1
|
Elayan IA, Brown A. Non-Degenerate Two-Photon Absorption of Fluorescent Protein Chromophores. J Phys Chem A 2024; 128:7511-7523. [PMID: 39192559 DOI: 10.1021/acs.jpca.3c08402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Two-photon absorption (2PA), where a pair of photons are absorbed simultaneously, is recognized as a potent bioimaging technique, which depends on the quantified 2PA probability, defined as cross-section (σ2PA). The absorbed photons either have equivalent (ω1 = ω2) or different frequencies (ω1 ≠ ω2), where the former is degenerate 2PA (D-2PA) and the latter is nondegenerate 2PA (ND-2PA). ND-2PA is of particular interest since it is a promising imaging technology with flexibility of photon frequencies and enhanced cross sections, however, it remains a relatively unexplored area compared to D-2PA. This work utilizes time-dependent density functional theory (TD-DFT) and second-order approximate coupled-cluster with the resolution-of-identity approximation (RI-CC2), for the excitation from S0 to S1, to investigate σD-2PA and σND-2PA of FP chromophore models. Interestingly, comparing CAM-B3LYP with the RI-CC2 computations shows qualitative and, in fact, near quantitative agreement in the computed improvements of σND-2PA for comparable (relative) frequency detunings, despite the known underestimations of 2PA cross sections, for TD-DFT results relative to RI-CC2 values. As expected from the 2-state model, the computed values of σND-2PA are quantitatively larger than σD-2PA, where chromophores with the largest values of σD-2PA show greater potential for σND-2PA improvement. Anionic chromophores demonstrated improvements up to 14%, while substantial enhancements were observed in neutral chromophores with some achieving a 30% increase. This work investigates the ND-2PA photophysical characteristics of FP chromophores and identifies qualitative patterns in the computed properties of ND-2PA relative to D-2PA.
Collapse
Affiliation(s)
- Ismael A Elayan
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
2
|
Hellweg L, Pfeifer M, Tarnawski M, Thing-Teoh S, Chang L, Bergner A, Kress J, Hiblot J, Wiedmer T, Superti-Furga G, Reinhardt J, Johnsson K, Leippe P. AspSnFR: A genetically encoded biosensor for real-time monitoring of aspartate in live cells. Cell Chem Biol 2024; 31:1529-1541.e12. [PMID: 38806058 DOI: 10.1016/j.chembiol.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/11/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Aspartate is crucial for nucleotide synthesis, ammonia detoxification, and maintaining redox balance via the malate-aspartate-shuttle (MAS). To disentangle these multiple roles of aspartate metabolism, tools are required that measure aspartate concentrations in real time and in live cells. We introduce AspSnFR, a genetically encoded green fluorescent biosensor for intracellular aspartate, engineered through displaying and screening biosensor libraries on mammalian cells. In live cells, AspSnFR is able to precisely and quantitatively measure cytosolic aspartate concentrations and dissect its production from glutamine. Combining high-content imaging of AspSnFR with pharmacological perturbations exposes differences in metabolic vulnerabilities of aspartate levels based on nutrient availability. Further, AspSnFR facilitates tracking of aspartate export from mitochondria through SLC25A12, the MAS' key transporter. We show that SLC25A12 is a rapidly responding and direct route to couple Ca2+ signaling with mitochondrial aspartate export. This establishes SLC25A12 as a crucial link between cellular signaling, mitochondrial respiration, and metabolism.
Collapse
Affiliation(s)
- Lars Hellweg
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; Heidelberg University, Heidelberg, Germany
| | - Martin Pfeifer
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Shao Thing-Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lena Chang
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Andrea Bergner
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jana Kress
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jürgen Reinhardt
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Philipp Leippe
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
3
|
DʼEste E, Lukinavičius G, Lincoln R, Opazo F, Fornasiero EF. Advancing cell biology with nanoscale fluorescence imaging: essential practical considerations. Trends Cell Biol 2024; 34:671-684. [PMID: 38184400 DOI: 10.1016/j.tcb.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Recently, biologists have gained access to several far-field fluorescence nanoscopy (FN) technologies that allow the observation of cellular components with ~20 nm resolution. FN is revolutionizing cell biology by enabling the visualization of previously inaccessible subcellular details. While technological advances in microscopy are critical to the field, optimal sample preparation and labeling are equally important and often overlooked in FN experiments. In this review, we provide an overview of the methodological and experimental factors that must be considered when performing FN. We present key concepts related to the selection of affinity-based labels, dyes, multiplexing, live cell imaging approaches, and quantitative microscopy. Consideration of these factors greatly enhances the effectiveness of FN, making it an exquisite tool for numerous biological applications.
Collapse
Affiliation(s)
- Elisa DʼEste
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
| | - Gražvydas Lukinavičius
- Chromatin Labelling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
| | - Richard Lincoln
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen (UMG), Göttingen 37073, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center, Göttingen 37075, Germany; NanoTag Biotechnologies GmbH, Göttingen 37079, Germany.
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen (UMG), Göttingen 37073, Germany; Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| |
Collapse
|
4
|
Bhutani G, Verma P, Paul S, Dhamija S, Chattopadhyay K, De AK. Elucidating photocycle in large Stokes shift red fluorescent proteins: Focus on mKeima. Photochem Photobiol 2024; 100:897-909. [PMID: 38752609 DOI: 10.1111/php.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 07/30/2024]
Abstract
Large Stokes shift red fluorescent proteins (LSS-RFPs) are genetically encoded and exhibit a significant difference of a few hundreds of nanometers between their excitation and emission peak maxima (i.e., the Stokes shift). These LSS-RFPs (absorbing blue light and emitting red light) feature a unique photocycle responsible for their significant Stokes shift. The photocycle associated with this LSS characteristic in certain RFPs is quite perplexing, hinting at the complex nature of excited-state photophysics. This article provides a brief review on the fundamental mechanisms governing the photocycle of various LSS-RFPs, followed by a discussion on experimental results on mKeima emphasizing its relaxation pathways which garnered attention due to its >200 nm Stokes shift. Corroborating steady-state spectroscopy with computational studies, four different forms of chromophore of mKeima contributing to the cis-trans conformers of the neutral and anionic forms were identified in a recent study. Furthering these findings, in this account a detailed discussion on the photocycle of mKeima, which encompasses sequential excited-state isomerization, proton transfer, and subsequent structural reorganization involving three isomers, leading to an intriguing temperature and pH-dependent dual fluorescence, is explored using broadband femtosecond transient absorption spectroscopy.
Collapse
Affiliation(s)
- Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Pratima Verma
- Cytolysin Study Group, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Sasthi Paul
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Shaina Dhamija
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Kausik Chattopadhyay
- Cytolysin Study Group, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
5
|
Baxter J, Hutchison CD, Fadini A, Maghlaoui K, Cordon-Preciado V, Morgan RML, Agthe M, Horrell S, Tellkamp F, Mehrabi P, Pfeifer Y, Müller-Werkmeister HM, von Stetten D, Pearson AR, van Thor JJ. Power Density Titration of Reversible Photoisomerization of a Fluorescent Protein Chromophore in the Presence of Thermally Driven Barrier Crossing Shown by Quantitative Millisecond Serial Synchrotron X-ray Crystallography. J Am Chem Soc 2024; 146:16394-16403. [PMID: 38848551 PMCID: PMC11191680 DOI: 10.1021/jacs.3c12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
We present millisecond quantitative serial X-ray crystallography at 1.7 Å resolution demonstrating precise optical control of reversible population transfer from Trans-Cis and Cis-Trans photoisomerization of a reversibly switchable fluorescent protein, rsKiiro. Quantitative results from the analysis of electron density differences, extrapolated structure factors, and occupancy refinements are shown to correspond to optical measurements of photoinduced population transfer and have sensitivity to a few percent in concentration differences. Millisecond time-resolved concentration differences are precisely and reversibly controlled through intense continuous wave laser illuminations at 405 and 473 nm for the Trans-to-Cis and Cis-to-Trans reactions, respectively, while the X-ray crystallographic measurement and laser illumination of the metastable Trans chromophore conformation causes partial thermally driven reconversion across a 91.5 kJ/mol thermal barrier from which a temperature jump between 112 and 128 K is extracted.
