1
|
Khan R, Anwar F, Ghazali FM. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024; 10:e28361. [PMID: 38628751 PMCID: PMC11019184 DOI: 10.1016/j.heliyon.2024.e28361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/19/2024] Open
Abstract
Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| |
Collapse
|
2
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
4
|
Xue Z, Zhang Y, Yu W, Zhang J, Wang J, Wan F, Kim Y, Liu Y, Kou X. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Anal Chim Acta 2019; 1069:1-27. [DOI: 10.1016/j.aca.2019.04.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023]
|
5
|
Chen X, Dong T, Wei X, Yang Z, Matos Pires NM, Ren J, Jiang Z. Electrochemical methods for detection of biomarkers of Chronic Obstructive Pulmonary Disease in serum and saliva. Biosens Bioelectron 2019; 142:111453. [PMID: 31295711 DOI: 10.1016/j.bios.2019.111453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 02/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death nowadays, and its underdiagnosis is still a great challenge. More effective diagnosis method is in urgent need since the traditional spirometry has many limitations in the practical application. The electrochemical (EC) detection methods have their unique advantages of high accuracy, short response time and easy integration of the system. In this review, recent works on the EC methods for COPD biomarkers including interleukin 6 (IL-6), interleukin 8 (IL-8) and C-reactive protein (CRP) are summarized. Five types of EC methods are highlighted in this study, as enzyme-labelled immunosensors, nanoparticle-labelled immunosensors, capacitive or impedimetric immunosensors, magnetoimmunosensors, and field effect transistor (FET) immunosensors. To date, EC immunosensors have been exhibiting high analytical performance with a detection limit that can achieve several pg/mL or even lower. The simplicity of EC immunosensors makes them a perfect solution for a future point-of-care device to use in settings for COPD diagnosis and follow-up. Nevertheless, more efforts need to be paid on the simultaneous detection of multiple biomarkers, a demand for the clinical diagnosis, and processes of assay simplification towards achieving one-step detection.
Collapse
Affiliation(s)
- Xuan Chen
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway
| | - Tao Dong
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603, Kongsberg, Norway.
| | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Computer Science and Information Engineering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Juan Ren
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
6
|
Wang B, Zheng J, Ding A, Xu L, Chen J, Li CM. Highly sensitive aflatoxin B1 sensor based on DNA-guided assembly of fluorescent probe and TdT-assisted DNA polymerization. Food Chem 2019; 294:19-26. [PMID: 31126452 DOI: 10.1016/j.foodchem.2019.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022]
Abstract
A novel aptasensor, based on a perylene probe (PAPDI; N,N'-bis(propylenetrimethylammonium)-3,4,9,10-perylenediimide), was developed for the detection of aflatoxin B1 (AFB1) in maize samples. AuNPs/DNA composites were synthesized and integrated with aptamers-modified magnetic nanoparticles (MNPs) via DNA hybridization. For AFB1 determination, AuNPs/DNA composites were released from MNPs through specific binding of AFB1 with the aptamer and used for assembly of the PAPDI probe. To enhance the method sensitivity, terminal deoxynucleotidyl transferase (TdT)-catalyzed DNA polymerization was performed to elongate DNA on AuNPs/DNA composites. As a result, more PAPDI probes were assembled on the AuNPs/DNA composites. Through a multiple signal amplification strategy, the proposed method exhibited high sensitivity towards AFB1, with a detection limit of 0.01 nM (3.1 pg/mL). In summary, the proposed method has great potential to be a universal strategy for monitoring AFB1 in food samples.
Collapse
Affiliation(s)
- Bin Wang
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| | - Jiushang Zheng
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Ailing Ding
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Liqun Xu
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Jiuncun Chen
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| | - Chang Ming Li
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
7
|
A multichannel microchip containing 16 chambers packed with antibody-functionalized beads for immunofluorescence assay. Anal Bioanal Chem 2019; 411:1579-1589. [PMID: 30706077 DOI: 10.1007/s00216-019-01601-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
A multichannel chip containing 16 microchambers was developed for fast and sensitive immunoassays. In each chamber, antibody-functionalized nonmagnetic beads were applied as the solid phase to capture target antigens. Four types of IgGs (human, rabbit, chicken, and mouse) could be detected simultaneously by our combining this microchip with a sandwich immunoassay technique. A three-layer chip structure was investigated for integration of multiple processes, including washing, immune reaction, and detection, in one microchip. Moreover, the proposed chip design could improve batch-to-batch repeatability and avoid interferences between different channels without the preparation of complex microvalves. The total operation time of this system was less than 30 min, with a desirable detection limit of 0.2 pg/mL. The results indicate that the microfluidic platform is promising for the immunoassay of multiple clinical biomarkers. Graphical abstract.
