1
|
Malinowska AL, Huynh HL, Bose S. Peptide-Oligonucleotide Conjugation: Chemistry and Therapeutic Applications. Curr Issues Mol Biol 2024; 46:11031-11047. [PMID: 39451535 PMCID: PMC11506717 DOI: 10.3390/cimb46100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Oligonucleotides have been identified as powerful therapeutics for treating genetic disorders and diseases related to epigenetic factors such as metabolic and immunological dysfunctions. However, they face certain obstacles in terms of limited delivery to tissues and poor cellular uptake due to their large size and often highly charged nature. Peptide-oligonucleotide conjugation is an extensively utilized approach for addressing the challenges associated with oligonucleotide-based therapeutics by improving their delivery, cellular uptake and bioavailability, consequently enhancing their overall therapeutic efficiency. In this review, we present an overview of the conjugation of oligonucleotides to peptides, covering the different strategies associated with the synthesis of peptide-oligonucleotide conjugates (POC), the commonly used peptides employed to generate POCs, with the aim to develop oligonucleotides with favourable pharmacokinetic (PK) or pharmacodynamic (PD) properties for therapeutic applications. The advantages and drawbacks of the synthetic methods and applications of POCs are also described.
Collapse
Affiliation(s)
| | | | - Sritama Bose
- Medical Research Council, Nucleic Acid Therapy Accelerator (UKRI), Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, UK
| |
Collapse
|
2
|
Lou J, Ancajas CF, Zhou Y, Lane NS, Reynolds TB, Best MD. Probing Glycerolipid Metabolism using a Caged Clickable Glycerol-3-Phosphate Probe. Chembiochem 2024; 25:e202300853. [PMID: 38705850 PMCID: PMC11535253 DOI: 10.1002/cbic.202300853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/07/2024]
Abstract
In this study, we present the probe SATE-G3P-N3 as a novel tool for metabolic labeling of glycerolipids (GLs) to investigate lipid metabolism in yeast cells. By introducing a clickable azide handle onto the glycerol backbone, this probe enables general labeling of glycerolipids. Additionally, this probe contains a caged phosphate moiety at the glycerol sn-3 position to not only facilitate probe uptake by masking negative charge but also to bypass the phosphorylation step crucial for initiating phospholipid synthesis, thereby enhancing phospholipid labeling. The metabolic labeling activity of the probe was thoroughly assessed through cellular fluorescence microscopy, mass spectrometry (MS), and thin-layer chromatography (TLC) experiments. Fluorescence microscopy analysis demonstrated successful incorporation of the probe into yeast cells, with labeling predominantly localized at the plasma membrane. LCMS analysis confirmed metabolic labeling of various phospholipid species (PC, PS, PA, PI, and PG) and neutral lipids (MAG, DAG, and TAG), and GL labeling was corroborated by TLC. These results showcased the potential of the SATE-G3P-N3 probe in studying GL metabolism, offering a versatile and valuable approach to explore the intricate dynamics of lipids in yeast cells.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Christelle F Ancajas
- Department of Chemistry, University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, 1311 Cumberland Avenue, Knoxville, TN, 337996, USA
| | - Nicolas S Lane
- Department of Chemistry, University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, 1311 Cumberland Avenue, Knoxville, TN, 337996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
3
|
Cui S, Wang F, Yang W, Yu Y, Li Y. Protein-Templated Click Ligation Reaction Triggered by Protein-Split Aptamer Interactions. Anal Chem 2024. [PMID: 39264850 DOI: 10.1021/acs.analchem.4c03316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
DNA-templated reactions have found wide applications in sensing and drug discovery. However, this strategy has been limited to the use of nucleic acids as templating elements to direct the proximity effect. Herein, we describe a versatile protein-templated split aptamer click ligation reaction (PT-SpA-CLR) in which the protein template-induced covalent proximity ligation of split aptamer elements enables translating protein/aptamer binding events into the output of ligated DNA products. A ligation yield of >80% is observed for three model protein templates, including VEGF165, PDGF-BB, and SARS-CoV-2 S1. The ligation reaction compensates for the weakness of reduced binding affinity resulting from splitting the aptamer, as evidenced by an approximately 2-fold lower dissociation constant than the non-ligated system. This newly developed PT-SpA-CLR strategy is further integrated with colorimetric or fluorescent reporting mechanisms to achieve easy-to-use and low-cost biosensors utilizing ligation to produce a fully active G-quadruplex or an RNA-cleaving DNAzyme to report protein binding. Both assays can achieve specific detection of an intended protein target with a limit of detection at the picomolar level even when challenged in biological samples. The combined PT-SpA-CLR and versatile sensing strategies offer attractive universal platforms for efficient detection of protein biomarkers.
Collapse
Affiliation(s)
- Susu Cui
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Fan Wang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Weiwei Yang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Yongsheng Yu
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
4
|
Zhou H, Li Y, Wu W. Aptamers: Promising Reagents in Biomedicine Application. Adv Biol (Weinh) 2024; 8:e2300584. [PMID: 38488739 DOI: 10.1002/adbi.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/13/2024] [Indexed: 06/16/2024]
Abstract
Nucleic acid aptamers, often termed "chemical antibodies," are short, single-stranded DNA or RNA molecules, which are selected by SELEX. In addition to their high specificity and affinity comparable to traditional antibodies, aptamers have numerous unique advantages such as wider identification of targets, none or low batch-to-batch variations, versatile chemical modifications, rapid mass production, and lack of immunogenicity. These characteristics make aptamers a promising recognition probe for scientific research or even clinical application. Aptamer-functionalized nanomaterials are now emerged as a promising drug delivery system for various diseases with decreased side-effects and improved efficacy. In this review, the technological strategies for generating high-affinity and biostable aptamers are introduced. Moreover, the development of aptamers for their application in biomedicine including aptamer-based biosensors, aptamer-drug conjugates and aptamer functionalized nanomaterials is comprehensively summarized.
Collapse
Affiliation(s)
- Hongxin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
| | - Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
5
|
Zhou K, Zhou J, Cao S, Zheng Y, Zhang XY, Chen C, Zhang XE, Men D. Bifunctional Protein TC1 Mediated One-Pot Strategy for Robust Immobilization of DNA with High Accessibility. SMALL METHODS 2024:e2400049. [PMID: 38804235 DOI: 10.1002/smtd.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Immobilizing DNA with high accessibility at the interface is attractive but challenging. Current methods often involve multiple chemical reactions and derivatives. In this study, an endonuclease, TC1, is introduced to develop a robust strategy for immobilizing DNA with enhanced accessibility. TC1 enables direct immobilization of DNA onto a solid support through self-catalytic DNA covalent coupling and robust solid adsorption capabilities. This method demonstrates high accessibility to target molecules, supported by the improved sensitivity of DNA hybridization and aptamer-target recognition assays. TC1-mediated DNA immobilization is a one-pot reaction that does not require chemical derivatives, making it promising for the development of high-performance DNA materials and technologies.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shanshan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou National Laboratory, Guangzhou, 510005, P. R. China
| | - Ying Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin-Yu Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou National Laboratory, Guangzhou, 510005, P. R. China
| | - Chen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou National Laboratory, Guangzhou, 510005, P. R. China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen university of Advanced Technology, Shenzhen, 518055, P. R. China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou National Laboratory, Guangzhou, 510005, P. R. China
- State Key Laboratory of Respiratory Disease, Guangzhou institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| |
Collapse
|
6
|
Reyes Y, Adhikary A, Wnuk SF. Nitrogen-Centered Radicals Derived from Azidonucleosides. Molecules 2024; 29:2310. [PMID: 38792171 PMCID: PMC11124349 DOI: 10.3390/molecules29102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Azido-modified nucleosides have been extensively explored as substrates for click chemistry and the metabolic labeling of DNA and RNA. These compounds are also of interest as precursors for further synthetic elaboration and as therapeutic agents. This review discusses the chemistry of azidonucleosides related to the generation of nitrogen-centered radicals (NCRs) from the azido groups that are selectively inserted into the nucleoside frame along with the subsequent chemistry and biological implications of NCRs. For instance, the critical role of the sulfinylimine radical generated during inhibition of ribonucleotide reductases by 2'-azido-2'-deoxy pyrimidine nucleotides as well as the NCRs generated from azidonucleosides by radiation-produced (prehydrated and aqueous) electrons are discussed. Regio and stereoselectivity of incorporation of an azido group ("radical arm") into the frame of nucleoside and selective generation of NCRs under reductive conditions, which often produce the same radical species that are observed upon ionization events due to radiation and/or other oxidative conditions that are emphasized. NCRs generated from nucleoside-modified precursors other than azidonucleosides are also discussed but only with the direct relation to the same/similar NCRs derived from azidonucleosides.