Collapse
Affiliation(s)
- James
M. Baxter
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | | | - Alisia Fadini
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Karim Maghlaoui
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | | | - R. Marc L. Morgan
- Center
for Structural Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - Michael Agthe
- European
Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| | - Sam Horrell
- Department
of Physics, Center for Free-Electron Laser Science, Institute for
Nanostructure and Solid State Physics, University
of Hamburg, Hamburg 22607, Germany
| | - Friedjof Tellkamp
- Scientific
Support Unit Machine Physics, Max-Planck-Institute
for Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - Pedram Mehrabi
- Max
Planck Institute for the Structure and Dynamics of Matter, CFEL, Hamburg 22607, Germany
| | - Yannik Pfeifer
- Institute
of Chemistry—Physical Chemistry, University of Potsdam, Potsdam 14469, Germany
| | | | - David von Stetten
- European
Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| | - Arwen R. Pearson
- Institute
for Nanostructure and Solid State Physics & The Hamburg Centre
for Ultrafast Imaging, HARBOR, Universität
Hamburg, Hamburg 22607, Germany
| | - Jasper J. van Thor
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
6
|
Anderson NT, Xie JS, Chacko AN, Liu VL, Fan KC, Mukherjee A. Rational Design of a Circularly Permuted Flavin-Based Fluorescent Protein. Chembiochem 2024; 25:e202300814. [PMID: 38356332 PMCID: PMC11065581 DOI: 10.1002/cbic.202300814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Flavin-based fluorescent proteins are oxygen-independent reporters that hold great promise for imaging anaerobic and hypoxic biological systems. In this study, we explored the feasibility of applying circular permutation, a valuable method for the creation of fluorescent sensors, to flavin-based fluorescent proteins. We used rational design and structural data to identify a suitable location for circular permutation in iLOV, a flavin-based reporter derived from A. thaliana. However, relocating the N- and C-termini to this position resulted in a significant reduction in fluorescence. This loss of fluorescence was reversible, however, by fusing dimerizing coiled coils at the new N- and C-termini to compensate for the increase in local chain entropy. Additionally, by inserting protease cleavage sites in circularly permuted iLOV, we developed two protease sensors and demonstrated their application in mammalian cells. In summary, our work establishes the first approach to engineer circularly permuted FbFPs optimized for high fluorescence and further showcases the utility of circularly permuted FbFPs to serve as a scaffold for sensor engineering.
Collapse
Affiliation(s)
| | - Jason S. Xie
- Department of Molecular, Cellular, and Developmental Biology
| | | | - Vannie L. Liu
- Department of Molecular, Cellular, and Developmental Biology
| | | | | |
Collapse
|
7
|
Pan T, Su L, Zhang Y, Xu L, Chen Y. Advances in Bio-Optical Imaging Systems for Spatiotemporal Monitoring of Intestinal Bacteria. Mol Nutr Food Res 2024; 68:e2300760. [PMID: 38491399 DOI: 10.1002/mnfr.202300760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Indexed: 03/18/2024]
Abstract
Vast and complex intestinal communities are regulated and balanced through interactions with their host organisms, and disruption of gut microbial balance can cause a variety of diseases. Studying the mechanisms of pathogenic intestinal flora in the host and early detection of bacterial translocation and colonization can guide clinical diagnosis, provide targeted treatments, and improve patient prognosis. The use of in vivo imaging techniques to track microorganisms in the intestine, and study structural and functional changes of both cells and proteins, may clarify the governing equilibrium between the flora and host. Despite the recent rapid development of in vivo imaging of intestinal microecology, determining the ideal methodology for clinical use remains a challenge. Advances in optics, computer technology, and molecular biology promise to expand the horizons of research and development, thereby providing exciting opportunities to study the spatio-temporal dynamics of gut microbiota and the origins of disease. Here, this study reviews the characteristics and problems associated with optical imaging techniques, including bioluminescence, conventional fluorescence, novel metabolic labeling methods, nanomaterials, intelligently activated imaging agents, and photoacoustic (PA) imaging. It hopes to provide a valuable theoretical basis for future bio-intelligent imaging of intestinal bacteria.
Collapse
Affiliation(s)
- Tongtong Pan
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Ouhai District, Wenzhou, Zhejiang, 325035, China
| | - Lihuang Su
- The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, 325035, China
| | - Yiying Zhang
- Alberta Institute, Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, 325035, China
| | - Liang Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Ouhai District, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
8
|
Nassauer L, Staecker H, Huang P, Renslo B, Goblet M, Harre J, Warnecke A, Schott JW, Morgan M, Galla M, Schambach A. Protection from cisplatin-induced hearing loss with lentiviral vector-mediated ectopic expression of the anti-apoptotic protein BCL-XL. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102157. [PMID: 38450280 PMCID: PMC10915631 DOI: 10.1016/j.omtn.2024.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
Cisplatin is a highly effective chemotherapeutic agent, but it can cause sensorineural hearing loss (SNHL) in patients. Cisplatin-induced ototoxicity is closely related to the accumulation of reactive oxygen species (ROS) and subsequent death of hair cells (HCs) and spiral ganglion neurons (SGNs). Despite various strategies to combat ototoxicity, only one therapeutic agent has thus far been clinically approved. Therefore, we have developed a gene therapy concept to protect cochlear cells from cisplatin-induced toxicity. Self-inactivating lentiviral (LV) vectors were used to ectopically express various antioxidant enzymes or anti-apoptotic proteins to enhance the cellular ROS scavenging or prevent apoptosis in affected cell types. In direct comparison, anti-apoptotic proteins mediated a stronger reduction in cytotoxicity than antioxidant enzymes. Importantly, overexpression of the most promising candidate, Bcl-xl, achieved an up to 2.5-fold reduction in cisplatin-induced cytotoxicity in HEI-OC1 cells, phoenix auditory neurons, and primary SGN cultures. BCL-XL protected against cisplatin-mediated tissue destruction in cochlear explants. Strikingly, in vivo application of the LV BCL-XL vector improved hearing and increased HC survival in cisplatin-treated mice. In conclusion, we have established a preclinical gene therapy approach to protect mice from cisplatin-induced ototoxicity that has the potential to be translated to clinical use in cancer patients.
Collapse
Affiliation(s)
- Larissa Nassauer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Peixin Huang
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Bryan Renslo
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Madeleine Goblet
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Jennifer Harre
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Hannover Medical School, 30625 Hannover, Germany
| | - Juliane W. Schott
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Eastman P, Galvelis R, Peláez RP, Abreu CRA, Farr SE, Gallicchio E, Gorenko A, Henry MM, Hu F, Huang J, Krämer A, Michel J, Mitchell JA, Pande VS, Rodrigues JPGLM, Rodriguez-Guerra J, Simmonett AC, Singh S, Swails J, Turner P, Wang Y, Zhang I, Chodera JD, De Fabritiis G, Markland TE. OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials. J Phys Chem B 2024; 128:109-116. [PMID: 38154096 PMCID: PMC10846090 DOI: 10.1021/acs.jpcb.3c06662] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Machine learning plays an important and growing role in molecular simulation. The newest version of the OpenMM molecular dynamics toolkit introduces new features to support the use of machine learning potentials. Arbitrary PyTorch models can be added to a simulation and used to compute forces and energy. A higher-level interface allows users to easily model their molecules of interest with general purpose, pretrained potential functions. A collection of optimized CUDA kernels and custom PyTorch operations greatly improves the speed of simulations. We demonstrate these features in simulations of cyclin-dependent kinase 8 (CDK8) and the green fluorescent protein chromophore in water. Taken together, these features make it practical to use machine learning to improve the accuracy of simulations with only a modest increase in cost.