Collapse
|
8
|
Jiang Y, Su Z, Zhang J, Cai M, Wu L. A novel electrochemical immunoassay for carcinoembryonic antigen based on glucose oxidase-encapsulated nanogold hollow spheres with a pH meter readout. Analyst 2018; 143:5271-5277. [PMID: 30280731 DOI: 10.1039/c8an01436a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A portable electrochemical immunosensing protocol was designed for the sensitive detection of a disease-related tumor biomarker (carcinoembryonic antigen, CEA, used in this case) on a pH meter using glucose oxidase (GOx)-encapsulated gold hollow microspheres (AuHMs) for signal amplification. The assay was carried out on a monoclonal anti-CEA capture antibody-coated microplate with a sandwich-type reaction mode. The GOx-entrapped AuHM was first synthesized using the reverse micelle method and then used as the signal-generation tag for the labeling of polyclonal anti-CEA detection antibody. Accompanying the formation of the sandwiched immunocomplexes, the loaded GOx molecules in the microsphere could catalyze glucose into gluconic acid and hydrogen peroxide. The as-produced gluconic acid changed the microenvironment of the detection solution, thus resulting in the shift of the pH value, which could be quantitatively determined on a portable pH meter. The use of gold hollow microspheres was expected to enhance the loaded amount of GOx for signal amplification. Two labeling protocols including GOx-labeled secondary antibody and GOx-AuHM-labeled secondary antibody were investigated for CEA detection, and improved analytical features were acquired with GOx-AuHM labeling. With the GOx-AuHM labeling strategy, the pH meter-based immunosensing device exhibited a good analytical performance for CEA detection within the dynamic linear range of 0.1-100 ng mL-1 at a detection limit of 0.062 ng mL-1. The strong attachment of anti-CEA antibodies to GOx-AuHM brought a good repeatability and intermediate precision down to 10%. Importantly, no significant differences at the 0.05 significance level were encountered in the analysis of 12 human serum specimens between the developed immunoassay and the commercialized electrochemiluminescent method for CEA determination.
Collapse
Affiliation(s)
- Yu Jiang
- Xiamen Maternal and Child Health Care Hospital, Xiamen, Fujian 361003, China.
| | | | | | | | | |
Collapse
|
9
|
Synthesis of multifunctional fluorescent magnetic nanoparticles for the detection of Alicyclobacillus spp. in apple juice. Food Res Int 2018; 114:104-113. [DOI: 10.1016/j.foodres.2018.07.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/28/2018] [Accepted: 07/31/2018] [Indexed: 11/24/2022]
|
10
|
Vemulapati S, Erickson D. H.E.R.M.E.S: rapid blood-plasma separation at the point-of-need. LAB ON A CHIP 2018; 18:3285-3292. [PMID: 30255899 DOI: 10.1039/c8lc00939b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The global healthcare landscape is experiencing increasing demand for CLIA-waived testing facilities that offer diagnostic capabilities at lower costs and greater convenience than traditional laboratory testing. While several new diagnostic tools have emerged to fulfill testing requirements in these environments, centrifuges have been stymied from transitioning to the point-of-need as the US Food and Drug Administration (FDA) classifies them as mostly unsuitable for use in CLIA-waived environments. Limitations in sample processing capabilities adversely affects the ability for CLIA-waived testing environments to offer a broad testing portfolio and present-day diagnostics are bottlenecked by the requirement for centrifugation. Here we present the High Efficiency Rapid Magnetic Erythrocyte Separator (H.E.R.M.E.S), a rapid low-cost technology that can perform the separation of red blood cells from plasma at a fraction of the time and cost of that of a centrifuge. We demonstrate that H.E.R.M.E.S is able to obtain highly-pure plasma (greater than 99.9% purity) at less than 2 minutes per test. Further, we detail that it is an easy-to-use method capable of being incorporated with present-day diagnostic technologies and prove that it is superior to existing alternatives to centrifugation by validation with a ferritin lateral flow test. H.E.R.M.E.S is a suitable alternative for centrifugation in point-of-need settings and aims to facilitate the decentralization of commercial blood testing.
Collapse
Affiliation(s)
- Sasank Vemulapati
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA.
| | | |
Collapse
|
11
|
Zhu F, Zhao G, Dou W. Voltammetric sandwich immunoassay for Cronobacter sakazakii using a screen-printed carbon electrode modified with horseradish peroxidase, reduced graphene oxide, thionine and gold nanoparticles. Mikrochim Acta 2017; 185:45. [PMID: 29594632 DOI: 10.1007/s00604-017-2572-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/09/2017] [Indexed: 12/22/2022]
Abstract
The authors describe a sandwich-type of electrochemical immunoassay for rapid determination of the foodborne pathogen Cronobacter sakazakii (C. sakazakii). Polyclonal antibody against C. sakazakii (anti-C. sakazakii) and horseradish peroxidase were immobilized on a nanocomposite consisting of reduced graphene oxide, thionine and gold nanoparticles (AuNPs) that was placed on a screen-printed carbon electrode (SPCE). Thionine acts as an electron mediator which also shortens the electron transfer pathway from the conjugated HRP to the electrode surface and amplifies the electrochemical signal. The AuNPs, in turn, improve the electron transfer rate and increase the surface area for capturing antibody. The morphologies of the electrodes were characterized by means of field emission scanning electron microscopy. The electrochemical performance of the immunoassay was evaluated by cyclic voltammetry and differential pulse voltammetry. Under optimal experimental conditions, the electrochemical immunoassay, best operated at a woking potential of -0.18 V (vs. Ag/AgCl) and scan rate of 20 mV/s has a linear response that covers the 8.8 × 104 to 8.8 × 108 CFU·mL-1 C. sakazakii concentration range, with a 1.0 × 104 CFU·mL-1 detection limit (at an S/N ratio of 3). The assay was applied to the detemination of C. sakazakii in spiked infant milk powder and gave recoveries ranging from 92.0 to 105.7%. Graphical abstract A sandwich-type electrochemical immunosensor was designed for C. sakazakii based on the use of rGO. TH, HRP, antibody and AuNPs were anchored on rGO. The nanocomposites were used as traces tag and H2O2 as enzyme substrates. AuNPs were modified on SPCE by electrodeposition.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
12
|
Yu YY, Chen YY, Gao X, Liu YY, Zhang HY, Wang TY. Nanoparticle based bio-bar code technology for trace analysis of aflatoxin B1 in Chinese herbs. J Food Drug Anal 2017; 26:815-822. [PMID: 29567253 PMCID: PMC9322209 DOI: 10.1016/j.jfda.2017.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
A novel and sensitive assay for aflatoxin B1 (AFB1) detection has been developed by using bio-bar code assay (BCA). The method that relies on polyclonal antibodies encoded with DNA modified gold nanoparticle (NP) and monoclonal antibodies modified magnetic microparticle (MMP), and subsequent detection of amplified target in the form of bio-bar code using a fluorescent quantitative polymerase chain reaction (FQ-PCR) detection method. First, NP probes encoded with DNA that was unique to AFB1, MMP probes with monoclonal antibodies that bind AFB1 specifically were prepared. Then, the MMP-AFB1-NP sandwich compounds were acquired, dehybridization of the oligonucleotides on the nanoparticle surface allows the determination of the presence of AFB1 by identifying the oligonucleotide sequence released from the NP through FQ-PCR detection. The bio-bar code techniques system for detecting AFB1 was established, and the sensitivity limit was about 10−8 ng/mL, comparable ELISA assays for detecting the same target, it showed that we can detect AFB1 at low attomolar levels with the bio-bar-code amplification approach. This is also the first demonstration of a bio-bar code type assay for the detection of AFB1 in Chinese herbs.