Collapse
Affiliation(s)
- Yahaira Reyes
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA;
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
7
|
Wu ZH, Zhu X, Yang Q, Zagranyarski Y, Mishra K, Strickfaden H, Wong RP, Basché T, Koynov K, Bonn M, Li C, Liu X, Müllen K. Near-Infrared Perylenecarboximide Fluorophores for Live-Cell Super-Resolution Imaging. J Am Chem Soc 2024; 146:7135-7139. [PMID: 38441879 PMCID: PMC10958508 DOI: 10.1021/jacs.3c13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Organic near-infrared (NIR) photoblinking fluorophores are highly desirable for live-cell super-resolution imaging based on single-molecule localization microscopy (SMLM). Herein we introduce a novel small chromophore, PMIP, through the fusion of perylenecarboximide with 2,2-dimetheylpyrimidine. PMIP exhibits an emission maximum at 732 nm with a high fluorescence quantum yield of 60% in the wavelength range of 700-1000 nm and excellent photoblinking without any additives. With resorcinol-functionalized PMIP (PMIP-OH), NIR SMLM imaging of lysosomes is demonstrated for the first time in living mammalian cells under physiological conditions. Moreover, metabolically labeled nascent DNA is site-specifically detected using azido-functionalized PMIP (PMIP-N3) via click chemistry, thereby enabling the super-resolution imaging of nascent DNA in phosphate-buffered saline with a 9-fold improvement in spatial resolution. These results indicate the potential of PMIP-based NIR blinking fluorophores for biological applications of SMLM.
Collapse
Affiliation(s)
- Ze-Hua Wu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Xingfu Zhu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Qiqi Yang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yulian Zagranyarski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Krishna Mishra
- Department
of Chemistry, Johannes Gutenberg-University, 55099 Mainz, Germany
| | | | - Ronald P. Wong
- Institute
of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Thomas Basché
- Department
of Chemistry, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Chen Li
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaomin Liu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg-University, 55099 Mainz, Germany
| |
Collapse
|
8
|
Sharma VK, Mangla P, Singh SK, Prasad AK. Triazole-linked Nucleic Acids: Synthesis, Therapeutics and Synthetic Biology Applications. Curr Org Synth 2024; 21:436-455. [PMID: 37138439 DOI: 10.2174/1570179420666230502123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 05/05/2023]
Abstract
This article covers the triazole-linked nucleic acids where the triazole linkage (TL) replaces the natural phosphate backbone. The replacement is done at either a few selected linkages or all the phosphate linkages. Two triazole linkages, the four-atom TL1 and the six-atom TL2, have been discussed in detail. These triazole-modified oligonucleotides have found a wide range of applications, from therapeutics to synthetic biology. For example, the triazole-linked oligonucleotides have been used in the antisense oligonucleotide (ASO), small interfering RNA (siRNA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology as therapeutic agents. Due to the ease of the synthesis and a wide range of biocompatibility, the triazole linkage TL2 has been used to assemble a functional 300-mer DNA from alkyne- and azide-functionalized 100-mer oligonucleotides as well as an epigenetically modified variant of a 335 base-pair gene from ten short oligonucleotides. These outcomes highlight the potential of triazole-linked nucleic acids and open the doors for other TL designs and artificial backbones to fully exploit the vast potential of artificial nucleic acids in therapeutics, synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Vivek K Sharma
- Department of Medicine, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
- MassBiologics of the University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sunil K Singh
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, 110 007, India
| | - Ashok K Prasad
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi, 110 007, India
| |
Collapse
|
9
|
Kobayashi K, Kasakura N, Kikukawa S, Matsumoto S, Karasawa S, Hata T. Facile preparation of polycyclic halogen-substituted 1,2,3-triazoles by using intramolecular Huisgen cycloaddition. Org Biomol Chem 2023. [PMID: 38015119 DOI: 10.1039/d3ob01283b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
When 1-(ω-azidoalkyl)-2-(2,2-dihalovinyl)arenes were heated in DMF, the intramolecular Huisgen cycloaddition of an azido group with a 1,1-dihalovinyl group afforded 5-halo-1,2,3-triazole-fused tricyclic benzo compounds. Based on the remaining bromo groups, carbon elongation by the Mizoroki-Heck or Suzuki-Miyaura coupling reactions, followed by an intramolecular Friedel-Crafts reaction, afforded polycyclic compounds with fused triazole rings. Thereafter, the bromo groups were converted into 2-nitrophenyl groups via the Suzuki-Miyaura coupling reaction, which was followed by the Cadogan reaction; a fluorescent pentacyclic compound was obtained.
Collapse
Affiliation(s)
- Kazuki Kobayashi
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Nozomi Kasakura
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Seiya Kikukawa
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Takeshi Hata
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
10
|
Bandyopadhyay M, Bhadra S, Pathak S, Menon AM, Chopra D, Patra S, Escorihuela J, De S, Ganguly D, Bhadra S, Bera MK. An Atom-Economic Method for 1,2,3-Triazole Derivatives via Oxidative [3 + 2] Cycloaddition Harnessing the Power of Electrochemical Oxidation and Click Chemistry. J Org Chem 2023; 88:15772-15782. [PMID: 37924324 DOI: 10.1021/acs.joc.3c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
An electrochemical method was developed to accomplish the reagentless synthesis of 4,5-disubstituted triazole derivatives employing secondary propargyl alcohol as C-3 synthon and sodium azide as cycloaddition counterpart. The reaction was conducted at room temperature in an undivided cell with a constant current using a pencil graphite (C) anode and stainless-steel cathode in a MeCN solvent system. The proposed reaction mechanism was convincingly established by carrying out a series of control experiments and further supported by electrochemical and density functional theory (DFT) studies.