Collapse
Affiliation(s)
- Peter Eastman
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Raimondas Galvelis
- Acellera Labs, C Dr Trueta 183, 08005, Barcelona, Spain
- Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Raúl P. Peláez
- Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Charlles R. A. Abreu
- Chemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 68542, Brazil
- Redesign Science Inc., 180 Varick St., New York, NY 10014, USA
| | - Stephen E. Farr
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, United Kingdom
| | - Emilio Gallicchio
- Department of Chemistry and Biochemistry, Brooklyn College of the City University of New York, NY, USA
- Ph.D. Program in Chemistry and Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Anton Gorenko
- Stream HPC, Koningin Wilhelminaplein 1 - 40601, 1062 HG Amsterdam, Netherlands
| | - Michael M. Henry
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065, USA
| | - Frank Hu
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Andreas Krämer
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany
| | - Julien Michel
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, United Kingdom
| | - Joshua A. Mitchell
- The Open Force Field Initiative, Open Molecular Software Foundation, Davis, CA 95616, USA
| | - Vijay S. Pande
- Andreessen Horowitz, 2865 Sand Hill Rd, Menlo Park, CA 94025, USA
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - João PGLM Rodrigues
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Jaime Rodriguez-Guerra
- Charité Universitätsmedizin Berlin In silico Toxicology and Structural Bioinformatics, Virchowweg 6, 10117 Berlin, Germany
| | - Andrew C. Simmonett
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sukrit Singh
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065, USA
| | - Jason Swails
- Entos Inc., 9310 Athena Circle, La Jolla, CA 92037, USA
| | - Philip Turner
- College of Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Yuanqing Wang
- Simons Center for Computational Physical Chemistry and Center for Data Science, New York University, 24 Waverly Place, New York, NY 10004, USA
| | - Ivy Zhang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - John D. Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065, USA
| | - Gianni De Fabritiis
- Acellera Labs, C Dr Trueta 183, 08005, Barcelona, Spain
- Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr. Aiguader 88, 08003, Barcelona, Spain
- ICREA, Passeig Lluis Companys 23, 08010, Barcelona, Spain
| | | |
Collapse
|
10
|
Shi Y, Ma L, Zhou M, He Z, Zhao Y, Hong J, Zou X, Zhang L, Shu L. Copper stress shapes the dynamic behavior of amoebae and their associated bacteria. THE ISME JOURNAL 2024; 18:wrae100. [PMID: 38848278 PMCID: PMC11197307 DOI: 10.1093/ismejo/wrae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
Amoeba-bacteria interactions are prevalent in both natural ecosystems and engineered environments. Amoebae, as essential consumers, hold significant ecological importance within ecosystems. Besides, they can establish stable symbiotic associations with bacteria. Copper plays a critical role in amoeba predation by either killing or restricting the growth of ingested bacteria in phagosomes. However, certain symbiotic bacteria have evolved mechanisms to persist within the phagosomal vacuole, evading antimicrobial defenses. Despite these insights, the impact of copper on the symbiotic relationships between amoebae and bacteria remains poorly understood. In this study, we investigated the effects of copper stress on amoebae and their symbiotic relationships with bacteria. Our findings revealed that elevated copper concentration adversely affected amoeba growth and altered cellular fate. Symbiont type significantly influenced the responses of the symbiotic relationships to copper stress. Beneficial symbionts maintained stability under copper stress, but parasitic symbionts exhibited enhanced colonization of amoebae. Furthermore, copper stress favored the transition of symbiotic relationships between amoebae and beneficial symbionts toward the host's benefit. Conversely, the pathogenic effects of parasitic symbionts on hosts were exacerbated under copper stress. This study sheds light on the intricate response mechanisms of soil amoebae and amoeba-bacteria symbiotic systems to copper stress, providing new insights into symbiotic dynamics under abiotic factors. Additionally, the results underscore the potential risks of copper accumulation in the environment for pathogen transmission and biosafety.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanchen Zhao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Junyue Hong
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Grigorenko BL, Khrenova MG, Jones DD, Nemukhin AV. Histidine-assisted reduction of arylnitrenes upon photo-activation of phenyl azide chromophores in GFP-like fluorescent proteins. Org Biomol Chem 2024; 22:337-347. [PMID: 38063860 DOI: 10.1039/d3ob01450a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The photochemically active sites of the proteins sfGFP66azF and Venus66azF, members of the green fluorescent protein (GFP) family, contain a non-canonical amino acid residue p-azidophenylalanine (azF) instead of Tyr66. The light-induced decomposition of azF at these sites leads to the formation of reactive arylnitrene (nF) intermediates followed by the formation of phenylamine-containing chromophores. We report the first study of the reaction mechanism of the reduction of the arylnitrene intermediates in sfGFP66nF and Venus66nF using molecular modeling methods. The Gibbs energy profiles for the elementary steps of the chemical reaction in sfGFP66nF are computed using molecular dynamics simulations with quantum mechanics/molecular mechanics (QM/MM) potentials. Structures and energies along the reaction pathway in Venus66nF are evaluated using a QM/MM approach. According to the results of the simulations, arylnitrene reduction is coupled with oxidation of the histidine side chain on the His148 residue located near the chromophore.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation.
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Maria G Khrenova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation.
- Bach Institute of Biochemistry, Moscow, Russian Federation
| | - D Dafydd Jones
- School of Biosciences, Molecular Biosciences Division, Cardiff University, Cardiff, UK
| | - Alexander V Nemukhin
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russian Federation.
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
12
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
13
|
Wang Y, Zhao Y, Li Y, Zhang K, Fan Y, Li B, Su W, Li S. piggyBac-mediated genomic integration of linear dsDNA-based library for deep mutational scanning in mammalian cells. Cell Mol Life Sci 2023; 80:321. [PMID: 37815732 PMCID: PMC11071730 DOI: 10.1007/s00018-023-04976-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Deep mutational scanning (DMS) makes it possible to perform massively parallel quantification of the relationship between genetic variants and phenotypes of interest. However, the difficulties in introducing large variant libraries into mammalian cells greatly hinder DMS under physiological states. Here, we developed two novel strategies for DMS library construction in mammalian cells, namely 'piggyBac-in vitro ligation' and 'piggyBac-in vitro ligation-PCR'. For the first strategy, we took the 'in vitro ligation' approach to prepare high-diversity linear dsDNAs, and integrate them into the mammalian genome with a piggyBac transposon system. For the second strategy, we further added a PCR step using the in vitro ligation dsDNAs as templates, for the construction of high-content genome-integrated libraries via large-scale transfection. Both strategies could successfully establish genome-integrated EGFP-chromophore-randomized libraries in HEK293T cells and enrich the green fluorescence-chromophore amino-acid sequences. And we further identified a novel transcriptional activator peptide with the 'piggyBac-in vitro ligation-PCR' strategy. Our novel strategies greatly facilitate the construction of large variant DMS library in mammalian cells, and may have great application potential in the future.
Collapse
Affiliation(s)
- Yi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanjie Zhao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yifan Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Kaili Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yan Fan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
14
|
Mo Y, Zhou H, Xu J, Chen X, Li L, Zhang S. Genetically encoded fluorescence lifetime biosensors: overview, advances, and opportunities. Analyst 2023; 148:4939-4953. [PMID: 37721109 DOI: 10.1039/d3an01201h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) are powerful tools for tracking analytes and cellular events with high spatial and temporal resolution in living cells and organisms. Compared with intensiometric readout and ratiometric readout, fluorescence lifetime readout provides absolute measurements, independent of the biosensor expression level and instruments. Thus, genetically encoded fluorescence lifetime biosensors play a vital role in facilitating accurate quantitative assessments within intricate biological systems. In this review, we first provide a concise description of the categorization and working mechanism of genetically encoded fluorescence lifetime biosensors. Subsequently, we elaborate on the combination of the fluorescence lifetime imaging technique and lifetime analysis methods with fluorescence lifetime biosensors, followed by their application in monitoring the dynamics of environment parameters, analytes and cellular events. Finally, we discuss worthwhile considerations for the design, optimization and development of fluorescence lifetime-based biosensors from three representative cases.
Collapse
Affiliation(s)
- Yidan Mo
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Xihang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Lei Li
- School of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Institute of Physics at NYU Shanghai, No. 3663, North Zhongshan Rd, Shanghai 200062, China.
| |
Collapse
|
15
|
Das S, Singh A, Shah P. Evaluating single-cell variability in proteasomal decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554358. [PMID: 37662347 PMCID: PMC10473619 DOI: 10.1101/2023.08.22.554358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Gene expression is a stochastic process that leads to variability in mRNA and protein abundances even within an isogenic population of cells grown in the same environment. This variation, often called gene-expression noise, has typically been attributed to transcriptional and translational processes while ignoring the contributions of protein decay variability across cells. Here we estimate the single-cell protein decay rates of two degron GFPs in Saccharomyces cerevisiae using time-lapse microscopy. We find substantial cell-to-cell variability in the decay rates of the degron GFPs. We evaluate cellular features that explain the variability in the proteasomal decay and find that the amount of 20s catalytic beta subunit of the proteasome marginally explains the observed variability in the degron GFP half-lives. We propose alternate hypotheses that might explain the observed variability in the decay of the two degron GFPs. Overall, our study highlights the importance of studying the kinetics of the decay process at single-cell resolution and that decay rates vary at the single-cell level, and that the decay process is stochastic. A complex model of decay dynamics must be included when modeling stochastic gene expression to estimate gene expression noise.
Collapse
Affiliation(s)
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Biomedical Engineering, University of Delaware
| | | |
Collapse
|
16
|
Wan C, Zhang H, Cheng H, Sowden RG, Cai W, Jarvis RP, Ling Q. Selective autophagy regulates chloroplast protein import and promotes plant stress tolerance. EMBO J 2023; 42:e112534. [PMID: 37248861 PMCID: PMC10350842 DOI: 10.15252/embj.2022112534] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/26/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Chloroplasts are plant organelles responsible for photosynthesis and environmental sensing. Most chloroplast proteins are imported from the cytosol through the translocon at the outer envelope membrane of chloroplasts (TOC). Previous work has shown that TOC components are regulated by the ubiquitin-proteasome system (UPS) to control the chloroplast proteome, which is crucial for the organelle's function and plant development. Here, we demonstrate that the TOC apparatus is also subject to K63-linked polyubiquitination and regulation by selective autophagy, potentially promoting plant stress tolerance. We identify NBR1 as a selective autophagy adaptor targeting TOC components, and mediating their relocation into vacuoles for autophagic degradation. Such selective autophagy is shown to control TOC protein levels and chloroplast protein import and to influence photosynthetic activity as well as tolerance to UV-B irradiation and heat stress in Arabidopsis plants. These findings uncover the vital role of selective autophagy in the proteolytic regulation of specific chloroplast proteins, and how dynamic control of chloroplast protein import is critically important for plants to cope with challenging environments.