Collapse
Affiliation(s)
- Yu-yan Yu
- Corresponding author. E-mail address: (Y.-y. Yu)
| | | | | | | | | | | |
Collapse
|
13
|
Akanbi FS, Yusof NA, Abdullah J, Sulaiman Y, Hushiarian R. Detection of Quinoline in G. boninense-Infected Plants Using Functionalized Multi-Walled Carbon Nanotubes: A Field Study. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1538. [PMID: 28671561 PMCID: PMC5539608 DOI: 10.3390/s17071538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022]
Abstract
Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 μM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode.
Collapse
Affiliation(s)
- Fowotade Sulayman Akanbi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Department of Science Laboratory Technology, Hussaini Adamu Federal Polytechnic, A2 Kazaure, Nigeria.
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Yusran Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Roozbeh Hushiarian
- La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia.
| |
Collapse
|
14
|
Gonçalves AC, Luis Capelo J, Lodeiro C, Dos Santos AA. A selective emissive chromogenic and fluorogenic seleno-coumarin probe for Cu 2+ detection in aprotic media. Photochem Photobiol Sci 2017; 16:1174-1181. [PMID: 28604906 DOI: 10.1039/c7pp00036g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new selenium containing coumarin (compound 7) was designed and synthesized from the amide linkage between coumarin-519 (6) and 2-(butylselanyl)ethanamine (5). The molecular structure of 7 was accurately characterized, and its photophysical properties in acetonitrile, ethanol and chloroform solutions were studied by absorption, stationary and time-resolved fluorescence spectroscopies. Changes in the solvent polarity affected the Stokes shift, quantum yields and lifetime of the excited states. The spectroscopic behavior of compound 7 was evaluated in the presence of different monovalent, divalent and trivalent metallic cations (Na+, K+, Ca2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, Hg2+, Hg+, Ag+, Al3+, Fe3+, Ga3+ and Cr3+) in acetonitrile solution. Among the tested cations, 7 exhibited high selective interaction with Cu2+, which was evidenced by the not expected absorption hypsocromic shift (usually coumarin-519 gives red-shifted complexes) and intense chelation-enhanced fluorescence quenching (CHEQ). We performed spectrophotometric and spectrofluorimetric titrations of 7 upon addition of Cu2+. From these data, the minimal detectable and quantifiable amounts were calculated and found to be 0.2 and 0.4 μmol L-1 by absorption and 0.6 and 1.0 μmol L-1 by emission, respectively. The 7-Cu2+ compound presented the 1 : 1 stoichiometry and the stability constant values of absorption and emission were found to be log β = 5.78 and log β = 6.32 respectively. Taking into account the high selectivity of the 7-Cu2+ compound in organic solvent systems, and considering the role of copper in organic transformations, it can be regarded as a promising fluorescent sensor for studies concerning the determination of oxidation-dependent transient entities in organic reactions like those involving cuprates. Additionally, it can be used for the detection and quantification of this metal cation in vitro in aprotic biological systems.
Collapse
Affiliation(s)
- A C Gonçalves
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CxP. 26077, São Paulo, 05508-000, Brazil. and BIOSCOPE Group, UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Caparica, Universidade Nova de Lisboa, 2829-516 Portugal.
| | - J Luis Capelo
- BIOSCOPE Group, UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Caparica, Universidade Nova de Lisboa, 2829-516 Portugal. and Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516 Caparica, Portugal
| | - C Lodeiro
- BIOSCOPE Group, UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Caparica, Universidade Nova de Lisboa, 2829-516 Portugal. and Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516 Caparica, Portugal
| | - A A Dos Santos
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CxP. 26077, São Paulo, 05508-000, Brazil.