Collapse
Affiliation(s)
- Manas Bandyopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Sayan Bhadra
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Swastik Pathak
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Anila M Menon
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh India
| | - Deepak Chopra
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh India
| | - Snehangshu Patra
- Sustainable Hydrogen for Valuable Applications (SHYVA), 23 Allee Gilbert Becaud, 34470 Perols, France
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Souradeep De
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology (IIEST), P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science and Technology (CHeST), JIS Institute of Advanced Studies and Research Kolkata, Saltlake, Kolkata 700091, West Bengal, India
| | - Suman Bhadra
- Centre for Health Science and Technology (CHeST), JIS Institute of Advanced Studies and Research Kolkata, Saltlake, Kolkata 700091, West Bengal, India
| | - Mrinal K Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| |
Collapse
|
11
|
Irving OJ, Matthews L, Coulthard S, Neely RK, Grant MM, Albrecht T. Sterically Enhanced Control of Enzyme-Assisted DNA Assembly. Chembiochem 2023; 24:e202300361. [PMID: 37681318 DOI: 10.1002/cbic.202300361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Traditional methods for the assembly of functionalised DNA structures, involving enzyme restriction and modification, present difficulties when working with small DNA fragments (<100 bp), in part due to a lack of control over enzymatic action during the DNA modification process. This limits the design flexibility and range of accessible DNA structures. Here, we show that these limitations can be overcome by introducing chemical modifications into the DNA that spatially restrict enzymatic activity. This approach, sterically controlled nuclease enhanced (SCoNE) DNA assembly, thereby circumvents the size limitations of conventional Gibson assembly (GA) and allows the preparation of well-defined, functionalised DNA structures with multiple probes for specific analytes, such as IL-6, procalcitonin (PCT), and a biotin reporter group. Notably, when using the same starting materials, conventional GA under typical conditions fails. We demonstrate successful analyte capture based on standard and modified sandwich ELISA and also show how the inclusion of biotin probes provides additional functionality for product isolation.
Collapse
Affiliation(s)
- Oliver J Irving
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Lauren Matthews
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Steven Coulthard
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Robert K Neely
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Melissa M Grant
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham and Birmingham Dental Hospital, Birmingham Community Healthcare Trust), 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Tim Albrecht
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
12
|
Hu Y, Gao S, Lu H, Tan S, Chen F, Ke Y, Ying JY. A Self-Immolative DNA Nanogel Vaccine toward Cancer Immunotherapy. NANO LETTERS 2023; 23:9778-9787. [PMID: 37877690 DOI: 10.1021/acs.nanolett.3c02449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The development of precisely engineered vehicles for intracellular delivery and the controlled release of payloads remains a challenge. DNA-based nanomaterials offer a promising solution based on the A-T-G-C alphabet-dictated predictable assembly and high programmability. Herein, we present a self-immolative DNA nanogel vaccine, which can be tracelessly released in the intracellular compartments and activate the immune response. Three building blocks with cytosine-rich overhang domains are designed to self-assemble into a DNA nanogel framework with a controlled size. Two oligo agonists and one antigen peptide are conjugated to the building blocks via an acid-labile chemical linker. Upon internalization into acidic endosomes, the formation of i-motif configurations leads to dissociation of the DNA nanogel vaccine. The acid-labile chemical linker is cleaved, releasing the agonists and antigen in their traceless original form to activate antigen-presenting cells and an immune response. This study presents a novel strategy for constructing delivery platforms for intracellularly stimuli-triggered traceless release of therapeutics.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Shujun Gao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Hongfang Lu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Susi Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Feng Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jackie Y Ying
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- NanoBio Lab, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Republic of Singapore
- Bioengineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
13
|
Mangla P, Vicentini Q, Biscans A. Therapeutic Oligonucleotides: An Outlook on Chemical Strategies to Improve Endosomal Trafficking. Cells 2023; 12:2253. [PMID: 37759475 PMCID: PMC10527716 DOI: 10.3390/cells12182253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| | - Quentin Vicentini
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
- Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institute, 141 57 Stockholm, Sweden
| | - Annabelle Biscans
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| |
Collapse
|
14
|
Fay EM, Newton A, Berney M, El‐Sagheer AH, Brown T, McGouran JF. Two-Step Validation Approach for Tools To Study the DNA Repair Enzyme SNM1A. Chembiochem 2023; 24:e202200756. [PMID: 36917742 PMCID: PMC10962688 DOI: 10.1002/cbic.202200756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023]
Abstract
We report a two-step validation approach to evaluate the suitability of metal-binding groups for targeting DNA damage-repair metalloenzymes using model enzyme SNM1A. A fragment-based screening approach was first used to identify metal-binding fragments suitable for targeting the enzyme. Effective fragments were then incorporated into oligonucleotides using the copper-catalysed azide-alkyne cycloaddition reaction. These modified oligonucleotides were recognised by SNM1A at >1000-fold lower concentrations than their fragment counterparts. The exonuclease SNM1A is a key enzyme involved in the repair of interstrand crosslinks, a highly cytotoxic form of DNA damage. However, SNM1A and other enzymes of this class are poorly understood, as there is a lack of tools available to facilitate their study. Our novel approach of incorporating functional fragments into oligonucleotides is broadly applicable to generating modified oligonucleotide structures with high affinity for DNA damage-repair enzymes.
Collapse
Affiliation(s)
- Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Ailish Newton
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Mark Berney
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| | - Afaf H. El‐Sagheer
- Department of ChemistryUniversity of OxfordMansfield RoadOX1 3TAOxfordUK
| | - Tom Brown
- Department of ChemistryUniversity of OxfordMansfield RoadOX1 3TAOxfordUK
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences InstituteTrinity College DublinThe University of DublinDublin 2D02 R590Ireland
| |
Collapse
|
15
|
Ito Y, Takemori C, Hari Y. Chemical Conversion of 5-Fluoromethyl- and 5-Difluoromethyl-Uracil Bases in Oligonucleotides Using Postsynthetic Modification Strategy. Curr Protoc 2023; 3:e837. [PMID: 37494600 DOI: 10.1002/cpz1.837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This article describes the postsynthetic modification of oligonucleotides (ONs) containing 2'-deoxy-5-fluoromethyluridine (dUCH2F ) and 2'-deoxy-5-difluoromethyluridine (dUCHF2 ). Reactions of fully protected and controlled pore glass (CPG)-attached ONs containing dUCH2F and dUCHF2 in basic solutions result in deprotection of all protecting groups except for the 4,4'-dimethoxytrityl group, cleavage from CPG, and conversion of the fluoromethyl or difluoromethyl groups to afford the corresponding ONs containing 5-substituted 2'-deoxyuridines. Moreover, the difluoromethyl group can be converted to formyl, oxime, or hydrazone via the postsynthetic conversion of protection- and CPG-free ON containing dUCHF2 . © 2023 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of fully protected and CPG-attached oligonucleotides containing 2'-deoxy-5-fluoromethyluridine and 2'-deoxy-5-difluoromethyluridine Basic Protocol 2: Postsynthetic modification of fully protected and CPG-attached oligonucleotides containing 2'-deoxy-5-fluoromethyluridine Basic Protocol 3: Postsynthetic modification of fully protected and CPG-attached oligonucleotide containing 2'-deoxy-5-difluoromethyluridine Basic Protocol 4: Postsynthetic modification of protection- and CPG-free oligonucleotide containing 2'-deoxy-5-difluoromethyluridine Support Protocol: Synthesis of 2'-deoxy-5-fluoromethyluridine and 2'-deoxy-5-difluoromethyluridine phosphoramidites.