Collapse
Affiliation(s)
- Chen Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Hongying Cheng
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Robert G Sowden
- Department of Plant Sciences and Section of Molecular Plant Biology (Department of Biology)University of OxfordOxfordUK
| | - Wenjuan Cai
- Core Facility Center, CAS Centre for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - R Paul Jarvis
- Department of Plant Sciences and Section of Molecular Plant Biology (Department of Biology)University of OxfordOxfordUK
| | - Qihua Ling
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
17
|
He C, Peng J, Li Z, Yang Q, Zhang Y, Luo X, Liu Z, Feng G, Fang J. Engineering a Red Fluorescent Protein Chromophore for Visualization of RNA G-Quadruplexes. Biochemistry 2023. [PMID: 37376793 DOI: 10.1021/acs.biochem.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Synthetic red fluorescent protein (RFP) chromophores have emerged as valuable tools for biological imaging and therapeutic applications, but their application in the visualization of endogenous RNA G-quadruplexes (G4s) in living cells has been rarely reported so far. Here, by integrating the group of the excellent G4 dye ThT, we modulate RFP chromophores to create a novel fluorescent probe DEBIT with red emission. DEBIT selectively recognizes the G4 structure with the advantage of strong binding affinity, high selectivity, and excellent photostability. Using DEBIT as a fluorescent indicator, the real-time monitoring of RNA G4 in biological systems can be achieved. In summary, our work expands the application of synthetic RFP chromophores and provides an essential dye category to the classical G4 probes.
Collapse
Affiliation(s)
- Chang He
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiasheng Peng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Li
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qinghui Yang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Zhang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xingyu Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zekai Liu
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
18
|
Sauge-Merle S, Recuerda M, Beccia MR, Lemaire D, Cherif R, Bremond N, Merola F, Bousmah Y, Berthomieu C. Development of an Efficient FRET-Based Ratiometric Uranium Biosensor. BIOSENSORS 2023; 13:bios13050561. [PMID: 37232922 DOI: 10.3390/bios13050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The dispersion of uranium in the environment can pose a problem for the health of humans and other living organisms. It is therefore important to monitor the bioavailable and hence toxic fraction of uranium in the environment, but no efficient measurement methods exist for this. Our study aims to fill this gap by developing a genetically encoded FRET-based ratiometric uranium biosensor. This biosensor was constructed by grafting two fluorescent proteins to both ends of calmodulin, a protein that binds four calcium ions. By modifying the metal-binding sites and the fluorescent proteins, several versions of the biosensor were generated and characterized in vitro. The best combination results in a biosensor that is affine and selective for uranium compared to metals such as calcium or other environmental compounds (sodium, magnesium, chlorine). It has a good dynamic range and should be robust to environmental conditions. In addition, its detection limit is below the uranium limit concentration in drinking water defined by the World Health Organization. This genetically encoded biosensor is a promising tool to develop a uranium whole-cell biosensor. This would make it possible to monitor the bioavailable fraction of uranium in the environment, even in calcium-rich waters.
Collapse
Affiliation(s)
- Sandrine Sauge-Merle
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, 13108 Saint Paul-Lez-Durance, France
| | - Morgane Recuerda
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, 13108 Saint Paul-Lez-Durance, France
| | - Maria Rosa Beccia
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, 06108 Nice, France
| | - David Lemaire
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, 13108 Saint Paul-Lez-Durance, France
| | - Rym Cherif
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, 13108 Saint Paul-Lez-Durance, France
| | - Nicolas Bremond
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, 13108 Saint Paul-Lez-Durance, France
| | - Fabienne Merola
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Yasmina Bousmah
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Catherine Berthomieu
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, 13108 Saint Paul-Lez-Durance, France
| |
Collapse
|
19
|
Son A, Huizar Cabral V, Huang Z, Litberg TJ, Horowitz S. G-quadruplexes rescuing protein folding. Proc Natl Acad Sci U S A 2023; 120:e2216308120. [PMID: 37155907 PMCID: PMC10194009 DOI: 10.1073/pnas.2216308120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Maintaining the health of the proteome is a critical cellular task. Recently, we found G-quadruplex (G4) nucleic acids are especially potent at preventing protein aggregation in vitro and could at least indirectly improve the protein folding environment of Escherichia coli. However, the roles of G4s in protein folding were not yet explored. Here, through in vitro protein folding experiments, we discover that G4s can accelerate protein folding by rescuing kinetically trapped intermediates to both native and near-native folded states. Time-course folding experiments in E. coli further demonstrate that these G4s primarily improve protein folding quality in E. coli as opposed to preventing protein aggregation. The ability of a short nucleic acid to rescue protein folding opens up the possibility of nucleic acids and ATP-independent chaperones to play considerable roles in dictating the ultimate folding fate of proteins.
Collapse
Affiliation(s)
- Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Veronica Huizar Cabral
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Zijue Huang
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Theodore J. Litberg
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| |
Collapse
|
20
|
Peng B, Zhou JF, Ding M, Shan BQ, Chen T, Zhang K. Structural water molecules dominated p band intermediate states as a unified model for the origin on the photoluminescence emission of noble metal nanoclusters: from monolayer protected clusters to cage confined nanoclusters. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2210723. [PMID: 37205011 PMCID: PMC10187113 DOI: 10.1080/14686996.2023.2210723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
In the past several decades, noble metal nanoclusters (NMNCs) have been developed as an emerging class of luminescent materials due to their superior photo-stability and biocompatibility, but their luminous quantum yield is relatively low and the physical origin of the bright photoluminescence (PL) of NMNCs remain elusive, which limited their practical application. As the well-defined structure and composition of NMNCs have been determined, in this mini-review, the effect of each component (metal core, ligand shell and interfacial water) on their PL properties and corresponded working mechanism were comprehensively introduced, and a model that structural water molecules dominated p band intermediate state was proposed to give a unified understanding on the PL mechanism of NMNCs and a further perspective to the future developments of NMNCs by revisiting the development of our studies on the PL mechanism of NMNCs in the past decade.
Collapse
Affiliation(s)
- Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jia-Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Laboratoire de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, Lyon, France
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, PR China
- Institute of Eco-Chongming, Shanghai, China
| |
Collapse
|
21
|
Leng H, Yang J, Long L, Yan Y, Shi WJ, Zhang L, Yan JW. GFP-based red-emissive fluorescent probes for dual imaging of β-amyloid plaques and mitochondrial viscosity. Bioorg Chem 2023; 136:106540. [PMID: 37084586 DOI: 10.1016/j.bioorg.2023.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/26/2022] [Accepted: 04/09/2023] [Indexed: 04/23/2023]
Abstract
Alzheimer's disease (AD), with incurable neurodegenerative damage, has attracted growing interest in exploration of better AD biomarkers in its early diagnosis. Among various biomarkers, amyloid-β (Aβ) aggregates and mitochondrial viscosity are closely related to AD and their dual imaging might provide a potential and feasible strategy. In this work, five GFP-based red-emissive fluorescent probes were rationally designed and synthesized for selective detection of β-amyloid plaques and viscosity, among which C25e exhibited superior properties and could successfully image β-amyloid plaques and mitochondrial viscosity with different fluorescence wavelength signals "turn-on" at around 624 and 640 nm, respectively. Moreover, the staining of brain sections from a transgenic AD mouse showed that probe C25e showed higher selectivity and signal-to-noise ratio towards Aβ plaques than commercially-available Thio-S. In addition, the probe C25e was, for the first time, employed for monitoring amyloid-β induced mitochondrial viscosity changes. Therefore, this GFP-based red-emissive fluorescent probe C25e could serve as a dual-functional tool for imaging β-amyloid plaques and mitochondrial viscosity, which might provide a unique strategy for the early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Huaxiang Leng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jinrong Yang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Liansheng Long
- Department of General Surgery, General Hospital of Southern Theater Command, Guangzhou, 510010, P.R. China
| | - Yiyong Yan
- Shenzhen Bioeasy Biotechnology Co., Ltd, Shenzhen, Guangdong 510010, PR China
| | - Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Jin-Wu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
22
|
Bui TYH, De Zitter E, Moeyaert B, Pecqueur L, Srinivasu BY, Economou A, Fontecave M, Van Meervelt L, Dedecker P, Pedre B. Oxygen-induced chromophore degradation in the photoswitchable red fluorescent protein rsCherry. Int J Biol Macromol 2023; 239:124179. [PMID: 36972828 DOI: 10.1016/j.ijbiomac.2023.124179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Reversibly switchable monomeric Cherry (rsCherry) is a photoswitchable variant of the red fluorescent protein mCherry. We report that this protein gradually and irreversibly loses its red fluorescence in the dark over a period of months at 4 °C and a few days at 37 °C. We also find that its ancestor, mCherry, undergoes a similar fluorescence loss but at a slower rate. X-ray crystallography and mass spectrometry reveal that this is caused by the cleavage of the p-hydroxyphenyl ring from the chromophore and the formation of two novel types of cyclic structures at the remaining chromophore moiety. Overall, our work sheds light on a new process occurring within fluorescent proteins, further adding to the chemical diversity and versatility of these molecules.