| |
Collapse
|
15
|
Zhang Y, Liao Z, Liu Y, Wan Y, Chang J, Wang H. Flow cytometric immunoassay for aflatoxin B1 using magnetic microspheres encoded with upconverting fluorescent nanocrystals. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2116-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Wang X, Niessner R, Tang D, Knopp D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta 2016; 912:10-23. [DOI: 10.1016/j.aca.2016.01.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
|
17
|
Zheng W, Teng J, Cheng L, Ye Y, Pan D, Wu J, Xue F, Liu G, Chen W. Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor. Biosens Bioelectron 2016; 80:574-581. [PMID: 26896792 DOI: 10.1016/j.bios.2016.01.091] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 01/04/2023]
Abstract
An electrochemical aptasensor for trace detection of aflatoxin B1 (AFB1) was developed by using an aptamer as the recognition unit while adopting the telomerase and EXO III based two-round signal amplification strategy as the signal enhancement units. The telomerase amplification was used to elongate the ssDNA probes on the surface of gold nanoparticles, by which the signal response range of the signal-off model electrochemical aptasensor could be correspondingly enlarged. Then, the EXO III amplification was used to hydrolyze the 3'-end of the dsDNA after the recognition of target AFB1, which caused the release of bounded AFB1 into the sensing system, where it participated in the next recognition-sensing cycle. With this two-round signal amplified electrochemical aptasensor, target AFB1 was successfully measured at trace concentrations with excellent detection limit of 0.6*10(-4)ppt and satisfied specificity due to the excellent affinity of the aptamer against AFB1. Based on this designed two-round signal amplification strategy, both the sensing range and detection limit were greatly improved. This proposed ultrasensitive electrochemical aptasensor method was also validated by comparison with the classic instrumental methods. Importantly, this hetero-enzyme based two-round signal amplified electrochemical aptasensor offers a great promising protocol for ultrasensitive detection of AFB1 and other mycotoxins by replacing the core recognition sequence of the aptamer.
Collapse
Affiliation(s)
- Wanli Zheng
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China
| | - Jun Teng
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China
| | - Lin Cheng
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China
| | - Yingwang Ye
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China
| | - Daodong Pan
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China
| | - Jingjing Wu
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China
| | - Feng Xue
- Jiangsu Entry-Exit Inspection and Quarantine Bureau, Nanjing 200002, China.
| | - Guodong Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Wei Chen
- School of Biotechnology and Food Engineering, Anhui Provincial Key Lab of Functional Materials and Devices, Hefei University of Technology, Hefei 23009, China.
| |
Collapse
|
18
|
Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B1 in maize. Biosens Bioelectron 2016; 80:222-229. [PMID: 26851579 DOI: 10.1016/j.bios.2016.01.063] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 11/24/2022]
Abstract
Gold nanoparticles (AuNPs) embedded in chitosan (CHI) film, well-dispersed and smaller in size (about 10 nm), were fabricated by one-step electrodeposion on Au microelectrode in solution containing chitosan and chloride trihydrate. The nano-structure CHI-AuNPs composite film offers abundant amine groups, good conductivity, excellent biocompatibility and stability for antibody immobilization. The combination of aflatoxin B1 (AFB1) with immobilized antibody introduces a barrier to electron transfer, resulting in current decreasement. The morphologies and characterizations of modified microelectrodes were investigated by scanning electron microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FT-IR). The proposed non-enzyme and label-free immunosensor exhibited high sensitive amperometric response to AFB1 concentration in two linear ranges of 0.1 to 1 ng mL(-1) and 1 to 30 ng mL(-1), with the detection limit of 0.06 ng mL(-1) (S/N=3). The immunoassay was also applied for analysis of maize samples spiked with AFB1. Considering the sample extraction procedure, the linear range and limit of detection were assessed to be 1.6-16 ng mL(-1) and 0.19 ng mL(-1) respectively. The simple method showed good fabrication controllability and reproducibility for immunosensor design.
Collapse
|
19
|
Emerging Nanomaterials for Analytical Detection. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Castillo G, Spinella K, Poturnayová A, Šnejdárková M, Mosiello L, Hianik T. Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.12.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Lai W, Zhuang J, Tang D. Novel colorimetric immunoassay for ultrasensitive monitoring of brevetoxin B based on enzyme-controlled chemical conversion of sulfite to sulfate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1982-1989. [PMID: 25660549 DOI: 10.1021/acs.jafc.5b00425] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A simple colorimetric immunoassay for quantitative monitoring of brevetoxin B on a functionalized magnetic bead by using glucose oxidase (GOx)/antibrevetoxin antibody-labeled gold nanoparticle as the signal transduction tag was developed. The assay was carried out on the basis of GOx-controlled sulfite-to-sulfate chemical conversion with a silver(I)-3,3',5,5'-tetramethylbenzidine [Ag(I)-TMB] system. Initially, the sulfite was used as an inhibitor of Ag(I) to hinder the color development of TMB due to the formation of insoluble silver sulfite. Accompanying H2O2 generation with GOx-catalyzed glucose, the sulfite was converted into the sulfate, thus resulting in the colorless-to-blue change. Under the optimal conditions, the absorbance decreased with increasing brevetoxin B from 0.5 to 200 ng/kg with a detection limit of 0.1 ng/kg (ppt). The precision and specificity were acceptable. Furthermore, the methodology gave results matching well with the referenced brevetoxin ELISA kit for monitoring of spiked Musculista senhousia samples.