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, Japan
| | - Chisa Takemori
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, Japan
| |
Collapse
|
16
|
Sethi S, Jana NC, Panda S, Maharana SK, Bagh B. Copper(i)-catalyzed click chemistry in deep eutectic solvent for the syntheses of β-d-glucopyranosyltriazoles. RSC Adv 2023; 13:10424-10432. [PMID: 37020881 PMCID: PMC10069229 DOI: 10.1039/d3ra01844j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
In the last two decades, click chemistry has progressed as a powerful tool in joining two different molecular units to generate fascinating structures with a widespread application in various branch of sciences. copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, also known as click chemistry, has been extensively utilized as a versatile strategy for the rapid and selective formation of 1,4-disubstituted 1,2,3-triazoles. The successful use of CuAAC reaction for the preparation of biologically active triazole-attached carbohydrate-containing molecular architectures is an emerging area of glycoscience. In this regard, a well-defined copper(i)-iodide complex (1) with a tridentate NNO ligand (L1) was synthesized and effectively utilized as an active catalyst. Instead of using potentially hazardous reaction media such as DCM or toluene, the use of deep eutectic solvent (DES), an emerging class of green solvent, is advantageous for the syntheses of triazole-glycohybrids. The present work shows, for the first time, the successful use of DES as a reaction medium to click various glycosides and terminal alkynes in the presence of sodium azide. Various 1,4-disubstituted 1,2,3-glucopyranosyltriazoles were synthesized and the pure products were isolated by using a very simple work-up process (filtration). The reaction media was recovered and recycled in five consecutive runs. The presented catalytic protocol generated very minimum waste as reflected by a low E-factor (2.21-3.12). Finally, the optimized reaction conditions were evaluated with the CHEM21 green metrics toolkit.
Collapse
Affiliation(s)
- Subrat Sethi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Suraj Kumar Maharana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| |
Collapse
|
17
|
Menon D, Singh R, Joshi KB, Gupta S, Bhatia D. Designer, Programmable DNA-peptide hybrid materials with emergent properties to probe and modulate biological systems. Chembiochem 2023; 24:e202200580. [PMID: 36468492 DOI: 10.1002/cbic.202200580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2022]
Abstract
The chemistry of DNA endows it with certain functional properties that facilitate the generation of self-assembled nanostructures, offering precise control over their geometry and morphology, that can be exploited for advanced biological applications. Despite the structural promise of these materials, their applications are limited owing to lack of functional capability to interact favourably with biological systems, which has been achieved by functional proteins or peptides. Herein, we outline a strategy for functionalizing DNA structures with short-peptides, leading to the formation of DNA-peptide hybrid materials. This proposition offers the opportunity to leverage the unique advantages of each of these bio-molecules, that have far reaching emergent properties in terms of better cellular interactions and uptake, better stability in biological media, an acceptable and programmable immune response and high bioactive molecule loading capacities. We discuss the synthetic strategies for the formation of these materials, namely, solid-phase functionalization and solution-coupling functionalization. We then proceed to highlight selected biological applications of these materials in the domains of cell instruction & molecular recognition, gene delivery, drug delivery and bone & tissue regeneration. We conclude with discussions shedding light on the challenges that these materials pose and offer our insights on future directions of peptide-DNA research for targeted biomedical applications.
Collapse
Affiliation(s)
- Dhruv Menon
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Ramesh Singh
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| | - Kashti B Joshi
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| |
Collapse
|
18
|
Su M, Lien J, Anilao A, Guo T. Enhanced Single-Strand Breaks of a Nucleic Acid by Gold Nanoparticles under X-ray Irradiation. J Phys Chem Lett 2023; 14:1214-1221. [PMID: 36716218 DOI: 10.1021/acs.jpclett.2c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The hydroxyl radical concentration-dependent yield of single-strand breaks (SSBs), obtained through correction of scavenging and hindrance effects caused by gold nanoparticles (AuNPs), for fluorophore- and quencher-labeled DNA on AuNPs was 10 times that of free DNA based on fluorescence measurements of X-ray-irradiated DNA on AuNPs. By comparing the fluorescence data that revealed the number of SSBs with the results of mass spectrometry measurements that detected the total damage to DNA, we found that SSBs dominated DNA damage for DNA on AuNPs whereas non-SSB damage dominated for free DNA. The yield of RNA SSBs under X-ray irradiation was similar to that of DNA in the presence of AuNPs, whereas free RNA was more resistive to radiation than DNA. These results indicated the enhanced SSBs were likely catalyzed through the conversion from nucleobase damage to SSBs by AuNPs. The outcome of this work impacts materials and environmental science, sensing, nanotechnology, biology, and medicine.
Collapse
Affiliation(s)
- Mengqi Su
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Jennifer Lien
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Auddy Anilao
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Ting Guo
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
19
|
Hu L, Takezawa Y, Shionoya M. Cu II-mediated DNA base pairing of a triazole-4-carboxylate nucleoside prepared by click chemistry. Chem Commun (Camb) 2023; 59:892-895. [PMID: 36594822 DOI: 10.1039/d2cc06205d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Artificial metal-mediated DNA base pairing is a promising strategy for creating highly functionalized DNA supramolecules. Here we report a novel ligand-type triazole-4-carboxylate (TazC) nucleoside that is readily prepared by the click reaction. TazC nucleosides were found to form a stable TazC-CuII-TazC base pair inside DNA duplexes, resulting in CuII-specific duplex stabilization (ΔTm = +7.7 °C). This study demonstrates that the triazole derivatives are useful in the development of metal-mediated base pairing.
Collapse
Affiliation(s)
- Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
20
|
Fenoy GE, Hasler R, Quartinello F, Marmisollé WA, Lorenz C, Azzaroni O, Bäuerle P, Knoll W. "Clickable" Organic Electrochemical Transistors. JACS AU 2022; 2:2778-2790. [PMID: 36590273 PMCID: PMC9795466 DOI: 10.1021/jacsau.2c00515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Interfacing the surface of an organic semiconductor with biological elements is a central quest when it comes to the development of efficient organic bioelectronic devices. Here, we present the first example of "clickable" organic electrochemical transistors (OECTs). The synthesis and characterization of an azide-derivatized EDOT monomer (azidomethyl-EDOT, EDOT-N3) are reported, as well as its deposition on Au-interdigitated electrodes through electropolymerization to yield PEDOT-N3-OECTs. The electropolymerization protocol allows for a straightforward and reliable tuning of the characteristics of the OECTs, yielding transistors with lower threshold voltages than PEDOT-based state-of-the-art devices and maximum transconductance voltage values close to 0 V, a key feature for the development of efficient organic bioelectronic devices. Subsequently, the azide moieties are employed to click alkyne-bearing molecules such as redox probes and biorecognition elements. The clicking of an alkyne-modified PEG4-biotin allows for the use of the avidin-biotin interactions to efficiently generate bioconstructs with proteins and enzymes. In addition, a dibenzocyclooctyne-modified thrombin-specific HD22 aptamer is clicked on the PEDOT-N3-OECTs, showing the application of the devices toward the development of organic transistors-based biosensors. Finally, the clicked OECTs preserve their electronic features after the different clicking procedures, demonstrating the stability and robustness of the fabricated transistors.
Collapse
Affiliation(s)
- Gonzalo E. Fenoy
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln an der Donau, Austria
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Roger Hasler
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln an der Donau, Austria
| | - Felice Quartinello
- Department
of Agrobiotechnology, IFA-Tulln, Institute
of Environmental Biotechnology, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Waldemar A. Marmisollé
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Christoph Lorenz
- Institute
for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Omar Azzaroni
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Peter Bäuerle
- Institute
for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Wolfgang Knoll
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln an der Donau, Austria
- Department
of Scientific Coordination and Management, Danube Private University, 3500 Krems, Austria
| |
Collapse
|
21
|
Takegawa-Araki T, Yasukawa K, Iwazaki N, Maruyama H, Furukawa H, Sawamoto H, Obika S. Parallel synthesis of oligonucleotides containing N-acyl amino-LNA and their therapeutic effects as anti-microRNAs. Org Biomol Chem 2022; 20:9351-9361. [PMID: 36383101 DOI: 10.1039/d2ob01809h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2'-Amino-locked nucleic acid (ALNA), maintains excellent duplex stability, and the nitrogen at the 2'-position is an attractive scaffold for functionalization. Herein, a facile and efficient method for the synthesis of various 2'-N-acyl amino-LNA derivatives by direct acylation of the 2'-amino moiety contained in the synthesized oligonucleotides and its fundamental properties are described. The introduction of the acylated amino-LNA enhances the potency of the molecules as therapeutic anti-microRNA oligonucleotides.