Collapse
Affiliation(s)
- Thi Yen Hang Bui
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU, Leuven, Belgium
| | - Elke De Zitter
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Benjamien Moeyaert
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU, Leuven, Belgium
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, Collège de France, UMR 8229 CNRS, Sorbonne Université, PSL University, Paris, France
| | - Bindu Y Srinivasu
- Laboratory of Molecular Bacteriology, Rega Institute, KU, Leuven, Belgium
| | | | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, UMR 8229 CNRS, Sorbonne Université, PSL University, Paris, France
| | - Luc Van Meervelt
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU, Leuven, Belgium
| | - Peter Dedecker
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU, Leuven, Belgium.
| | - Brandán Pedre
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU, Leuven, Belgium.
| |
Collapse
|
23
|
Zhu YH, Liu XX, Fang Q, Liu XY, Fang WH, Cui G. Multiple Photoisomerization Pathways of the Green Fluorescent Protein Chromophore in a Reversibly Photoswitchable Fluorescent Protein: Insights from Quantum Mechanics/Molecular Mechanics Simulations. J Phys Chem Lett 2023; 14:2588-2598. [PMID: 36881005 DOI: 10.1021/acs.jpclett.3c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, we have employed a combined CASPT2//CASSCF approach within the quantum mechanics/molecular mechanics (QM/MM) framework to explore the early time photoisomerization of rsEGFP2 starting from its two OFF trans states, i.e., Trans1 and Trans2. The results show similar vertical excitation energies to the S1 state in their Franck-Condon regions. Considering the clockwise and counterclockwise rotations of the C11-C9 bond, four pairs of the S1 excited-state minima and low-lying S1/S0 conical intersections were optimized, based on which we determined four S1 photoisomerization paths that are essentially barrierless to the relevant S1/S0 conical intersections leading to efficient excited-state deactivation to the S0 state. Most importantly, our work first identified multiple photoisomerization and excited-state decay paths, which must be seriously considered in the future. This work not only sheds significant light on the primary trans-cis photoisomerization of rsEGFP2 but also aids in the understanding of the microscopic mechanism of GFP-like RSFPs and the design of novel GFP-like fluorescent proteins.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Xin Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Ernst M, Ozturk TN, Robertson JL. A single-molecule method for measuring fluorophore labeling yields for the study of membrane protein oligomerization in membranes. PLoS One 2023; 18:e0280693. [PMID: 36662827 PMCID: PMC9858377 DOI: 10.1371/journal.pone.0280693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Membrane proteins are often observed as higher-order oligomers, and in some cases in multiple stoichiometric forms, raising the question of whether dynamic oligomerization can be linked to modulation of function. To better understand this potential regulatory mechanism, there is an ongoing effort to quantify equilibrium reactions of membrane protein oligomerization directly in membranes. Single-molecule photobleaching analysis is particularly useful for this as it provides a binary readout of fluorophores attached to protein subunits at dilute conditions. However, any quantification of stoichiometry also critically requires knowing the probability that a subunit is fluorescently labeled. Since labeling uncertainty is often unavoidable, we developed an approach to estimate labeling yields using the photobleaching probability distribution of an intrinsic dimeric control. By iterative fitting of an experimental dimeric photobleaching probability distribution to an expected dimer model, we estimate the fluorophore labeling yields and find agreement with direct measurements of labeling of the purified protein by UV-VIS absorbance before reconstitution. Using this labeling prediction, similar estimation methods are applied to determine the dissociation constant of reactive CLC-ec1 dimerization constructs without prior knowledge of the fluorophore labeling yield. Finally, we estimate the operational range of subunit labeling yields that allows for discrimination of monomer and dimer populations across the reactive range of mole fraction densities. Thus, our study maps out a practical method for quantifying fluorophore labeling directly from single-molecule photobleaching data, improving the ability to quantify reactive membrane protein stoichiometry in membranes.
Collapse
Affiliation(s)
- Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tugba N. Ozturk
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Janice L. Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
25
|
Ahmed RD, Auhim HS, Worthy HL, Jones DD. Fluorescent Proteins: Crystallization, Structural Determination, and Nonnatural Amino Acid Incorporation. Methods Mol Biol 2023; 2564:99-119. [PMID: 36107339 DOI: 10.1007/978-1-0716-2667-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescent proteins have revolutionized cell biology and cell imaging through their use as genetically encoded tags. Structural biology has been pivotal in understanding how their unique fluorescent properties manifest through the formation of the chromophore and how the spectral properties are tuned through interaction networks. This knowledge has in turn led to the construction of novel variants with new and improved properties. Here we describe the process by which fluorescent protein structures are determined, starting from recombinant protein production to structure determination by molecular replacement. We also describe how to incorporate and determine the structures of proteins containing non-natural amino acids. Recent advances in protein engineering have led to reprogramming of the genetic code to allow incorporation of new chemistry at designed residue positions, with fluorescent proteins being at the forefront of structural studies in this area. The impact of such new chemistry on protein structure is still limited; the accumulation of more protein structures will undoubtedly improve our understanding and ability to engineer proteins with new chemical functionality.
Collapse
Affiliation(s)
- Rochelle D Ahmed
- School of Biosciences, Molecular Biosciences Division, Cardiff University, Cardiff, UK
| | - Husam Sabah Auhim
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| | | | - D Dafydd Jones
- School of Biosciences, Molecular Biosciences Division, Cardiff University, Cardiff, UK.
| |
Collapse
|
26
|
dos Santos Rodrigues FH, Delgado GG, Santana da Costa T, Tasic L. Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts. BBA ADVANCES 2023; 3:100091. [PMID: 37207090 PMCID: PMC10189374 DOI: 10.1016/j.bbadva.2023.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Emission fluorescence is one of the most versatile and powerful biophysical techniques used in several scientific subjects. It is extensively applied in the studies of proteins, their conformations, and intermolecular contacts, such as in protein-ligand and protein-protein interactions, allowing qualitative, quantitative, and structural data elucidation. This review, aimed to outline some of the most widely used fluorescence techniques in this area, illustrate their applications and display a few examples. At first, the data on the intrinsic fluorescence of proteins is disclosed, mainly on the tryptophan side chain. Predominantly, research to study protein conformational changes, protein interactions, and changes in intensities and shifts of the fluorescence emission maximums were discussed. Fluorescence anisotropy or fluorescence polarization is a measurement of the changing orientation of a molecule in space, concerning the time between the absorption and emission events. Absorption and emission indicate the spatial alignment of the molecule's dipoles relative to the electric vector of the electromagnetic wave of excitation and emitted light, respectively. In other words, if the fluorophore population is excited with vertically polarized light, the emitted light will retain some polarization based on how fast it rotates in solution. Therefore, fluorescence anisotropy can be successfully used in protein-protein interaction investigations. Then, green fluorescent proteins (GFPs), photo-transformable fluorescent proteins (FPs) such as photoswitchable and photoconvertible FPs, and those with Large Stokes Shift (LSS) are disclosed in more detail. FPs are potent tools for the study of biological systems. Their versatility and wide range of colours and properties allow many applications. Finally, the application of fluorescence in life sciences is exposed, especially the application of FPs in fluorescence microscopy techniques with super-resolution that enables precise in vivo photolabeling to monitor the movement and interactions of target proteins.
Collapse
Affiliation(s)
| | - Gonzalo Garcia Delgado
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, University of Campinas, P. O. Box 6154, Campinas 13083-970, SP, Brazil
| | - Thyerre Santana da Costa
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, University of Campinas, P. O. Box 6154, Campinas 13083-970, SP, Brazil
| | - Ljubica Tasic
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, University of Campinas, P. O. Box 6154, Campinas 13083-970, SP, Brazil
- Corresponding author: Ljubica Tasic: IQ, UNICAMP, Rua Josué de Castro sn, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
27
|
Wang J, Xia Y, Guo X. Repurposing Photosensitizer Proteins Through Genetic Code Expansion to Facilitate Photo-Biocatalysis. Methods Mol Biol 2023; 2676:41-54. [PMID: 37277623 DOI: 10.1007/978-1-0716-3251-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Artificial photoenzymes with noncanonical photo-redox cofactors have paved the way for enzyme rational design and the creation of new-to-nature biocatalysts. Genetically encoded photo-redox cofactors endow photoenzymes with enhanced or novel activities that catalyze numerous transformations with high efficiency. Herein, we describe a protocol of repurposing photosensitizer proteins (PSP) through genetic code expansion to facilitate multiple photocatalytic conversions including photo-activated dehalogenation of aryl halides, CO2 to CO and CO2 to formic acid reduction. The methods for expression, purification, and characterization of the PSP are detailed. The installation of the catalytic modules and the utilization of PSP-based artificial photoenzymes for photoenzymatic CO2 reduction and dehalogenation are also described.
