1
|
Discovery of pyridine tetrahydroisoquinoline thiohydantoin derivatives with low blood-brain barrier penetration as the androgen receptor antagonists. Eur J Med Chem 2020; 192:112196. [PMID: 32169785 DOI: 10.1016/j.ejmech.2020.112196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PC) is the most diagnosed type of malignancy in men and the major frequently cause of cancer-related death worldwide. The androgen receptor (AR) has become a promising drug target for the treatment of PC. Here, we reported the design, optimization and evaluation of pyridine tetrahydroisoquinoline thiohydantoin derivatives with improved activity and safety as potent AR antagonists. The most promising compound 42f exhibited potent inhibitory activity on AR and strongly blocked AR nuclear translocation. Moreover, 42f displayed promising in vitro antitumor activity toward AR-dependent prostate cancer cell lines (LNCaP) and also demonstrated therapeutic effects in LNCaP xenograft tumor model in mice (TGI: 79%) with no apparent toxicity observed in vivo. More importantly, 42f showed negligible penetration of the brain-blood barrier (BBB) compared with enzalutamide. These results provide a foundation for the development of a new class of androgen receptor antagonists for potential therapeutics against PC with lower seizurogenic risk for patients.
Collapse
|
2
|
|
3
|
Sellmer A, Stangl H, Beyer M, Grünstein E, Leonhardt M, Pongratz H, Eichhorn E, Elz S, Striegl B, Jenei-Lanzl Z, Dove S, Straub RH, Krämer OH, Mahboobi S. Marbostat-100 Defines a New Class of Potent and Selective Antiinflammatory and Antirheumatic Histone Deacetylase 6 Inhibitors. J Med Chem 2018; 61:3454-3477. [DOI: 10.1021/acs.jmedchem.7b01593] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Andreas Sellmer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Hubert Stangl
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, 93042 Regensburg, Germany
| | - Mandy Beyer
- Institute of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Elisabeth Grünstein
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Michel Leonhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Herwig Pongratz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Emerich Eichhorn
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Sigurd Elz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Birgit Striegl
- Technical University of Applied Sciences (OTH) Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), OTH and University Regensburg, 93053 Regensburg, Germany
| | - Zsuzsa Jenei-Lanzl
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, 93042 Regensburg, Germany
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbH, 60528 Frankfurt/Main, Germany
| | - Stefan Dove
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Rainer H. Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, 93042 Regensburg, Germany
| | - Oliver H. Krämer
- Institute of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
4
|
Xu X, Ge R, Li L, Wang J, Lu X, Xue S, Chen X, Li Z, Bian J. Exploring the tetrahydroisoquinoline thiohydantoin scaffold blockade the androgen receptor as potent anti-prostate cancer agents. Eur J Med Chem 2017; 143:1325-1344. [PMID: 29117897 DOI: 10.1016/j.ejmech.2017.10.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 11/28/2022]
Abstract
Prostate cancer (PC) is a major cause of cancer-related male death in worldwide and the identification of new and improved potent anti-PC molecules is constantly required. A novel scaffold of tetrahydroisoquinoline thiohydantoin was rationally designed based on the enzalutamide structures and our pre-work, leading to the discovery of a series of new antiproliferative compounds. Several new analogues displayed improved androgen receptor (AR) antagonistic activity, while maintaining the higher selective toxicity toward LNCaP cells (AR-rich) versus DU145 cells (AR-deficient) compared to enzalutamide. In fact, compound 55 exhibited promising in vitro antitumor activity by impairing AR unclear translocation. More importantly, 55 showed better pharmacokinetic properties compared to the compound 1 reported in our pre-work. These results demonstrate a step towards the development of novel and improved AR antagonists.
Collapse
Affiliation(s)
- Xi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Raoling Ge
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Lei Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jubo Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiaoyu Lu
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Siqi Xue
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xijing Chen
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Jinlei Bian
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| |
Collapse
|
5
|
Konnert L, Lamaty F, Martinez J, Colacino E. Recent Advances in the Synthesis of Hydantoins: The State of the Art of a Valuable Scaffold. Chem Rev 2017. [PMID: 28644621 DOI: 10.1021/acs.chemrev.7b00067] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The review highlights the hydantoin syntheses presented from the point of view of the preparation methods. Novel synthetic routes to various hydantoin structures, the advances brought to the classical methods in the aim of producing more sustainable and environmentally friendly procedures for the preparation of these biomolecules, and a critical comparison of the different synthetic approaches developed in the last twelve years are also described. The review is composed of 95 schemes, 8 figures and 528 references for the last 12 years and includes the description of the hydantoin-based marketed drugs and clinical candidates.
Collapse
Affiliation(s)
- Laure Konnert
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Frédéric Lamaty
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Jean Martinez
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Evelina Colacino
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| |
Collapse
|
6
|
Odell AV, Tran F, Foderaro JE, Poupart S, Pathak R, Westwood NJ, Ward GE. Yeast three-hybrid screen identifies TgBRADIN/GRA24 as a negative regulator of Toxoplasma gondii bradyzoite differentiation. PLoS One 2015; 10:e0120331. [PMID: 25789621 PMCID: PMC4366382 DOI: 10.1371/journal.pone.0120331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/06/2015] [Indexed: 12/17/2022] Open
Abstract
Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite's life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.