Collapse
Affiliation(s)
- Tomo Takegawa-Araki
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kai Yasukawa
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Norihiko Iwazaki
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hideto Maruyama
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hiroyuki Furukawa
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hiroaki Sawamoto
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Zheng M, Lin Y, Wang W, Zhao Y, Bao X. Application of nucleoside or nucleotide analogues in RNA dynamics and RNA-binding protein analysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1722. [PMID: 35218164 DOI: 10.1002/wrna.1722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cellular RNAs undergo dynamic changes during RNA biological processes, which are tightly orchestrated by RNA-binding proteins (RBPs). Yet, the investigation of RNA dynamics is hurdled by highly abundant steady-state RNAs, which make the signals of dynamic RNAs less detectable. Notably, the exert of nucleoside or nucleotide analogue-based RNA technologies has provided a remarkable platform for RNA dynamics research, revealing diverse unnoticed features in RNA metabolism. In this review, we focus on the application of two types of analogue-based RNA sequencing, antigen-/antibody- and click chemistry-based methodologies, and summarize the RNA dynamics features revealed. Moreover, we discuss emerging single-cell newly transcribed RNA sequencing methodologies based on nucleoside analogue labeling, which provides novel insights into RNA dynamics regulation at single-cell resolution. On the other hand, we also emphasize the identification of RBPs that interact with polyA, non-polyA RNAs, or newly transcribed RNAs and also their associated RNA-binding domains at genomewide level through ultraviolet crosslinking and mass spectrometry in different contexts. We anticipated that further modification and development of these analogue-based RNA and RBP capture technologies will aid in obtaining an unprecedented understanding of RNA biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Meifeng Zheng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Lin
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangming Science City, Shenzhen, China
| | - Wei Wang
- Center for Biosafety, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xichen Bao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
23
|
Kurup HM, Kvach MV, Harjes S, Barzak FM, Jameson GB, Harjes E, Filichev VV. Design, Synthesis, and Evaluation of a Cross-Linked Oligonucleotide as the First Nanomolar Inhibitor of APOBEC3A. Biochemistry 2022; 61:2568-2578. [DOI: 10.1021/acs.biochem.2c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Harikrishnan M. Kurup
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Maksim V. Kvach
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Stefan Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Fareeda M. Barzak
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Geoffrey B. Jameson
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Vyacheslav V. Filichev
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
24
|
Koranne A, Kurrey K, Kumar P, Gupta S, Jha VK, Ravi R, Sahu PK, Anamika, Jha AK. Metal catalyzed C-H functionalization on triazole rings. RSC Adv 2022; 12:27534-27545. [PMID: 36276020 PMCID: PMC9516561 DOI: 10.1039/d2ra05697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
The present review covers advancement in the area of C-H functionalization on triazole rings, by utilizing various substrates with palladium or copper as catalysts, and resulting in the development of various substituted 1,2,3- and 1,2,4-triazoles. Synthesis of these substituted compounds is necessary from the perspective of pharmaceutical, medicinal, and materials chemistry.
Collapse
Affiliation(s)
- Anushka Koranne
- Govt. Shivnath Science College Gaurav Path Rajnandgaon 491441 Chhattisgarh India
| | - Khushboo Kurrey
- Govt. Shivnath Science College Gaurav Path Rajnandgaon 491441 Chhattisgarh India
| | - Prashant Kumar
- Govt. Shivnath Science College Gaurav Path Rajnandgaon 491441 Chhattisgarh India
| | - Sangeeta Gupta
- Govt. Shivnath Science College Gaurav Path Rajnandgaon 491441 Chhattisgarh India
| | | | | | | | - Anamika
- Jawaharlal Nehru University New Delhi India
| | - Abadh Kishor Jha
- Govt. Shivnath Science College Gaurav Path Rajnandgaon 491441 Chhattisgarh India
| |
Collapse
|
25
|
Raju C, Kunnikuruvan S, Sureshan KM. Topochemical Cycloaddition Reaction between an Azide and an Internal Alkyne. Angew Chem Int Ed Engl 2022; 61:e202210453. [DOI: 10.1002/anie.202210453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Cijil Raju
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram Kerala-695551 India
| | - Sooraj Kunnikuruvan
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram Kerala-695551 India
| |
Collapse
|
26
|
Sun F, Tan S, Cao H, Xu J, Bregadze VI, Tu D, Lu C, Yan H. Palladium‐Catalyzed Hydroboration of Alkynes with Carboranes: Facile Construction of a Library of Boron Cluster‐Based AIE‐Active Luminogens. Angew Chem Int Ed Engl 2022; 61:e202207125. [DOI: 10.1002/anie.202207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Fangxiang Sun
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Shuaimin Tan
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hou‐Ji Cao
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Vladimir I. Bregadze
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS) Russian Academy of Sciences Moscow 119991 Russia
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
27
|
Hao Z, Zhao P, Xing Q, Wahab A, Gao Z, Gou J, Yu B. Dual Roles of Azide: Dearomative Dimerization of Furfuryl Azides. J Org Chem 2022; 87:10185-10198. [PMID: 35864566 DOI: 10.1021/acs.joc.2c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A dearomative dimerization of furfuryl azides for the construction of furfuryl triazoles is developed. As a rare leaving group, azide is capable of initiating the generation of a furfuryl cation under the Lewis acid-catalyzed conditions, followed by reacting with the other azide to realize an intermolecular [3 + 2] cycloaddition/furan ring-opening cascade. By extending the reaction time, a fragmentation reaction of resulting furfuryl triazoles occurs to afford 1H-triazoles in high yield. Control studies demonstrated that key furfuryl cations also can be obtained from furfuryl triazoles. Furthermore, a chemoselective cross-cycloaddition can be achieved between furfuryl azides and a benzyl azide.
Collapse
Affiliation(s)
- Zhe Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Penggang Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qingzhao Xing
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Abdul Wahab
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Gou
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an 710062, China
| | - Binxun Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, China
| |
Collapse
|
28
|
Topochemical Cycloaddition Reaction between an Azide and an Internal Alkyne. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Visible‐Light‐Mediated Synthesis of 1‐Oxa‐4‐aza‐spiro Oxazolines by Spiroannulation of Quinones with Vinyl Azides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Onizuka K, Yamano Y, Abdelhady AM, Nagatsugi F. Hybridization-specific chemical reactions to create interstrand crosslinking and threaded structures of nucleic acids. Org Biomol Chem 2022; 20:4699-4708. [PMID: 35622064 DOI: 10.1039/d2ob00551d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interstrand crosslinking and threaded structures of nucleic acids have high potential in oligonucleotide therapeutics, chemical biology, and nanotechnology. For example, properly designed crosslinking structures provide high activity and nuclease resistance for anti-miRNAs. The noncovalent labeling and modification by the threaded structures are useful as new chemical biology tools. Photoreversible crosslinking creates smart materials, such as reversible photoresponsive gels and DNA origami objects. This review introduces the creation of interstrand crosslinking and threaded structures, such as catenanes and rotaxanes, based on hybridization-specific chemical reactions and their functions and perspectives.