Collapse
Affiliation(s)
- Wenqiang Lai
- State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Analysis and Detection for Food Safety (Fujian Province and Ministry of Education), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University , Fuzhou 350108, People's Republic of China
| | | | | |
Collapse
|
22
|
Wang X, Niessner R, Knopp D. Controlled growth of immunogold for amplified optical detection of aflatoxin B1. Analyst 2015; 140:1453-8. [DOI: 10.1039/c4an02281e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A simple, sensitive and cost-effective method for the analysis of the mycotoxin aflatoxin B1 (AFB1) has been established based on controlled growth of immunogold.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Hydrochemistry
- Chair for Analytical Chemistry
- Technische Universität München
- D-81377 München
- Germany
| | - Reinhard Niessner
- Institute of Hydrochemistry
- Chair for Analytical Chemistry
- Technische Universität München
- D-81377 München
- Germany
| | - Dietmar Knopp
- Institute of Hydrochemistry
- Chair for Analytical Chemistry
- Technische Universität München
- D-81377 München
- Germany
| |
Collapse
|
23
|
Magnetic bead-based colorimetric immunoassay for aflatoxin B1 using gold nanoparticles. SENSORS 2014; 14:21535-48. [PMID: 25405511 PMCID: PMC4279548 DOI: 10.3390/s141121535] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 12/16/2022]
Abstract
A competitive colorimetric immunoassay for the detection of aflatoxin B1 (AFB) has been established using biofunctionalized magnetic beads (MBs) and gold nanoparticles (GNPs). Aflatoxin B1-bovine serum albumin conjugates (AFB-BSA) modified MBs were employed as capture probe, which could specifically bind with GNP-labeled anti-AFB antibodies through immunoreaction, while such specific binding was competitively inhibited by the addition of AFB. After magnetic separation, the supernatant solution containing unbound GNPs was directly tested by UV-Vis spectroscopy. The absorption intensity was directly proportional to the AFB concentration. The influence of GNP size, incubation time and pH was investigated in detail. After optimization, the developed method could detect AFB in a linear range from 20 to 800 ng/L, with the limit of detection at 12 ng/L. The recoveries for spiked maize samples ranged from 92.8% to 122.0%. The proposed immunoassay provides a promising approach for simple, rapid, specific and cost-effective detection of toxins in the field of food safety.
Collapse
|
24
|
Graphene Oxide-Based Biosensor for Food Toxin Detection. Appl Biochem Biotechnol 2014; 174:960-70. [DOI: 10.1007/s12010-014-0965-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/15/2014] [Indexed: 01/07/2023]
|
25
|
Seia MA, Pereira SV, Fernández-Baldo MA, De Vito IE, Raba J, Messina GA. Zinc oxide nanoparticles based microfluidic immunosensor applied in congenital hypothyroidism screening. Anal Bioanal Chem 2014; 406:4677-84. [PMID: 24908405 DOI: 10.1007/s00216-014-7882-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/15/2022]
Abstract
In this article, we present an innovative approach for congenital hypothyroidism (CHT) screening. This pathology is the most common preventable cause of mental retardation, affecting newborns around the world. Its consequences could be avoided with an early diagnosis through the thyrotropin (TSH) level measurement. To accomplish the determination of TSH, synthesized zinc oxide (ZnO) nanobeads (NBs) covered by chitosan (CH), ZnO-CH NBs, were covalently attached to the central channel of the designed microfluidic device. These beads were employed as platform for anti-TSH monoclonal antibody immobilization to specifically recognize and capture TSH in neonatal samples without any special pretreatment. Afterwards, the amount of this trapped hormone was quantified by horseradish peroxidase (HRP)-conjugated anti-TSH antibody. HRP reacted with its enzymatic substrate in a redox process, which resulted in the appearance of a current whose magnitude was directly proportional to the level of TSH in the neonatal sample. The structure and morphology of synthesized ZnO-CH NBs were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The calculated detection limits for electrochemical detection and the enzyme-linked immunosorbent assay procedure were 0.00087 μUI mL(-1) and 0.015 μUI mL(-1), respectively, and the within- and between-assay coefficients of variation were below 6.31% for the proposed method. According to the cut-off value for TSH neonatal screening, a reasonably good limit of detection was achieved. These above-mentioned features make the system advantageous for routine clinical analysis adaptation.