Collapse
Affiliation(s)
- Jiangyun Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Yan Xia
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuzhen Guo
- CAS Key Laboratory of Quantitative Engineering Biology, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
28
|
Remeeva A, Yudenko A, Nazarenko VV, Semenov O, Smolentseva A, Bogorodskiy A, Maslov I, Borshchevskiy V, Gushchin I. Development and Characterization of Flavin-Binding Fluorescent Proteins, Part I: Basic Characterization. Methods Mol Biol 2023; 2564:121-141. [PMID: 36107340 DOI: 10.1007/978-1-0716-2667-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavin-based fluorescent proteins (FbFPs) are small fluorescent proteins derived from light-oxygen-voltage (LOV) domains. The proteins bind ubiquitous endogenous flavins as chromophores and can be used as versatile in vivo reporter proteins under aerobic and anaerobic conditions. This chapter presents the methodology to identify LOV domain sequences in genomic databases; design new FbFPs; characterize their biochemical, spectroscopic, photophysical, and photochemical properties; and conduct basic fluorescence microscopy experiments.
Collapse
Affiliation(s)
- Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasia Smolentseva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
29
|
Jiménez-Díaz E, Del-Rio D, Fiordelisio T. The Contribution of Cell Imaging to the Study of Anterior Pituitary Function and Its Regulation. Neuroendocrinology 2023; 113:179-192. [PMID: 35231920 DOI: 10.1159/000523860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022]
Abstract
Advances in the knowledge of the neuroendocrine system are closely related to the development of cellular imaging and labeling techniques. This synergy ranges from the staining techniques that allowed the first characterizations of the anterior pituitary gland, its relationship with the hypothalamus, and the birth of neuroendocrinology; through the development of fluorescence microscopy applications, specific labeling strategies, transgenic systems, and intracellular calcium sensors that enabled the study of processes and dynamics at the cellular and tissue level; until the advent of super-resolution microscopy, miniscopes, optogenetics, fiber photometry, and other imaging methods that allowed high spatiotemporal resolution and long-term three-dimensional cellular activity recordings in living systems in a conscious and freely moving condition. In this review, we briefly summarize the main contributions of cellular imaging techniques that have allowed relevant advances in the field of neuroendocrinology and paradigm shifts that have improved our understanding of the function of the hypothalamic-pituitary axes. The development of these methods and equipment is the result of the integration of knowledge achieved by the integration of several disciplines and effort to solve scientific questions and problems of high impact on health and society that this system entails.
Collapse
Affiliation(s)
- Edgar Jiménez-Díaz
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Del-Rio
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
30
|
Campisciano G, Biffi S. Microbiota in vivo imaging approaches to study host-microbe interactions in preclinical and clinical setting. Heliyon 2022; 8:e12511. [PMID: 36593827 PMCID: PMC9803719 DOI: 10.1016/j.heliyon.2022.e12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
In vivo imaging in preclinical and clinical settings can enhance knowledge of the host-microbiome interactions. Imaging techniques are a crucial node between findings at the molecular level and clinical implementation in diagnostics and therapeutics. The purpose of this study was to review existing knowledge on the microbiota in the field of in vivo imaging and provide guidance for future research, emphasizing the critical role that molecular imaging plays in increasing understanding of the host-microbe interaction. Preclinical microbiota animal models lay the foundation for the clinical translatability of novel microbiota-based therapeutics. Adopting animal models in which factors such as host genetic landscape, microbiota profile, and diet can be controlled enables investigating how the microbiota contributes to immunological dysregulation and inflammatory disorders. Current preclinical imaging of gut microbiota relies on models where the bacteria can be isolated, labelled, and re-administered. In vivo, optical imaging, ultrasound and magnetic resonance imaging define the bacteria's biodistribution in preclinical models, whereas nuclear imaging investigates bacterial metabolic activity. For the clinical investigation of microbe-host interactions, molecular nuclear imaging is increasingly becoming a promising approach. Future microbiota research should develop selective imaging probes to investigate in vivo microbiota profiles and individual strains of specific microbes. Preclinical knowledge can be translated into the molecular imaging field with great opportunities for studying the microbiome.
Collapse
Affiliation(s)
- Giuseppina Campisciano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo Via dell'Istria 65/1, 34137, Trieste, Italy
| |
Collapse
|
31
|
Deng H, Chen Y, Xu L, Mo X, Ju J, Yu C, Zhu X. A Biomimetic Emitter Inspired from Green Fluorescent Protein. J Phys Chem B 2022; 126:8771-8776. [PMID: 36278933 DOI: 10.1021/acs.jpcb.2c07131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The unique tripeptide structure of green fluorescent protein (GFP), a Ser-Tyr-Gly motif, generates the mature chromophore in situ to define the emission profiles of GFP. Here, we describe the rational design and discovery of a biomimetic fluorescent emitter, MBP, by mimicking the key structure of the Ser-Tyr-Gly motif. Through systematically tailoring the tripeptide, a family of four chromophores were engineered, while only MBP exhibited bright fluorescence in different fluid solvents with highly enhanced quantum yields. Distinct to previous hydrogen-bonding-induced fluorescence quenching of GFP chromophore analogues, the emission of MBP was only slightly decreased in protic solvents. Heteronuclear multiple bond correlation techniques demonstrated the fundamental mechanism for enhanced fluorescence emission owing to the synergy of the formation of the intramolecular hydrogen-bonding-ring structure and the self-restricted effect, which was further illustrated via theoretical calculations. This work puts forward an extraordinary approach toward highly emissive biomimicking fluorophores, which gives new insights into the emission mechanisms and photophysics of GFP-like chromophores.
Collapse
Affiliation(s)
- Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yan Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
32
|
Zhu Y, Elcin E, Jiang M, Li B, Wang H, Zhang X, Wang Z. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Front Chem 2022; 10:1018124. [PMID: 36247665 PMCID: PMC9561917 DOI: 10.3389/fchem.2022.1018124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Water contamination has become increasingly a critical global environmental issue that threatens human and ecosystems’ health. Monitoring and risk assessment of toxic pollutants in water bodies is essential to identifying water pollution treatment needs. Compared with the traditional monitoring approaches, environmental biosensing via whole-cell bioreporters (WCBs) has exhibited excellent capabilities for detecting bioavailability of multiple pollutants by providing a fast, simple, versatile and economical way for environmental risk assessment. The performance of WCBs is determined by its elements of construction, such as host strain, regulatory and reporter genes, as well as experimental conditions. Previously, numerous studies have focused on the design and construction of WCB rather than improving the detection process and commercialization of this technology. For investigators working in the environmental field, WCB can be used to detect pollutants is more important than how they are constructed. This work provides a review of the development of WCBs and a brief introduction to genetic construction strategies and aims to summarize key studies on the application of WCB technology in detection of water contaminants, including organic pollutants and heavy metals. In addition, the current status of commercialization of WCBs is highlighted.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mengyuan Jiang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
- *Correspondence: Xiaokai Zhang,
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| |
Collapse
|
33
|
Mahrou B, Pirhanov A, Alijanvand MH, Cho YK, Shin YJ. Degradation-driven protein level oscillation in the yeast Saccharomyces cerevisiae. Biosystems 2022; 219:104717. [PMID: 35690291 DOI: 10.1016/j.biosystems.2022.104717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Generating robust, predictable perturbations in cellular protein levels will advance our understanding of protein function and enable the control of physiological outcomes in biotechnology applications. Timed periodic changes in protein levels play a critical role in the cell division cycle, cellular stress response, and development. Here we report the generation of robust protein level oscillations by controlling the protein degradation rate in the yeast Saccharomyces cerevisiae. Using a photo-sensitive degron and red fluorescent proteins as reporters, we show that under constitutive transcriptional induction, repeated triangular protein level oscillations as fast as 5-10 min-scale can be generated by modulating the protein degradation rate. Consistent with oscillations generated though transcriptional control, we observed a continuous decrease in the magnitude of oscillations as the input modulation frequency increased, indicating low-pass filtering of input perturbation. By using two red fluorescent proteins with distinct maturation times, we show that the oscillations in protein level is largely unaffected by delays originating from functional protein formation. Our study demonstrates the potential for repeated control of protein levels by controlling the protein degradation rate without altering the transcription rate.
