers (CSLBs) for assembling colloidal structures has been of recent interest. Here, we use multi-component lipid bilayer membranes formed around anisotropic colloids and show that the curvature anisotropy of the colloids drives a sorting of the lipids in the membrane along the colloids. We then exploit this curvature-sensitive lipid sorting to create "shape-anisotropic patchy colloids" - specifically, we use colloids with six rods sticking out of a central cubic core, "hexapods", for this purpose and demonstrate that membrane patches self-assemble at the tip of each of the six colloidal rods. The membrane patches are rendered sticky using biotinylated lipids in complement with a biotin-binding streptavidin protein. Finally, using these "shape-anisotropic patchy colloids", we demonstrate the directed assembly of colloidal links, paving the way for the creation of heterogeneous and flexible colloidal structures.
Collapse
Affiliation(s)
- Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| | - Anupam Singh
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| | - Benedetta Del Secco
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, USA
| | - Maksim V Baranov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Geert van den Bogaart
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, USA
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
9
|
Behjatian A, Walker-Gibbons R, Schekochihin AA, Krishnan M. Nonmonotonic Pair Potentials in the Interaction of Like-Charged Objects in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:786-800. [PMID: 34981941 DOI: 10.1021/acs.langmuir.1c02801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We consider the long-standing like-charge attraction problem, wherein under certain conditions, similarly charged spheres suspended in aqueous electrolyte have been observed to display a minimum in their interaction potential, contrary to the intuitively expected monotonically varying repulsion. Recently, we described an interfacial mechanism invoking the molecular nature of the solvent that explains this anomalous experimental observation. In our model for the interaction of negatively charged particles in water, the minimum in the pair potential results from the superposition of competing contributions to the total free energy. One of these contributions is the canonical repulsive electrostatic term, whereas the other is a solvation-induced attractive contribution. We find that whereas both contributions grow approximately exponentially with decreasing interparticle separation, the occurrence of a stable, long-ranged minimum in the pair potential arises from differences in the precise interparticle separation dependence of the two terms. Specifically, the interfacial solvation term exhibits a more gradual decay with distance than the electrostatic repulsion, permitting the attractive contribution to dominate the interaction at large distances. Importantly, these disparities become evident in quantities calculated from exact numerical solutions to the governing nonlinear Poisson-Boltzmann (PB) equation for the spatial electrical potential distribution in the system. In marked contrast, we find that the linearized PB equation, applicable in the regime of low surface electrical potentials, does not support nonmonotonic trends in the total interaction free energy within the present model. Our results point to the importance of exact descriptions of electrostatic interactions in real systems that most often do not subscribe to particular mathematical limits where analytical approximations may provide a sufficiently accurate description of the problem.
Collapse
Affiliation(s)
- Ali Behjatian
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Rowan Walker-Gibbons
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Alexander A Schekochihin
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
- Merton College, Merton Street, Oxford OX1 4JD, United Kingdom
| | - Madhavi Krishnan
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
- Merton College, Merton Street, Oxford OX1 4JD, United Kingdom
| |
Collapse
|
10
|
Kubincová A, Hünenberger PH, Krishnan M. Interfacial solvation can explain attraction between like-charged objects in aqueous solution. J Chem Phys 2020; 152:104713. [PMID: 32171222 DOI: 10.1063/1.5141346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Over the past few decades, the experimental literature has consistently reported observations of attraction between like-charged colloidal particles and macromolecules in aqueous solution. Examples include nucleic acids and colloidal particles in the bulk solution and under confinement, and biological liquid-liquid phase separation. This observation is at odds with the intuitive expectation of an interparticle repulsion that decays monotonically with distance. Although attraction between like-charged particles can be rationalized theoretically in the strong-coupling regime, e.g., in the presence of multivalent counterions, recurring accounts of long-range attraction in aqueous solution containing monovalent ions at low ionic strength have posed an open conundrum. Here, we show that the behavior of molecular water at an interface-traditionally disregarded in the continuum electrostatics picture-provides a mechanism to explain the attraction between like-charged objects in a broad spectrum of experiments. This basic principle will have important ramifications in the ongoing quest to better understand intermolecular interactions in solution.