Collapse
Affiliation(s)
- Marco A Seia
- INQUISAL, Department of Chemistry, National University of San Luis, CONICET, Chacabuco 917. D5700BWS, San Luis, Argentina
| | | | | | | | | | | |
Collapse
|
26
|
Xu W, Xiong Y, Lai W, Xu Y, Li C, Xie M. A homogeneous immunosensor for AFB1 detection based on FRET between different-sized quantum dots. Biosens Bioelectron 2014; 56:144-50. [DOI: 10.1016/j.bios.2014.01.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/24/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
|
27
|
Sierra-Rodero M, Fernández-Romero JM, Gómez-Hens A. Strategies to improve the analytical features of microfluidic methods using nanomaterials. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Song S, Liu N, Zhao Z, Njumbe Ediage E, Wu S, Sun C, De Saeger S, Wu A. Multiplex Lateral Flow Immunoassay for Mycotoxin Determination. Anal Chem 2014; 86:4995-5001. [DOI: 10.1021/ac500540z] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Suquan Song
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Na Liu
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Zhiyong Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | | | - Songling Wu
- Academy of State Administration of Grain P.R.C, No. 11 Baiwanzhuang Avenue, Xicheng
District, Beijing 100037, China
| | - Changpo Sun
- Academy of State Administration of Grain P.R.C, No. 11 Baiwanzhuang Avenue, Xicheng
District, Beijing 100037, China
| | - Sarah De Saeger
- Laboratory
of Food Analysis, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Aibo Wu
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| |
Collapse
|
29
|
Hou L, Cui Y, Xu M, Gao Z, Huang J, Tang D. Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation. Biosens Bioelectron 2013; 47:149-56. [DOI: 10.1016/j.bios.2013.02.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 02/07/2023]
|
30
|
Que X, Chen X, Fu L, Lai W, Zhuang J, Chen G, Tang D. Platinum-catalyzed hydrogen evolution reaction for sensitive electrochemical immunoassay of tetracycline residues. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Pei X, Xu Z, Zhang J, Liu Z, Tian J. Redox-active and Catalytic-efficient PAMAM Dendrimer Nanostructures for Sensing Low-abundance Protein with Signal Amplification. CHEM LETT 2013. [DOI: 10.1246/cl.130278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaomei Pei
- MOE Key Laboratory of Food Colloids and Biotechnology, School of Chemical and Material Engineering, Jiangnan University
| | - Zonghui Xu
- MOE Key Laboratory of Food Colloids and Biotechnology, School of Chemical and Material Engineering, Jiangnan University
| | - Jiayu Zhang
- MOE Key Laboratory of Food Colloids and Biotechnology, School of Chemical and Material Engineering, Jiangnan University
| | - Zhe Liu
- MOE Key Laboratory of Food Colloids and Biotechnology, School of Chemical and Material Engineering, Jiangnan University
| | - Jinnian Tian
- MOE Key Laboratory of Food Colloids and Biotechnology, School of Chemical and Material Engineering, Jiangnan University
| |
Collapse
|
32
|
Gao Z, Xu M, Hou L, Chen G, Tang D. Magnetic Bead-Based Reverse Colorimetric Immunoassay Strategy for Sensing Biomolecules. Anal Chem 2013; 85:6945-52. [DOI: 10.1021/ac401433p] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhuangqiang Gao
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Mingdi Xu
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Li Hou
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Guonan Chen
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
33
|
Electrochemical affinity biosensors for detection of mycotoxins: A review. Biosens Bioelectron 2013; 49:146-58. [PMID: 23743326 DOI: 10.1016/j.bios.2013.05.008] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 11/22/2022]
Abstract
This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago.
Collapse
|
34
|
Srivastava S, Kumar V, Ali MA, Solanki PR, Srivastava A, Sumana G, Saxena PS, Joshi AG, Malhotra BD. Electrophoretically deposited reduced graphene oxide platform for food toxin detection. NANOSCALE 2013; 5:3043-3051. [PMID: 23463146 DOI: 10.1039/c3nr32242d] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Reduced graphene oxide (RGO) due to its excellent electrochemical properties and large surface area, has recently aroused much interest for electrochemical biosensing application. Here, the chemically active RGO has been synthesized and deposited onto an indium tin oxide (ITO) coated glass substrate by the electrophoretic deposition technique. This novel platform has been utilized for covalent attachment of the monoclonal antibodies of aflatoxin B1 (anti-AFB1) for food toxin (AFB1) detection. The electron microscopy, X-ray diffraction, and UV-visible studies reveal successful synthesis of reduced graphene oxide while the XPS and FTIR studies suggest its carboxylic functionalized nature. The electrochemical sensing results of the anti-AFB1/RGO/ITO based immunoelectrode obtained as a function of aflatoxin concentration show high sensitivity (68 μA ng(-1) mL cm(-2)) and improved detection limit (0.12 ng mL(-1)). The association constant (ka) for antigen-antibody interaction obtained as 5 × 10(-4) ng mL(-1) indicates high affinity of antibodies toward the antigen (AFB1).
Collapse
Affiliation(s)
- Saurabh Srivastava
- Department of Science and Technology, Center on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110012, India
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Anfossi L, Giovannoli C, Giraudi G, Biagioli F, Passini C, Baggiani C. A lateral flow immunoassay for the rapid detection of ochratoxin A in wine and grape must. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11491-11497. [PMID: 23121293 DOI: 10.1021/jf3031666] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A one-step lateral flow immunoassay was developed for semiquantitatively detecting ochratoxin A (OTA) in wines and grape musts. Matrix-matched calibration curves carried out in blank wines showed a detection limit of 1 μg L(-1) and IC(50) of 3.2 μg L(-1). Relative standard deviations for intra- and interday precision were in the 20-40% range. A simple treatment of samples, which only included dilution with sodium bicarbonate and polyethylene glycol (4% w/v) for red and white wines and the further addition of ethanol (12% v/v) for grape musts, was established. The developed assay allowed OTA detection in 5 min and proved to be accurate and sensitive enough to allow the correct attribution of samples as compliant or noncompliant according to EU legislation. Results agreeing with those of a reference chromatographic method were obtained on 38 wines and 16 musts. Although some lateral flow devices aimed at detecting OTA have been previously described, this is the first assay capable of measuring the toxin in wine and grape must, which represent a major source of OTA dietary intake. Analytical performances of the method are comparable to or better than previously reported assays showed. In addition, the assay, including sample treatments, is extremely simple and rapid and can be effectively regarded as a one-step assay usable virtually anywhere.