Collapse
Affiliation(s)
- Anahi V Odell
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Fanny Tran
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Jenna E Foderaro
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Séverine Poupart
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Ravi Pathak
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Nicholas J Westwood
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
7
|
Sun YN, Wang CL, Zhang N, Wang Z, Liu ZL, Liu JL. Synthesis of tetrahydro-β-carbolines from phthalic anhydrides and tryptamine. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2014.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Design, synthesis and biological characterization of thiazolidin-4-one derivatives as promising inhibitors of Toxoplasma gondii. Eur J Med Chem 2014; 86:17-30. [PMID: 25140751 DOI: 10.1016/j.ejmech.2014.08.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/21/2022]
Abstract
We designed and synthesized a large number of novel thiazolidin-4-one derivatives for the evaluation of their anti-Toxoplasma gondii activity. This scaffold was functionalized at the N1-hydrazine portion with aliphatic, cycloaliphatic and (hetero)aromatic moieties. Then, a benzyl pendant was introduced at the lactamic NH of the core nucleus to evaluate the influence of this chemical modification on biological activity. The compounds were subjected to several in vitro assays to assess their anti-parasitic efficacy, cytotoxicity on fibroblasts, inhibition of tachyzoite invasion/attachment and replication after treatment. Results showed that fourteen of these thiazole-based compounds compare favorably to control compound trimethoprim in terms of parasite growth inhibition.
Collapse
|
9
|
Tran F, Odell AV, Ward GE, Westwood NJ. A modular approach to triazole-containing chemical inducers of dimerisation for yeast three-hybrid screening. Molecules 2013; 18:11639-57. [PMID: 24064457 PMCID: PMC4031444 DOI: 10.3390/molecules180911639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/30/2022] Open
Abstract
The yeast three-hybrid (Y3H) approach shows considerable promise for the unbiased identification of novel small molecule-protein interactions. In recent years, it has been successfully used to link a number of bioactive molecules to novel protein binding partners. However despite its potential importance as a protein target identification method, the Y3H technique has not yet been widely adopted, in part due to the challenges associated with the synthesis of the complex chemical inducers of dimerisation (CIDs). The development of a modular approach using potentially “off the shelf” synthetic components was achieved and allowed the synthesis of a family of four triazole-containing CIDs, MTX-Cmpd2.2-2.5. These CIDs were then compared using the Y3H approach with three of them giving a strong positive interaction with a known target of compound 2, TgCDPK1. These results showed that the modular nature of our synthetic strategy may help to overcome the challenges currently encountered with CID synthesis and should contribute to the Y3H approach reaching its full potential as an unbiased target identification strategy.
Collapse
Affiliation(s)
- Fanny Tran
- School of Chemistry and Biomolecular Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife, Scotland KY16 9ST, UK
| | - Anahi V. Odell
- Department of Microbiology and Molecular Genetics, 316 Stafford Hall, University of Vermont, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, 316 Stafford Hall, University of Vermont, 95 Carrigan Drive, Burlington, VT 05405, USA
- Authors to whom correspondence should be addressed; E-Mails: ; ; Tel.: +44-(0)1334-46316 (N.J.W.); +1-802-656-4868 (G.E.W.); Fax: +44-(0)1334-462595 (N.J.W.); +1-802-656-8749 (G.E.W.)
| | - Nicholas J. Westwood
- School of Chemistry and Biomolecular Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife, Scotland KY16 9ST, UK
- Authors to whom correspondence should be addressed; E-Mails: ; ; Tel.: +44-(0)1334-46316 (N.J.W.); +1-802-656-4868 (G.E.W.); Fax: +44-(0)1334-462595 (N.J.W.); +1-802-656-8749 (G.E.W.)
| |
Collapse
|
10
|
Dong J, Meng TZ, Shi XX, Zou WH, Lu X. Highly stereoselective transformation of (1S,3S)-cis-1,3-disubstituted tetrahydro-β-carbolines into (1S,3R)-trans-1,3-disubstituted tetrahydro-β-carbolines: an improved asymmetric synthesis of tadalafil from l-tryptophan. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Hencken CP, Jones-Brando L, Bordón C, Stohler R, Mott BT, Yolken R, Posner GH, Woodard LE. Thiazole, oxadiazole, and carboxamide derivatives of artemisinin are highly selective and potent inhibitors of Toxoplasma gondii. J Med Chem 2010; 53:3594-601. [PMID: 20373807 DOI: 10.1021/jm901857d] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have prepared 23 new dehydroartemisinin (DART) trioxane derivatives (11 thiazoles, 2 oxadiazoles, and 10 carboxamides) and have screened them for in vitro activity in the Toxoplasma lytic cycle. Fifteen (65%) of the derivatives were noncytotoxic to host cells (TD(50) > or = 320 microM). Eight thiazole derivatives and two carboxamide derivatives displayed effective inhibition of Toxoplasma growth (IC(50) = 0.25-0.42 microM), comparable in potency to artemether (IC(50) = 0.31 microM) and >100 times more inhibitory than the currently employed front-line drug trimethoprim (IC(50) = 46 microM). The thiazoles as a group were more effective than the other derivatives at inhibiting growth of extracellular as well as intracellular parasites. Unexpectedly, two thiazole trioxanes (5 and 6) were parasiticidal; both inhibited parasite replication irreversibly after parasite exposure to 10 microM of drug for 24 h, whereas the standard trioxane drugs artemisinin and artemether were not parasiticidal. Some of the new derivatives of artemisinin described here represent effective anti-Toxoplasma trioxanes as well as molecular probes for elucidating the mechanism of action of the DART class of artemisinin derivatives.
Collapse
Affiliation(s)
- Christopher P Hencken
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | | | | | |
Collapse
|