Collapse
Affiliation(s)
- Bahareh Mahrou
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA; Electrical Engineering Department, University of Connecticut, Storrs, CT, 06069, USA.
| | - Azady Pirhanov
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA
| | - Moluk Hadi Alijanvand
- Department of Epidemiology and Biostatistics, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yong Ku Cho
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA; Chemical and Biomolecular Engineering Department, University of Connecticut, Storrs, CT, 06269, USA.
| | - Yong-Jun Shin
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
34
|
Copeland CE, Kim J, Copeland PL, Heitmeier CJ, Kwon YC. Characterizing a New Fluorescent Protein for a Low Limit of Detection Sensing in the Cell-Free System. ACS Synth Biol 2022; 11:2800-2810. [PMID: 35850511 PMCID: PMC9396652 DOI: 10.1021/acssynbio.2c00180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-free protein synthesis-based biosensors have been developed as highly accurate, low-cost biosensors. However, since most biomarkers exist at low concentrations in various types of biopsies, the biosensor's dynamic range must be increased in the system to achieve low limits of detection necessary while deciphering from higher background signals. Many attempts to increase the dynamic range have relied on amplifying the input signal from the analyte, which can lead to complications of false positives. In this study, we aimed to increase the protein synthesis capability of the cell-free protein synthesis system and the output signal of the reporter protein to achieve a lower limit of detection. We utilized a new fluorescent protein, mNeonGreen, which produces a higher output than those commonly used in cell-free biosensors. Optimizations of DNA sequence and the subsequent cell-free protein synthesis reaction conditions allowed characterizing protein expression variability by given DNA template types, reaction environment, and storage additives that cause the greatest time constraint on designing the cell-free biosensor. Finally, we characterized the fluorescence kinetics of mNeonGreen compared to the commonly used reporter protein, superfolder green fluorescent protein. We expect that this finely tuned cell-free protein synthesis platform with the new reporter protein can be used with sophisticated synthetic gene circuitry networks to increase the dynamic range of a cell-free biosensor to reach lower detection limits and reduce the false-positive proportion.
Collapse
Affiliation(s)
- Caroline E Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jeehye Kim
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Pearce L Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Chloe J Heitmeier
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yong-Chan Kwon
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
35
|
Nienhaus K, Nienhaus GU. Genetically encodable fluorescent protein markers in advanced optical imaging. Methods Appl Fluoresc 2022; 10. [PMID: 35767981 DOI: 10.1088/2050-6120/ac7d3f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Optical fluorescence microscopy plays a pivotal role in the exploration of biological structure and dynamics, especially on live specimens. Progress in the field relies, on the one hand, on technical advances in imaging and data processing and, on the other hand, on progress in fluorescent marker technologies. Among these, genetically encodable fluorescent proteins (FPs) are invaluable tools, as they allow facile labeling of live cells, tissues or organisms, as these produce the FP markers all by themselves after introduction of a suitable gene. Here we cover FP markers from the GFP family of proteins as well as tetrapyrrole-binding proteins, which further complement the FP toolbox in important ways. A broad range of FP variants have been endowed, by using protein engineering, with photophysical properties that are essential for specific fluorescence microscopy techniques, notably those offering nanoscale image resolution. We briefly introduce various advanced imaging methods and show how they utilize the distinct properties of the FP markers in exciting imaging applications, with the aim to guide researchers toward the design of powerful imaging experiments that are optimally suited to address their biological questions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| |
Collapse
|
36
|
Sulatskaya AI, Stepanenko OV, Sulatsky MI, Mikhailova EV, Kuznetsova IM, Turoverov KK, Stepanenko OV. sfGFP throws light on the early stages of β-barrel amyloidogenesis. Int J Biol Macromol 2022; 215:224-234. [PMID: 35718155 DOI: 10.1016/j.ijbiomac.2022.06.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
The accumulation of β-sheet-rich protein aggregates, amyloid fibrils, accompanies severe pathologies (Alzheimer's, Parkinson's diseases, ALS, etc.). The high amyloidogenicity of proteins with a native β-barrel structure, and the amyloidogenic peptides ability to form a universal cylindrin-like oligomeric state were proven. The mechanisms for the proteins' transformation from this state to a fibrillar one are still not fully understood. We defined the structural rearrangements of the amyloidogenic β-barrel superfolder GFP (sfGFP) prior to fibrillogenesis using its tryptophan and chromophore fluorescence. We characterized the early intermediate "native-like" state preserving the integrity of the sfGFP β-barrel scaffold despite the partial distortion of the three β-strands closing it. The interaction between the "melted" regions of the protein leads to the assembly of high molecular weight complexes, which are not dynamic structures but are less stable and less cytotoxic than mature amyloids. Additional contacts of sfGFP monomers facilitate the global reorganization of its structure and stabilization of the second intermediate state in which the β-barrel opens and some of the native α-helices and disordered regions refold into non-native β-strands, which, along with native β-strands, form an amyloid fiber. Reported sfGFP structural transformations may occur during the fibrillogenesis of other β-barrel proteins, and the identified intermediate states are likely universal. Thus sfGFP can be used as a sensing platform to develop therapeutic agents inhibiting amyloidogenesis through interaction with protein intermediates and destroying low-stable aggregates formed at the early stages of fibrillogenesis.
Collapse
Affiliation(s)
- Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia
| |
Collapse
|
37
|
Cao Z, Wang L, Liu R, Lin S, Wu F, Liu J. Encoding with a fluorescence-activating and absorption-shifting tag generates living bacterial probes for mammalian microbiota imaging. Mater Today Bio 2022; 15:100311. [PMID: 35711290 PMCID: PMC9194656 DOI: 10.1016/j.mtbio.2022.100311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022] Open
Abstract
The mammalian microbiota plays essential roles in health. A primary determinant to understand the interaction with the host is the distribution and viability of its key microorganisms. Here, a strategy of encoding with a fluorescence-activating and absorption-shifting tag (FAST) is reported to prepare living bacterial probes for real-time dynamic, dual-modal, and molecular oxygen-independent imaging of the host microbiota. Carrying FAST endows bacteria with rapid on-demand turn on-off fluorescence by adding or removal of corresponding fluorogens. Encoded bacteria are able to reversibly switch emission bands for dual-color fluorescence imaging via fluorogen exchange. Due to molecular oxygen-independent emission of FAST, encoded bacteria can emit fluorescence under anaerobic environments including the gut and tumor. These living probes demonstrate the applicability to quantify the vitality of bacteria transplanted to the gut microbiota. This work proposes a unique fluorescence probe for investigating the dynamics of the host microbiota. Living bacterial probes for real-time dynamic, dual-modal, and molecular oxygen-independent imaging of mammalian microbiota. Engineered bacteria showing on-demand turn on-off fluorescence by adding or removal of corresponding fluorogens. Fluorescence emission under anaerobic in vivo environments including the gut and tumor. A fluorescence probe to determine the vitality of transplanted bacteria and investigate the dynamics of the host microbiota.
Collapse
|
38
|
Guerra P, Vuillemenot LA, Rae B, Ladyhina V, Milias-Argeitis A. Systematic In Vivo Characterization of Fluorescent Protein Maturation in Budding Yeast. ACS Synth Biol 2022; 11:1129-1141. [PMID: 35180343 PMCID: PMC8938947 DOI: 10.1021/acssynbio.1c00387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Fluorescent protein
(FP) maturation can limit the accuracy with
which dynamic intracellular processes are captured and reduce the in vivo brightness of a given FP in fast-dividing cells.
The knowledge of maturation timescales can therefore help users determine
the appropriate FP for each application. However, in vivo maturation rates can greatly deviate from in vitro estimates that are mostly available. In this work, we present the
first systematic study of in vivo maturation for
12 FPs in budding yeast. To overcome the technical limitations of
translation inhibitors commonly used to study FP maturation, we implemented
a new approach based on the optogenetic stimulations of FP expression
in cells grown under constant nutrient conditions. Combining the rapid
and orthogonal induction of FP transcription with a mathematical model
of expression and maturation allowed us to accurately estimate maturation
rates from microscopy data in a minimally invasive manner. Besides
providing a useful resource for the budding yeast community, we present
a new joint experimental and computational approach for characterizing
FP maturation, which is applicable to a wide range of organisms.