Collapse
Affiliation(s)
- Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yuuhei Yamano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
31
|
Sun F, Tan S, Cao HJ, Xu J, Bregadze V, Tu D, Lu C, Yan H. Palladium‐Catalyzed Hydroboration of Alkynes with Carboranes: Facile Construction of a Library of Boron Cluster‐Based AIE‐Active Luminogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fangxiang Sun
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Shuaimin Tan
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hou-Ji Cao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jingkai Xu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Vladimir Bregadze
- Russian Academy of Science A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS) RUSSIAN FEDERATION
| | - Deshuang Tu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Changsheng Lu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hong Yan
- Nanjing University School of Chemistry and Chemical Engineering 22 Hankou Rd. 210093 Nanjing CHINA
| |
Collapse
|
32
|
Rengasamy R, Raj JP, Vijayalakshmi K, Punitha N, Kesavan M, Vajjiravel M, Elangovan J. Tunable Synthesis of 1,2,3‐Triazoles and Enamines through Deacylative Azide‐Alkene Cycloaddition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R. Rengasamy
- Rajah Serfoji Government College Chemistry INDIA
| | - J. Paul Raj
- BS Abdur Rahman University: B S Abdur Rahman Crescent Institute of Science & Technology Chemistry INDIA
| | | | - N. Punitha
- Rajah Serfoji Government College Chemistry INDIA
| | - M. Kesavan
- SRM-RI: SRM Research Institute Kattankulathur IISM INDIA
| | - M Vajjiravel
- BS Abdur Rahman University: B S Abdur Rahman Crescent Institute of Science & Technology Chemistry INDIA
| | | |
Collapse
|
33
|
Medžiūnė J, Kapustina Ž, Žeimytė S, Jakubovska J, Sindikevičienė R, Čikotienė I, Lubys A. Advanced preparation of fragment libraries enabled by oligonucleotide-modified 2',3'-dideoxynucleotides. Commun Chem 2022; 5:34. [PMID: 36697673 PMCID: PMC9814608 DOI: 10.1038/s42004-022-00649-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The ever-growing demand for inexpensive, rapid, and accurate exploration of genomes calls for refinement of existing sequencing techniques. The development of next-generation sequencing (NGS) was a revolutionary milestone in genome analysis. While modified nucleotides already were inherent tools in sequencing and imaging, further modification of nucleotides enabled the expansion into even more diverse applications. Herein we describe the design and synthesis of oligonucleotide-tethered 2',3'-dideoxynucleotide (ddONNTP) terminators bearing universal priming sites attached to the nucleobase, as well as their enzymatic incorporation and performance in read-through assays. In the context of NGS library preparation, the incorporation of ddONNTP fulfills two requirements at once: the fragmentation step is integrated into the workflow and the obtained fragments are readily labeled by platform-specific adapters. DNA polymerases can incorporate ddONNTP nucleotides, as shown by primer extension assays. More importantly, reading through the unnatural linkage during DNA synthesis was demonstrated, with 25-30% efficiency in single-cycle extension.
Collapse
Affiliation(s)
- Justina Medžiūnė
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania ,grid.6441.70000 0001 2243 2806Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, LT-03225 Lithuania
| | - Žana Kapustina
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania ,grid.6441.70000 0001 2243 2806Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, LT-10257 Lithuania
| | - Simona Žeimytė
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania
| | - Jevgenija Jakubovska
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania
| | - Rūta Sindikevičienė
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania
| | - Inga Čikotienė
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania ,grid.6441.70000 0001 2243 2806Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, LT-03225 Lithuania
| | - Arvydas Lubys
- grid.420349.8Department of Research and Development, Thermo Fisher Scientific Baltics, Vilnius, LT-02241 Lithuania
| |
Collapse
|
34
|
Khashei Siuki H, Ghamari Kargar P, Bagherzade G. New Acetamidine Cu(II) Schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Sci Rep 2022; 12:3771. [PMID: 35260647 PMCID: PMC8904776 DOI: 10.1038/s41598-022-07674-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
In this project, the new catalyst copper defines as Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, FESEM, EDX, VSM, TGA, and ICP analysis. All results showed that copper was successfully supported on the polymer-coated magnetic nanoparticles. One of the most important properties of a catalyst is the ability to be prepared from simple materials such as pectin that's a biopolymer that is widely found in nature. The catalytic activity of Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was examined in a classical, one pot, and the three-component reaction of terminal alkynes, alkyl halides, and sodium azide in water and observed, proceeding smoothly and completed in good yields and high regioselectivity. The critical potential interests of the present method include high yields, recyclability of catalyst, easy workup, using an eco-friendly solvent, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. The capability of the nanocomposite was compared with previous works, and the nanocomposite was found more efficient, economical, and reproducible. Also, the catalyst can be easily removed from the reaction solution using an external magnet and reused for five runs without reduction in catalyst activity.
Collapse
Affiliation(s)
- Hossein Khashei Siuki
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran
| | - Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran.
| |
Collapse
|
35
|
Partipilo G, Graham AJ, Belardi B, Keitz BK. Extracellular Electron Transfer Enables Cellular Control of Cu(I)-Catalyzed Alkyne-Azide Cycloaddition. ACS CENTRAL SCIENCE 2022; 8:246-257. [PMID: 35233456 PMCID: PMC8875427 DOI: 10.1021/acscentsci.1c01208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 05/03/2023]
Abstract
Extracellular electron transfer (EET) is an anaerobic respiration process that couples carbon oxidation to the reduction of metal species. In the presence of a suitable metal catalyst, EET allows for cellular metabolism to control a variety of synthetic transformations. Here, we report the use of EET from the electroactive bacterium Shewanella oneidensis for metabolic and genetic control over Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC). CuAAC conversion under anaerobic and aerobic conditions was dependent on live, actively respiring S. oneidensis cells. The reaction progress and kinetics were manipulated by tailoring the central carbon metabolism. Similarly, EET-CuAAC activity was dependent on specific EET pathways that could be regulated via inducible expression of EET-relevant proteins: MtrC, MtrA, and CymA. EET-driven CuAAC exhibited modularity and robustness in the ligand and substrate scope. Furthermore, the living nature of this system could be exploited to perform multiple reaction cycles without regeneration, something inaccessible to traditional chemical reductants. Finally, S. oneidensis enabled bioorthogonal CuAAC membrane labeling on live mammalian cells without affecting cell viability, suggesting that S. oneidensis can act as a dynamically tunable biocatalyst in complex environments. In summary, our results demonstrate how EET can expand the reaction scope available to living systems by enabling cellular control of CuAAC.
Collapse
Affiliation(s)
- Gina Partipilo
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Austin J. Graham
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin K. Keitz
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
36
|
Ito Y, Hari Y. Synthesis of Nucleobase-Modified Oligonucleotides by Post-Synthetic Modification in Solution. CHEM REC 2022; 22:e202100325. [PMID: 35119181 DOI: 10.1002/tcr.202100325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Oligonucleotides containing modified nucleobases have applications in various technologies. In general, to synthesize oligonucleotides with different nucleobase structures, each modified phosphoramidite monomer needs to be prepared over multiple steps and then introduced onto the oligonucleotides, which is time-consuming and inefficient. Post-synthetic modification is a powerful strategy for preparing many types of modified oligonucleotides, especially nucleobase-modified ones. Depending on the stage of modification, post-synthetic modification can be divided into two stages: "solid-phase modification," wherein an oligonucleotide attaches to the resin, and "solution-phase modification," wherein an oligonucleotide detaches itself from the resin. In this review, we focus on post-synthetic modification in solution for the synthesis of nucleobase-modified oligonucleotides, except the modifications to linkers for conjugation. Moreover, the reactions are summarized for each modified position of the nucleobases.