Collapse
Affiliation(s)
- Laura Anfossi
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal Chim Acta 2012; 758:1-18. [PMID: 23245891 DOI: 10.1016/j.aca.2012.10.060] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 12/17/2022]
Abstract
Methods based on sandwich-type immunosensors and immunoassays have been developed for detection of multivalent antigens/analytes with more than one eptiope due to the use of two matched antibodies. High-affinity antibodies and appropriate labels are usually employed for the amplification of detectable signal. Recent research has looked to develop innovative and powerful novel nanoparticle labels, controlling and tailoring their properties in a very predictable manner to meet the requirements of specific applications. This articles reviews recent advances, exploiting nanoparticle labels, in the sandwich-type immunosensors and immunoassays. Routine approaches involve noble metal nanoparticles, carbon nanomaterials, semiconductor nanoparticles, metal oxide nanostructures, and hybrid nanostructures. The enormous signal enhancement associated with the use of nanoparticle labels and with the formation of nanoparticle-antibody-antigen assemblies provides the basis for sensitive detection of disease-related proteins or biomolecules. Techniques commonly rely on the use of biofunctionalized nanoparticles, inorganic-biological hybrid nanoparticles, and signal tag-doped nanoparticles. Rather than being exhaustive, this review focuses on selected examples to illustrate novel concepts and promising applications. Approaches described include the biofunctionalized nanoparticles, inorganic-biological hybrid nanoparticles, and signal tage-doped nanoparticles. Further, promising application in electrochemical, mass-sensitive, optical and multianalyte detection are discussed in detail.
Collapse
Affiliation(s)
- Xiaomei Pei
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | | | | | | | | | | |
Collapse
|
38
|
Liu B, Tang D, Zhang B, Que X, Yang H, Chen G. Au(III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food. Biosens Bioelectron 2012; 41:551-6. [PMID: 23058661 DOI: 10.1016/j.bios.2012.09.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 01/23/2023]
Abstract
Redox-active magnetic molecularly imprinted polymer (mMIP) nanospheres were first synthesized and functionalized with streptomycin templates for highly efficient electrochemical determination of streptomycin residues (STR) in food by coupling with bioelectrocatalytic reaction of enzymes for signal amplification. The mMIP nanospheres were synthesized by using Au(III)-promoted molecularly imprinted polymerization with STR templates on magnetic beads. Based on extraction of template molecules from the mMIP surface, the imprints toward STR templates were formed. The assay was implemented with a competitive-type assay format. Upon addition of streptomycin, the analyte competed with glucose oxidase-labeled streptomycin (GOX-STR) for molecular imprints on the mMIP nanospheres. With the increasing streptomycin in the sample, the conjugation amount of GOX-STR on the mMIP nanospheres decreased, leading to the change in the bioelectrocatalytic current relative to glucose system. Under optimal conditions, the catalytic current was proportional to STR level in the sample, and exhibited a dynamic range of 0.05-20 ng mL(-1) with a detection limit of 10 pg mL(-1) STR (at 3s(B)). Intra- and inter-assay coefficients of variation were below 12%. The assayed results for STR spiked samples including milk and honey with the mMIP-based sensor were received a good accordance with the results obtained from the referenced high-performance liquid chromatography (HPLC) method.
Collapse
Affiliation(s)
- Bingqian Liu
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Nanogold–polyaniline–nanogold microspheres-functionalized molecular tags for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Anal Chim Acta 2012; 738:76-84. [DOI: 10.1016/j.aca.2012.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 02/04/2023]
|
40
|
|
41
|
Cui Y, Chen H, Tang D, Yang H, Chen G. Au(iii)-promoted polyaniline gold nanospheres with electrocatalytic recycling of self-produced reactants for signal amplification. Chem Commun (Camb) 2012; 48:10307-9. [DOI: 10.1039/c2cc35351b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Cui Y, Tang D, Liu B, Chen H, Zhang B, Chen G. Biofunctionalized dendritic polyaniline nanofibers for sensitive electrochemical immunoassay of biomarkers. Analyst 2012; 137:1656-62. [DOI: 10.1039/c2an15848e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Liu B, Zhang B, Cui Y, Chen H, Gao Z, Tang D. Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues. ACS APPLIED MATERIALS & INTERFACES 2011; 3:4668-4676. [PMID: 22059488 DOI: 10.1021/am201087r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A facile and simple electrochemical immunoassay for ultrasensitive determination of streptomycin residues (STR) in food was designed by using nanogold-assembled mesoporous silica (GMSNs) as bionanolabels on a three-dimensional redox-active organosilica-functionalized sensing interface. To construct such a sensing interface, we initially synthesized organosilica colloids by using wet chemical method, and then utilized the prepared colloidal organosilica nanocomposites for the immobilization of monoclonal anti-STR antibodies on a glassy carbon electrode based on a sol-gel method. The bionanolabels were prepared based on coimmobilization of horseradish peroxidase (HRP) and STR-bovine serum albumin conjugates (STR-BSA) on the GMSNs. With a competitive-type immunoassay format, the assay toward STR analyte was carried out in pH 5.5 acetate acid buffer (ABS) by using redox-active organosilica nanocomposites as electron mediators, biofunctionalized GMSNs as traces, and hydrogen peroxide (H(2)O(2)) as enzyme substrate. Under optimal conditions, the reduction current of the electrochemical immunosensor decreased with the increase in STR level in the sample, and displayed a wide dynamic range of 0.05-50 ng mL(-1) with a low detection limit (LOD) of 5 pg mL(-1) at 3s(B). Intra- and interassay coefficients of variation were less than 8.7 and 9.3% for STR detection, respectively. In addition, the methodology was validated with STR spiked samples including honey, milk, kidney, and muscle, receiving a good correspondence with the results obtained from high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Bingqian Liu
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | | | | | | | | | | |
Collapse
|
44
|
Pedrero M, Campuzano S, Pingarrón JM. Magnetic Beads-Based Electrochemical Sensors Applied to the Detection and Quantification of Bioterrorism/Biohazard Agents. ELECTROANAL 2011; 24:470-482. [PMID: 32313410 PMCID: PMC7163718 DOI: 10.1002/elan.201100528] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/05/2011] [Indexed: 11/12/2022]
Abstract
Nowadays, detecting the presence of bioterrorism and biohazard agents in environmental and food samples is of great concern, due to their toxicity, and because many of them are prone to be used in terrorism attacks. The use of functionalized magnetic beads (MBs) in the development of electrochemical immuno- and genosensors has resulted in innovative and powerful detection strategies that may be applied to environmental, food and clinical analysis. This review describes current research on the combination of functionalized MBs with electrochemical detection for the development of magnetobiosensors applied to rapid, sensitive and specific detection of bioterrorism and biohazard agents.