Collapse
Affiliation(s)
- Alžbeta Kubincová
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Madhavi Krishnan
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
11
|
Worstell NC, Singla A, Saenkham P, Galbadage T, Sule P, Lee D, Mohr A, Kwon JSI, Cirillo JD, Wu HJ. Hetero-Multivalency of Pseudomonas aeruginosa Lectin LecA Binding to Model Membranes. Sci Rep 2018; 8:8419. [PMID: 29849092 PMCID: PMC5976636 DOI: 10.1038/s41598-018-26643-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022] Open
Abstract
A single glycan-lectin interaction is often weak and semi-specific. Multiple binding domains in a single lectin can bind with multiple glycan molecules simultaneously, making it difficult for the classic "lock-and-key" model to explain these interactions. We demonstrated that hetero-multivalency, a homo-oligomeric protein simultaneously binding to at least two types of ligands, influences LecA (a Pseudomonas aeruginosa adhesin)-glycolipid recognition. We also observed enhanced binding between P. aeruginosa and mixed glycolipid liposomes. Interestingly, strong ligands could activate weaker binding ligands leading to higher LecA binding capacity. This hetero-multivalency is probably mediated via a simple mechanism, Reduction of Dimensionality (RD). To understand the influence of RD, we also modeled LecA's two-step binding process with membranes using a kinetic Monte Carlo simulation. The simulation identified the frequency of low-affinity ligand encounters with bound LecA and the bound LecA's retention of the low-affinity ligand as essential parameters for triggering hetero-multivalent binding, agreeing with experimental observations. The hetero-multivalency can alter lectin binding properties, including avidities, capacities, and kinetics, and therefore, it likely occurs in various multivalent binding systems. Using hetero-multivalency concept, we also offered a new strategy to design high-affinity drug carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Nolan C Worstell
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Akshi Singla
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Panatda Saenkham
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Thushara Galbadage
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Dongheon Lee
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Alec Mohr
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Joseph Sang-Il Kwon
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
12
|
Biswas KH, Zhongwen C, Dubey AK, Oh D, Groves JT. Multicomponent Supported Membrane Microarray for Monitoring Spatially Resolved Cellular Signaling Reactions. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kabir H. Biswas
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
| | - Chen Zhongwen
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
| | - Alok Kumar Dubey
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
| | - Dongmyung Oh
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
| | - Jay T. Groves
- Department of Chemistry; University of California; Berkeley CA 94720 USA
| |
Collapse
|
13
|
Tabaei SR, Gillissen JJJ, Vafaei S, Groves JT, Cho NJ. Size-dependent, stochastic nature of lipid exchange between nano-vesicles and model membranes. NANOSCALE 2016; 8:13513-13520. [PMID: 27355613 DOI: 10.1039/c6nr03817d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interaction of nanoscale lipid vesicles with cell membranes is of fundamental importance for the design and development of vesicular drug delivery systems. Here, we introduce a novel approach to study vesicle-membrane interactions whereby we are able to probe the influence of nanoscale membrane properties on the dynamic adsorption, exchange, and detachment of vesicles. Using total internal reflection fluorescence (TIRF) microscopy, we monitor these processes in real-time upon the electrostatically tuned attachment of individual, sub-100 nm vesicles to a supported lipid bilayer. The observed exponential vesicle detachment rate depends strongly on the vesicle size, but not on the vesicle charge, which suggests that lipid exchange occurs during a single stochastic event, which is consistent with membrane stalk formation. The fluorescence microscopy assay developed in this work may enable measuring of the probability of stalk formation in a controlled manner, which is of fundamental importance in membrane biology, offering a new tool to understand nanoscale phenomena in the context of biological sciences.