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan
| |
Collapse
|
37
|
Zhou H, Li Y, Wang S, Wang L, Wang R. Tracking of Nascent Deoxynucleic Acids Enable by Incorporation of Uridine Variant with 2 Prime Azidomethyl Tag and Click Chemistry. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Nural Y, Ozdemir S, Yalcin MS, Demir B, Atabey H, Seferoglu Z, Ece A. New bis- and tetrakis-1,2,3-triazole derivatives: Synthesis, DNA cleavage, molecular docking, antimicrobial, antioxidant activity and acid dissociation constants. Bioorg Med Chem Lett 2022; 55:128453. [PMID: 34801684 DOI: 10.1016/j.bmcl.2021.128453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023]
Abstract
In this study, a series of bis- and tetrakis-1,2,3-triazole derivatives were synthesized using copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry in 73-95% yield. The bis- and tetrakis-1,2,3-triazoles exhibited significant DNA cleavage activity while the tetrakis-1,2,3-triazole analog 6g completely degraded the plasmid DNA. Molecular docking simulations suggest that compound 6g acts as minor groove binder of DNA by binding through several noncovalent interactions with base pairs. All bis- and tetrakis-1,2,3-triazole derivatives were screened for antibacterial activity against E. coli, B. cereus, S. aureus, P. aeruginosa, E. hirae, L. pneumophila subsp. pneumophila strains and antifungal activity against microfungus C. albicans and C. tropicalis strains. Compound 4d exhibited the best antibacterial activity among bis-1,2,3-triazoles against E. coli and E. hirae, while 6c exhibited the best antibacterial activity among tetrakis-1,2,3-triazoles against E. hirae. Furthermore, the best antifungal activity against C. albicans and C. tropicalis was reported for the compound 5, while 6d displayed the best antifungal activity against C. tropicalis and C. albicans. Reasonable iron chelating activities and DPPH radical scavenging abilities were found for some of the compounds. Finally, the acid dissociation constants (pKa) of the bis-1,2,3-triazoles were also determined with the help of HYPERQUAD program using the data obtained from potentiometric titrations. The reported data here concludes that the bis- and tetrakis-1,2,3-triazoles are important cores that should be considered for further development of especially new anticancer agents acting through the DNA cleavage activity.
Collapse
Affiliation(s)
- Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin 33169, Turkey; Advanced Technology, Research and Application Center, Mersin University, 33343 Mersin, Turkey.
| | - Sadin Ozdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin 33343, Turkey
| | - Mustafa Serkan Yalcin
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, Mersin 33343, Turkey
| | - Bunyamin Demir
- Advanced Technology, Research and Application Center, Mersin University, 33343 Mersin, Turkey; Department of Mechanical Engineering, Faculty of Engineering, Mersin University, Mersin 33169, Turkey
| | - Hasan Atabey
- Mersin National Education Directorate, Department of Analytical Chemistry, Mersin, Turkey
| | - Zeynel Seferoglu
- Department of Chemistry, Faculty of Science, Gazi University, Yenimahalle, Ankara TR-06560, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey
| |
Collapse
|
39
|
Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 2022; 55:107902. [DOI: 10.1016/j.biotechadv.2021.107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
40
|
Xiong H, Liu L, Wang Y, Jiang H, Wang X. Engineered Aptamer-Organic Amphiphile Self-Assemblies for Biomedical Applications: Progress and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104341. [PMID: 34622570 DOI: 10.1002/smll.202104341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Currently, nucleic acid aptamers are exploited as robust targeting ligands in the biomedical field, due to their specific molecular recognition, little immunogenicity, low cost, ect. Thanks to the facile chemical modification and high hydrophilicity, aptamers can be site-specifically linked with hydrophobic moieties to prepare aptamer-organic amphiphiles (AOAs), which spontaneously assemble into aptamer-organic amphiphile self-assemblies (AOASs). These polyvalent self-assemblies feature with enhanced target-binding ability, increased resistance to nuclease, and efficient cargo-loading, making them powerful platforms for bioapplications, including targeted drug delivery, cell-based cancer therapy, biosensing, and bioimaging. Besides, the morphology of AOASs can be elaborately manipulated for smarter biomedical functions, by regulating the hydrophilicity/hydrophobicity ratio of AOAs. Benefiting from the boom in DNA synthesis technology and nanotechnology, various types of AOASs, including aptamer-polymer amphiphile self-assemblies, aptamer-lipid amphiphile self-assemblies, aptamer-cell self-assemblies, ect, have been constructed with great biomedical potential. Particularly, stimuli-responsive AOASs with transformable structure can realize site-specific drug release, enhanced tumor penetration, and specific target molecule detection. Herein, the general synthesis methods of oligonucleotide-organic amphiphiles are firstly summarized. Then recent progress in different types of AOASs for bioapplications and strategies for morphology control are systematically reviewed. The present challenges and future perspectives of this field are also discussed.
Collapse
Affiliation(s)
- Hongjie Xiong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
41
|
Bujalska A, Basran K, Luedtke NW. [4+2] and [2+4] cycloaddition reactions on single- and double-stranded DNA: a dual-reactive nucleoside. RSC Chem Biol 2022; 3:698-701. [PMID: 35755194 PMCID: PMC9175100 DOI: 10.1039/d2cb00062h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Here we report dual reactivity of diene-modified duplex DNA containing 5-(1,3-butadienyl)-2'-deoxyuridine “BDdU”. Regular-electron demand [4+2] cycloaddition proceeded upon addition of a maleimide, whereas inversed-electron demand [2+4] cycloaddition occurred upon addition...
Collapse
Affiliation(s)
- Anna Bujalska
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Kaleena Basran
- Department of Chemistry, McGill University 801 Sherbrooke St. West Montréal Québec H3A 0B8 Canada
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190 8057 Zurich Switzerland
- Department of Chemistry, McGill University 801 Sherbrooke St. West Montréal Québec H3A 0B8 Canada
| |
Collapse
|
42
|
Oligonucleotide conjugation by tyrosine‐click reaction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Kulkarni K, Minehan RL, Gamot T, Coleman HA, Bowles S, Lin Q, Hopper D, Northfield SE, Hughes RA, Widdop RE, Aguilar MI, Parkington HC, Del Borgo MP. Esterase-Mediated Sustained Release of Peptide-Based Therapeutics from a Self-Assembled Injectable Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58279-58290. [PMID: 34756031 DOI: 10.1021/acsami.1c14150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A synthetic strategy for conjugating small molecules and peptide-based therapeutics, via a cleavable ester bond, to a lipidated β3-tripeptide is presented. The drug-loaded β3-peptide was successfully co-assembled with a functionally inert lipidated β3-tripeptide to form a hydrogel. Quantitative release of lactose from the hydrogel, by the action of serum esterases, is demonstrated over 28 days. The esterase-mediated sustained release of the bioactive brain-derived neurotrophic factor (BDNF) peptide mimics from the hydrogel resulted in increased neuronal survival and normal neuronal function of peripheral neurons. These studies define a versatile strategy for the facile synthesis and co-assembly of self-assembling β3-peptide-based hydrogels with the ability to control drug release using endogenous esterases with potential in vivo applications for sustained localized drug delivery.