Collapse
Affiliation(s)
- María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
45
|
Multiarmed star-like platinum nanowires with multienzyme assembly for direct electronic determination of carcinoembryoninc antigen in serum. Biosens Bioelectron 2011; 30:229-34. [PMID: 21982336 DOI: 10.1016/j.bios.2011.09.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/10/2011] [Accepted: 09/15/2011] [Indexed: 12/14/2022]
Abstract
A new electrochemical immunoassay strategy for direct detection of carcinoembryoninc antigen (CEA) in serum was developed by using multiarmed star-like platinum nanowires (PtNWs) with biomolecular assembly as signal tags on an anti-CEA-functionalized graphene sensing platform. Initially, the PtNWs were synthesized via a wet chemical method, and then the synthesized PtNWs were used for the co-immobilization of CEA and horseradish peroxidase (HRP). Compared with platinum nanoparticles, the prepared PtNWs could provide a large room for the conjugation of HRP and CEA. With a competitive-type immunoassay format, the assay was performed in two types of supporting electrolytes including new born cattle serum (NBCS) and acetate buffer solution (ABS, pH 5.5), respectively. Similar detection limit (LOD) of 5.0 pg mL(-1) vs. 1.0 pg mL(-1) but narrower dynamic working linear range of 0.01-60 ng mL(-1) vs. 0.002-80 ng mL(-1) was obtained toward CEA standards in the NBCS compared to the ABS. The intra-assay coefficients of variation (CVs) were 4.3%, 8.6%, and 6.2% at 0.05, 10, and 40 ng mL(-1) CEA, respectively, while the inter-assay CVs were 7.6%, 10.5%, and 8.9% at the above-mentioned levels, respectively. In addition, the selectivity and stability of the electrochemical immunosensor were acceptable. Importantly, the developed method was used to assay clinical serum specimens, receiving a good relation with those obtained from the referenced method.
Collapse
|
46
|
Gold–silver–graphene hybrid nanosheets-based sensors for sensitive amperometric immunoassay of alpha-fetoprotein using nanogold-enclosed titania nanoparticles as labels. Anal Chim Acta 2011; 692:116-24. [DOI: 10.1016/j.aca.2011.02.061] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 01/07/2023]
|
47
|
Carbon nanotube-based symbiotic coaxial nanocables with nanosilica and nanogold particles as labels for electrochemical immunoassay of carcinoembryonic antigen in biological fluids. Talanta 2011; 84:538-46. [DOI: 10.1016/j.talanta.2011.01.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/16/2011] [Accepted: 01/25/2011] [Indexed: 02/03/2023]
|
48
|
Schirhagl R, Latif U, Dickert FL. Atrazine detection based on antibody replicas. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11576f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Tang D, Tang J, Su B, Chen G. Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:10824-10830. [PMID: 20873791 DOI: 10.1021/jf102326m] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A new sandwich-type electrochemical immunoassay for ultrasensitive detection of staphylococcal enterotoxin B (SEB) in food was developed using horseradish peroxidase-nanosilica-doped multiwalled carbon nanotubes (HRPSiCNTs) for signal amplification. Rabbit polyclonal anti-SEB antibodies immobilized on the screen-printed carbon electrode (SPCE) and covalently bound to the HRPSiCNTs were used as capture antibodies and detection antibodies, respectively. In the presence of SEB analyte, the sandwich-type immunocomplex could be formed between the immobilized anti-SEB on the SPCE and anti-SEB-labeled HRPSiCNTs, and the carried HRP could catalyze the electrochemical reduction of H2O2 with the help of thionine. The high content of HRP in the HRPSiCNTs could greatly amplify the electrochemical signal. Under optimal conditions, the reduction current increased with the increase of SEB in the sample, and exhibited a dynamic range of 0.05-15 ng/mL with a low detection limit (LOD) of 10 pg/mL SEB (at 3σ). Intra- and interassay coefficients of variation were below 10%. In addition, the assay was evaluated with SEB spiked samples including watermelon juice, soymilk, apple juice, and pork food, receiving excellent correlation with results from commercially available enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, China
| | | | | | | |
Collapse
|
50
|
Chen H, Tang J, Su B, Chen G, Huang J, Tang D. Nanogold-actuated biomimetic peroxidase for sensitized electrochemical immunoassay of carcinoembryonic antigen in human serum. Anal Chim Acta 2010; 678:169-75. [DOI: 10.1016/j.aca.2010.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 09/01/2010] [Accepted: 09/03/2010] [Indexed: 01/05/2023]
|