Collapse
Affiliation(s)
- Seyed R Tabaei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore.
| | | | | | | | | |
Collapse
|
14
|
Biswas KH, Groves JT. A Microbead Supported Membrane-Based Fluorescence Imaging Assay Reveals Intermembrane Receptor-Ligand Complex Dimension with Nanometer Precision. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6775-6780. [PMID: 27264296 DOI: 10.1021/acs.langmuir.6b01377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Receptor-ligand complexes spanning a cell-cell interface inevitably establish a preferred intermembrane spacing based on the molecular dimensions and orientation of the complexes. This couples molecular binding events to membrane mechanics and large-scale spatial organization of receptors on the cell surface. Here, we describe a straightforward, epi-fluorescence-based method to precisely determine intermembrane receptor-ligand dimension at adhesions established by receptor-ligand binding between apposed membranes in vitro. Adhesions were reconstituted between planar and silica microbead supported membranes via specific interaction between cognate receptor/ligand pairs (EphA2/EphrinA1 and E-cadherin/anti-E-cadherin antibody). Epi-fluorescence imaging of the ligand enrichment zone in the supported membrane beneath the adhering microbead, combined with a simple geometrical interpretation, proves sufficient to estimate intermembrane receptor-ligand dimension with better than 1 nm precision. An advantage of this assay is that no specialized equipment or imaging methods are required.
Collapse
Affiliation(s)
- Kabir H Biswas
- Mechanobiology Institute, National University of Singapore , Singapore 117411, Singapore
| | - Jay T Groves
- Mechanobiology Institute, National University of Singapore , Singapore 117411, Singapore
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
15
|
González-Mozuelos P. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte. J Chem Phys 2016; 144:054902. [DOI: 10.1063/1.4941324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- P. González-Mozuelos
- Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Mexico, Distrito Federal, C. P. 07360, Mexico
| |
Collapse
|
16
|
Tran VT, Zhou H, Lee S, Hong SC, Kim J, Jeong SY, Lee J. Magnetic-assembly mechanism of superparamagneto-plasmonic nanoparticles on a charged surface. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8650-8658. [PMID: 25856000 DOI: 10.1021/acsami.5b00904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
One-dimensional magnetoplasmonic nanochains (MPNCs) were self-assembled using Au-coated Fe3O4 core-shell superparamagnetic nanoparticles (Fe3O4@Au NPs) by applying an external static magnetic field. The assembly mechanism of the Fe3O4@Au NPs was investigated thoroughly, revealing that substrate-particle interactions, van der Waals forces, and magnetic forces play important roles in the formation and control of the MPNCs. Magnetic force microscopy (MFM) and vibrating sample magnetometry (VSM) were used to study the magnetic properties of the MPNCs, which were compared with those of Fe3O4 nanochains.
Collapse
Affiliation(s)
- Van Tan Tran
- †Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Hongjian Zhou
- §Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Seunghun Lee
- †Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Seong Cheol Hong
- †Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Jeonghyo Kim
- †Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Se-Young Jeong
- †Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Jaebeom Lee
- †Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
17
|
Puertas AM, de las Nieves FJ, Cuetos A. Computer simulations of charged colloids in confinement. J Colloid Interface Sci 2015; 440:292-8. [DOI: 10.1016/j.jcis.2014.10.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 11/24/2022]
|
18
|
Kim E, Yeom MS. Structural Arrangement of Water Molecules around Highly Charged Nanoparticles: Molecular Dynamics Simulation. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.5.1501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
A nanometre-scale resolution interference-based probe of interfacial phenomena between microscopic objects and surfaces. Nat Commun 2013; 4:1919. [PMID: 23715278 PMCID: PMC3675327 DOI: 10.1038/ncomms2865] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/11/2013] [Indexed: 12/03/2022] Open
Abstract
Interferometric techniques have proven useful to infer proximity and local surface profiles of microscopic objects near surfaces. But a critical trade-off emerges between accuracy and mathematical complexity when these methods are applied outside the vicinity of closest approach. Here we introduce a significant advancement that enables reflection interference contrast microscopy to provide nearly instantaneous reconstruction of an arbitrary convex object’s contour next to a bounding surface with nanometre resolution, making it possible to interrogate microparticle/surface interaction phenomena at radii of curvature 1,000 times smaller than those accessible by the conventional surface force apparatus. The unique view-from-below perspective of reflection interference contrast microscopy also reveals previously unseen deformations and allows the first direct observation of femtolitre-scale capillary condensation dynamics underneath micron-sized particles. Our implementation of reflection interference contrast microscopy provides a generally applicable nanometre-scale resolution tool that can be potentially exploited to dynamically probe ensembles of objects near surfaces so that statistical/probabilistic behaviour can be realistically captured. Interferometric techniques can provide valuable contact and profile information of microscopic objects on surfaces. This work uses reflection interference contrast microscopy to directly observe contact phenomena and presents novel analytical methods offering high-accuracy nanoscale resolution.