Collapse
Affiliation(s)
- Ketav Kulkarni
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Rachel L Minehan
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Tanesh Gamot
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Harold A Coleman
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Simon Bowles
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Qingqing Lin
- Department of Biochemistry & Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Denham Hopper
- Department of Biochemistry & Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Susan E Northfield
- Department of Biochemistry & Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard A Hughes
- Pharmacy and Pharmaceutical Sciences Education, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
44
|
Lv L, Gao G, Luo Y, Mao K, Li Z. Three-Component Reactions of α-CF 3 Carbonyls, NaN 3, and Amines for the Synthesis of NH-1,2,3-Triazoles. J Org Chem 2021; 86:17197-17212. [PMID: 34724616 DOI: 10.1021/acs.joc.1c02288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of methods for the assembly of 1,2,3-triazoles is an important topic due to the broad applications of this motif in various scientific fields. In this work, we demonstrate that the three-component assembly of α-CF3 carbonyls, NaN3, and amines was achieved for the selective construction of a variety of 5-amino NH-1,2,3-triazoles under transition-metal-free and open-air conditions. The method provides a general and operationally simple route to functionalized biologically important molecules including carbohydrates, nucleosides, and peptides and exhibits broad substrate scopes. We further demonstrate that the NH-1,2,3-triazoles can be smoothly converted to the regiospecific N-2 alkylated 1,2,3-triazole products. Mechanistic studies based on experiments and density functional theory calculations showed that this transformation proceeds via defluorination-initiated programmed substitution/cyclization/H-transfer to give the 4,5-difunctionalized captodative NH-1,2,3-triazole product.
Collapse
Affiliation(s)
- Leiyang Lv
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ge Gao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yani Luo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Kuantao Mao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
45
|
|
46
|
Jeong J, Szczepaniak G, Yerneni SS, Lorandi F, Jafari H, Lathwal S, Das SR, Matyjaszewski K. Biocompatible photoinduced CuAAC using sodium pyruvate. Chem Commun (Camb) 2021; 57:12844-12847. [PMID: 34787596 DOI: 10.1039/d1cc05566f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sodium pyruvate, a natural intermediate produced during cellular metabolism, is commonly used in buffer solutions and media for biochemical applications. Here we show the use of sodium pyruvate (SP) as a reducing agent in a biocompatible aqueous photoinduced azide-alkyne cycloaddition (CuAAC) reaction. This copper(I)-catalyzed 1,3-dipolar cycloaddition is triggered by SP under UV light irradiation, exhibits oxygen tolerance and temporal control, and provides a convenient alternative to current CuAAC systems, particularly for biomolecular conjugations.
Collapse
Affiliation(s)
- Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. .,University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | | | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Hossein Jafari
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Subha R Das
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. .,Center for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
47
|
De Fazio AF, Misatziou D, Baker YR, Muskens OL, Brown T, Kanaras AG. Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chem Soc Rev 2021; 50:13410-13440. [PMID: 34792047 PMCID: PMC8628606 DOI: 10.1039/d1cs00632k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 12/26/2022]
Abstract
The self-assembly of inorganic nanoparticles to larger structures is of great research interest as it allows the fabrication of novel materials with collective properties correlated to the nanoparticles' individual characteristics. Recently developed methods for controlling nanoparticle organisation have enabled the fabrication of a range of new materials. Amongst these, the assembly of nanoparticles using DNA has attracted significant attention due to the highly selective recognition between complementary DNA strands, DNA nanostructure versatility, and ease of DNA chemical modification. In this review we discuss the application of various chemical DNA modifications and molecular intercalators as tools for the manipulation of DNA-nanoparticle structures. In detail, we discuss how DNA modifications and small molecule intercalators have been employed in the chemical and photochemical DNA ligation in nanostructures; DNA rotaxanes and catenanes associated with reconfigurable nanoparticle assemblies; and DNA backbone modifications including locked nucleic acids, peptide nucleic acids and borane nucleic acids, which affect the stability of nanostructures in complex environments. We conclude by highlighting the importance of maximising the synergy between the communities of DNA chemistry and nanoparticle self-assembly with the aim to enrich the library of tools available for the manipulation of nanostructures.
Collapse
Affiliation(s)
- Angela F De Fazio
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Doxi Misatziou
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Ysobel R Baker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Otto L Muskens
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
48
|
Selim A, Neethu KM, Gowri V, Sartaliya S, Kaur S, Jayamurugan G. Thiol‐Functionalized Cellulose Wrapped Copperoxide as a Green Nano Catalyst for Regiospecific Azide‐Alkyne Cycloaddition Reaction: Application in Rufinamide Synthesis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Abdul Selim
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali Punjab 140306 India
| | - K. M. Neethu
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali Punjab 140306 India
| | - Vijayendran Gowri
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali Punjab 140306 India
| | - Shaifali Sartaliya
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali Punjab 140306 India
| | - Sharanjeet Kaur
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali Punjab 140306 India
| | - Govindasamy Jayamurugan
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali Punjab 140306 India
| |
Collapse
|
49
|
Pal S, Fatma K, Ravichandiran V, Dash J. Triazolyl Dibenzo[ a,c]phenazines Stabilize Telomeric G-quadruplex and Inhibit Telomerase. ASIAN J ORG CHEM 2021; 10:2921-2926. [PMID: 37823002 PMCID: PMC7614908 DOI: 10.1002/ajoc.202100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/10/2022]
Abstract
We herein report the synthesis and biophysical evaluation of triazolyl dibenzo[a,c]phenazine derivatives as a novel class of G-quadruplex ligands. The aromatic core facilitates π-π interaction and the flexible, protonatable side chains interact with the phosphate backbone of DNA via electrostatic interactions. Förster resonance energy transfer (FRET) melting assay and isothermal titration calorimetry (ITC) studies suggest that these ligands show binding preference for the hTELO G-quadruplex over G-quadruplexes found in the promoter region of various oncogenes and duplex DNA. The in vitro telomeric repeat amplification protocol (Q-TRAP) assay reveals that these ligands reduce telomerase activity in cancer cells.
Collapse
Affiliation(s)
- Sarmistha Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
- Department of Medicinal Chemistry, NIPER-KOLKATA, Chunilal Bhawan (Adjacent to BCPL), 168, Maniktala Main Road P.O. Bengal Chemicals, P.S. Phoolbagan, Kolkata – 700054, West Bengal
| | - Khushnood Fatma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, NIPER-KOLKATA, Chunilal Bhawan (Adjacent to BCPL), 168, Maniktala Main Road P.O. Bengal Chemicals, P.S. Phoolbagan, Kolkata – 700054, West Bengal
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
50
|
McStay N, Slator C, Singh V, Gibney A, Westerlund F, Kellett A. Click and Cut: a click chemistry approach to developing oxidative DNA damaging agents. Nucleic Acids Res 2021; 49:10289-10308. [PMID: 34570227 PMCID: PMC8501983 DOI: 10.1093/nar/gkab817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Metallodrugs provide important first-line treatment against various forms of human cancer. To overcome chemotherapeutic resistance and widen treatment possibilities, new agents with improved or alternative modes of action are highly sought after. Here, we present a click chemistry strategy for developing DNA damaging metallodrugs. The approach involves the development of a series of polyamine ligands where three primary, secondary or tertiary alkyne-amines were selected and 'clicked' using the copper-catalysed azide-alkyne cycloaddition reaction to a 1,3,5-azide mesitylene core to produce a family of compounds we call the 'Tri-Click' (TC) series. From the isolated library, one dominant ligand (TC1) emerged as a high-affinity copper(II) binding agent with potent DNA recognition and damaging properties. Using a range of in vitro biophysical and molecular techniques-including free radical scavengers, spin trapping antioxidants and base excision repair (BER) enzymes-the oxidative DNA damaging mechanism of copper-bound TC1 was elucidated. This activity was then compared to intracellular results obtained from peripheral blood mononuclear cells exposed to Cu(II)-TC1 where use of BER enzymes and fluorescently modified dNTPs enabled the characterisation and quantification of genomic DNA lesions produced by the complex. The approach can serve as a new avenue for the design of DNA damaging agents with unique activity profiles.
Collapse
Affiliation(s)
- Natasha McStay
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Creina Slator
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Vandana Singh
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Alex Gibney
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|