Collapse
|
20
|
Guerrero-García GI, González-Mozuelos P, Olvera de la Cruz M. Large counterions boost the solubility and renormalized charge of suspended nanoparticles. ACS NANO 2013; 7:9714-9723. [PMID: 24180597 DOI: 10.1021/nn404477b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colloidal particles are ubiquitous in biology and in everyday products such as milk, cosmetics, lubricants, paints, or drugs. The stability and aggregation of colloidal suspensions are of paramount importance in nature and in diverse nanotechnological applications, including the fabrication of photonic materials and scaffolds for biological assemblies, gene therapy, diagnostics, targeted drug delivery, and molecular labeling. Electrolyte solutions have been extensively used to stabilize and direct the assembly of colloidal particles. In electrolytes, the effective electrostatic interactions among the suspended colloids can be changed over various length scales by tuning the ionic concentration. However, a major limitation is gelation or flocculation at high salt concentrations. This is explained by classical theories, which show that the electrostatic repulsion among charged colloids is significantly reduced at high electrolyte concentrations. As a result, these screened colloidal particles are expected to aggregate due to short-range attractive interactions or dispersion forces as the salt concentration increases. We discuss here a robust, tunable mechanism for colloidal stability by which large counterions prevent highly charged nanoparticles from aggregating in salt solutions with concentrations up to 1 M. Large counterions are shown to generate a thicker ionic cloud in the proximity of each charged colloid, which strengthens short-range repulsions among colloidal particles and also increases the corresponding renormalized colloidal charge perceived at larger separation distances. These effects thus provide a reliable stabilization mechanism in a broad range of biological and synthetic colloidal suspensions.
Collapse
|
21
|
González-Mozuelos P, Guerrero-García GI, Olvera de la Cruz M. An exact method to obtain effective electrostatic interactions from computer simulations: The case of effective charge amplification. J Chem Phys 2013; 139:064709. [DOI: 10.1063/1.4817776] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Bao C, Pähler G, Geil B, Janshoff A. Optical Fusion Assay Based on Membrane-Coated Spheres in a 2D Assembly. J Am Chem Soc 2013; 135:12176-9. [DOI: 10.1021/ja404071z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chunxiao Bao
- Institute of Physical Chemistry, Georg-August-University, Tammannstrasse 6, 37077 Göttingen,
Germany
| | - Gesa Pähler
- Institute of Physical Chemistry, Georg-August-University, Tammannstrasse 6, 37077 Göttingen,
Germany
| | - Burkhard Geil
- Institute of Physical Chemistry, Georg-August-University, Tammannstrasse 6, 37077 Göttingen,
Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, Georg-August-University, Tammannstrasse 6, 37077 Göttingen,
Germany
| |
Collapse
|
23
|
Lin WC, Yu CH, Triffo S, Groves JT. Supported Membrane Formation, Characterization, Functionalization, and Patterning for Application in Biological Science and Technology. ACTA ACUST UNITED AC 2010; 2:235-69. [DOI: 10.1002/9780470559277.ch100131] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wan-Chen Lin
- Howard Hughes Medical Institute, Department of Chemistry, University of California; Berkeley California
| | - Cheng-Han Yu
- Research Center of Excellence in Mechanobiology; National University of Singapore Singapore
| | - Sara Triffo
- Howard Hughes Medical Institute, Department of Chemistry, University of California; Berkeley California
| | - Jay T. Groves
- Howard Hughes Medical Institute, Department of Chemistry, University of California; Berkeley California
- Research Center of Excellence in Mechanobiology; National University of Singapore Singapore
- Physical Biosciences Division, Lawrence Berkeley National Laboratory; Berkeley California
- Materials Sciences Division, Lawrence Berkeley National Laboratory; Berkeley California
| |
Collapse
|
24
|
Kung W, Gonzalez-Mozuelos P, Olvera de la Cruz M. A minimal model of nanoparticle crystallization in polar solvents via steric effects. J Chem Phys 2010; 133:074704. [DOI: 10.1063/1.3469863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Kong Y, Parthasarathy R. Different modulation mechanisms of attractive colloidal interactions by lipid and protein functionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10541-10545. [PMID: 20394445 DOI: 10.1021/la1005538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The nature of attractive interactions observed between like-charged microparticles near a confining wall remains an outstanding puzzle in colloidal science. The shortage of experimental systems that provide tunable attractions contributes to the lack of progress in solving this mystery. We have recently shown that the functionalization of microspheres with lipid membranes allows simple control of interparticle interactions as a function of membrane composition (Kong, Y.; Parthasarathy, R. Soft Matter 2009, 5, 2027-2032). Here we introduce a new approach to biomembrane-mediated control in which varying amounts of a peripheral membrane protein, cholera toxin subunit B, are bound to the surface of lipid-functionalized silica particles. Protein functionalization again provides a family of tunable attractive pair interactions, measured using an optical line trap. Surprisingly, however, the form of interactions is strikingly different for particles with protein-plus-lipid membranes than for particles with lipid-only membranes, displaying opposite correlations between the depth of the attractive potential well and the spatial range of the interaction as well as between the well depth and the distance to the confining wall. Our findings and their distinctiveness from previous membrane-functionalized systems not only demonstrate an orthogonal route to the practical control of colloidal assembly but also, more fundamentally, show that multiple physical mechanisms or mechanisms that are especially sensitive to particle surface chemistries may be responsible for governing like-charge attraction in colloidal systems.
Collapse
Affiliation(s)
- Yupeng Kong
- Department of Physics and Materials Science Institute, The University of Oregon, Eugene, Oregon 97403-1274, USA
| | | |
Collapse
|
26
|
Contreras-Naranjo JC, Silas JA, Ugaz VM. Reflection interference contrast microscopy of arbitrary convex surfaces. APPLIED OPTICS 2010; 49:3701-3712. [PMID: 20648136 DOI: 10.1364/ao.49.003701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Current accurate applications of reflection interference contrast microscopy (RICM) are limited to known geometries; when the geometry of the object is unknown, an approximated fringe spacing analysis is usually performed. To complete an accurate RICM analysis in more general situations, we review and improve the formulation for intensity calculation based on nonplanar interface image formation theory and develop a method for its practical implementation in wedges and convex surfaces. In addition, a suitable RICM model for an arbitrary convex surface, with or without a uniform layer such as a membrane or ultrathin coating, is presented. Experimental work with polymer vesicles shows that the coupling of the improved RICM image formation theory, the calculation method, and the surface model allow an accurate reconstruction of the convex bottom shape of an object close to the substrate by fitting its experimental intensity pattern.
Collapse
Affiliation(s)
- Jose C Contreras-Naranjo
- Artie McFerrin Department of Chemical Engineering, Jack E. Brown Engineering Building, Texas A&M University, College Station, Texas 77843-3122, USA
| | | | | |
Collapse
|
27
|
Yu CH, Groves JT. Engineering supported membranes for cell biology. Med Biol Eng Comput 2010; 48:955-63. [PMID: 20559751 PMCID: PMC2944960 DOI: 10.1007/s11517-010-0634-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/07/2010] [Indexed: 11/19/2022]
Abstract
Cell membranes exhibit multiple layers of complexity, ranging from their specific molecular content to their emergent mechanical properties and dynamic spatial organization. Both compositional and geometrical organizations of membrane components are known to play important roles in life processes, including signal transduction. Supported membranes, comprised of a bilayer assembly of phospholipids on the solid substrate, have been productively served as model systems to study wide range problems in cell biology. Because lateral mobility of membrane components is readily preserved, supported lipid membranes with signaling molecules can be utilized to effectively trigger various intercellular reactions. The spatial organization and mechanical deformation of supported membranes can also be manipulated by patterning underlying substrates with modern micro- and nano-fabrication techniques. This article focuses on various applications and methods to spatially patterned biomembranes by means of curvature modulations and spatial reorganizations, and utilizing them to interface with live cells. The integration of biological components into synthetic devices provides a unique approach to investigate molecular mechanisms in cell biology.
Collapse
Affiliation(s)
- Cheng-han Yu
- Research Centre of Excellence in Mechanobiology, National University of Singapore, Singapore
| | | |
Collapse
|