Collapse
Affiliation(s)
- Paolo Guerra
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Luc-Alban Vuillemenot
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Brady Rae
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Valeriia Ladyhina
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
39
|
Oliveira Paiva AM, Friggen AH, Douwes R, Wittekoek B, Smits WK. Practical observations on the use of fluorescent reporter systems in Clostridioides difficile. Antonie van Leeuwenhoek 2022; 115:297-323. [PMID: 35039954 DOI: 10.1007/s10482-021-01691-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
Fluorescence microscopy is a valuable tool to study a broad variety of bacterial cell components and dynamics thereof. For Clostridioides difficile, the fluorescent proteins CFPopt, mCherryOpt and phiLOV2.1, and the self-labelling tags SNAPCd and HaloTag, hereafter collectively referred as fluorescent systems, have been described to explore different cellular pathways. In this study, we sought to characterize previously used fluorescent systems in C. difficile cells. We performed single cell analyses using fluorescence microscopy of exponentially growing C. difficile cells harbouring different fluorescent systems, either expressing these separately in the cytosol or fused to the C-terminus of HupA, under defined conditions. We show that the intrinsic fluorescence of C. difficile cells increases during growth, independent of sigB or spo0A. However, when C. difficile cells are exposed to environmental oxygen autofluorescence is enhanced. Cytosolic overexpression of the different fluorescent systems alone, using the same expression signals, showed heterogeneous expression of the fluorescent systems. High levels of mCherryOpt were toxic for C. difficile cells limiting the applicability of this fluorophore as a transcriptional reporter. When fused to HupA, a C. difficile histone-like protein, the fluorescent systems behaved similarly and did not affect the HupA overproduction phenotype. The present study compares several commonly used fluorescent systems for application as transcriptional or translational reporters in microscopy and summarizes the limitations and key challenges for live-cell imaging of C. difficile. Due to independence of molecular oxygen and fluorescent signal, SNAPCd appears the most suitable candidate for live-cell imaging in C. difficile to date.
Collapse
Affiliation(s)
- Ana M Oliveira Paiva
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbial Cell Biology, Leiden, The Netherlands.,Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Annemieke H Friggen
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Microbial Cell Biology, Leiden, The Netherlands
| | - Roxanne Douwes
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert Wittekoek
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands. .,Center for Microbial Cell Biology, Leiden, The Netherlands.
| |
Collapse
|
40
|
Leng H, Wang Y, Wang J, Sun H, Sun A, Pistolozzi M, Zhang L, Yan J. Dual-Emission GFP Chromophore-Based Derivative for Imaging and Discriminating Aβ Oligomers and Aggregates. Anal Chem 2022; 94:1999-2006. [PMID: 35041386 DOI: 10.1021/acs.analchem.1c03452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
β-Amyloid deposition is one of the main pathological features of Alzheimer's disease (AD). The development of fluorescent probes targeting specific β-amyloid species has recently become an attractive strategy to achieve the early diagnosis of AD. In this work, a dual-channel fluorescent protein chromophore derivative C17 was rationally designed and synthesized for the detection and discrimination of Aβ42 aggregates and oligomers. C17 exhibits a specific turn-on emission peak for Aβ42 oligomers at ∼470 nm (peak A) and a peak at ∼600 nm (peak B) for both Aβ42 oligomers and Aβ42 aggregates. Taking advantage of the dual emission of the probe, the dynamic aggregation process of the Aβ42 peptide was monitored in solution. Moreover, double staining of brain sections from transgenic AD mice revealed that peak A of C17 preferentially detected Aβ42 oligomers, whereas peak B was more sensitive to Aβ42 aggregates. The fact that probe C17 can be used for dissecting these two Aβ42 species makes C17 a comprehensive tool for β-amyloid aggregation studies in AD research.
Collapse
Affiliation(s)
- Huaxiang Leng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuxuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Juan Wang
- Laboratory of Neurogenerative Diseases & Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai 201318, P. R. China
| | - Han Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Anyang Sun
- Laboratory of Neurogenerative Diseases & Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai 201318, P. R. China
| | - Marco Pistolozzi
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.,International School, Jinan University, 601 Huangpu Avenue West, 510632 Guangzhou, P. R. China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
41
|
Kim Y, Kang S, Lee BH, Song Y, Kang S, Park HY, Lee Y. De novo generation of a bright blue fluorophore from 2-oxoglutarate in biological samples. Chem Sci 2022; 13:365-372. [PMID: 35126969 PMCID: PMC8729799 DOI: 10.1039/d1sc05808h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
We discovered the generation of a new bright blue fluorophore from a particular type of amine and 2-oxoglutarate (2-OG) under mild conditions without any chemical additives. Two β-aminoethylamine molecules and three 2-OG molecules form an unprecedented 2-pyridone structure with a fused γ-lactam ring (DTPP) via complex reactions including double decarboxylation and quintuple dehydration. The DTPP fluorophore shows a high quantum yield (80%) and photostability. The great potential of the present DTPP generation in the quantitative analysis of 2-OG in biosamples is demonstrated.
Collapse
Affiliation(s)
- Yumin Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| | - Sangyoon Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| | - Byung Hun Lee
- Department of Physics and Astronomy, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| | - Youngjun Song
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| | - Sunah Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Korea
| |
Collapse
|
42
|
Wick S, Carr PA. Measurement of Transcription, Translation, and Other Enzymatic Processes During Cell-Free Expression Using PERSIA. Methods Mol Biol 2022; 2433:169-181. [PMID: 34985744 DOI: 10.1007/978-1-0716-1998-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We developed the PERSIA technique with an interest in quantifying proteins as they are being produced during a cell-free synthesis reaction. A short 6-amino acid sequence added to a protein of interest reacts with a fluorogenic reagent (ReAsH), yielding a measure of protein concentration in close to real time. We combine this measurement with simultaneous fluorescent detection of mRNA production, quantifying both transcription and translation. Alternatively, we combine simultaneous measurement of protein synthesis and that protein's enzymatic activity. We have found these simple capabilities enabling for multiple applications, including sequence-structure-function studies and target-specific assessment of drug candidate compounds.
Collapse
Affiliation(s)
- Scott Wick
- MIT Lincoln Laboratory, Lexington, MA, USA
- Synthetic Biology Center at MIT, Cambridge, MA, USA
| | - Peter A Carr
- MIT Lincoln Laboratory, Lexington, MA, USA.
- Synthetic Biology Center at MIT, Cambridge, MA, USA.
| |
Collapse
|
43
|
Yang T, Zhou J, Shan B, Li L, Zhu C, Ma C, Gao H, Chen G, Zhang K, Wu P. Hydrated hydroxide complex dominates the AIE property of nonconjugated polymeric luminophores. Macromol Rapid Commun 2021; 43:e2100720. [PMID: 34962323 DOI: 10.1002/marc.202100720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Nontraditional intrinsic luminescence (NTIL) which always accompanied with aggregation-induced emission (AIE) features has received considerable attention due to their importance in the understanding of basic luminescence principle and potential practical applications. However, the rational modulation of the NTIL of nonconventional luminophores remains difficult, on account of the limited understanding of emission mechanisms. Herein, the emission colour of nonconjugated poly(methyl vinyl ether-alt-maleic anhydride) (PMVEMA) could be readily regulated from blue to red by controlling the alkalinity during the hydrolysis process. The nontraditional photoluminescence with AIE property was from the new formed p-band state, resulting from the strong overlapping of p orbitals of the clustered O atoms through space interactions. Hydrated hydroxide complexes embedded in the entangled polymer chain make big difference on the clustering of O atoms which dominates the AIE property of nonconjugated PMVEMA. These new insights into the photoluminescence mechanism of NTIL should stimulate additional experimental and theoretical studies and could benefit the molecular-level design of nontraditional chromophores for optoelectronics and other applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Taiqun Yang
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China.,Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Jiafeng Zhou
- Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Bingqian Shan
- Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Lei Li
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Chun Zhu
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Chaoqun Ma
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Hui Gao
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Guoqing Chen
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Kun Zhang
- Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Peng Wu
- Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
44
|
Armetta J, Schantz-Klausen M, Shepelin D, Vazquez-Uribe R, Bahl MI, Laursen MF, Licht TR, Sommer MO. Escherichia coli Promoters with Consistent Expression throughout the Murine Gut. ACS Synth Biol 2021; 10:3359-3368. [PMID: 34842418 DOI: 10.1021/acssynbio.1c00325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Advanced microbial therapeutics have great potential as a novel modality to diagnose and treat a wide range of diseases. Yet, to realize this potential, robust parts for regulating gene expression and consequent therapeutic activity in situ are needed. In this study, we characterized the expression level of more than 8000 variants of the Escherichia coli sigma factor 70 (σ70) promoter in a range of different environmental conditions and growth states using fluorescence-activated cell sorting and deep sequencing. Sampled conditions include aerobic and anaerobic culture in the laboratory as well as growth in several locations of the murine gastrointestinal tract. We found that σ70 promoters in E. coli generally maintain consistent expression levels across the murine gut (R2: 0.55-0.85, p value < 1 × 10-5), suggesting a limited environmental influence but a higher variability between in vitro and in vivo expression levels, highlighting the challenges of translating in vitro promoter activity to in vivo applications. Based on these data, we design the Schantzetta library, composed of eight promoters spanning a wide expression range and displaying a high degree of robustness in both laboratory and in vivo conditions (R2 = 0.98, p = 0.000827). This study provides a systematic assessment of the σ70 promoter activity in E. coli as it transits the murine gut leading to the definition of robust expression cassettes that could be a valuable tool for reliable engineering and development of advanced microbial therapeutics.
Collapse
Affiliation(s)
- Jeremy Armetta
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Michael Schantz-Klausen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Denis Shepelin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Morten O.A. Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
45
|
Tam C, Zhang KYJ. FPredX: Interpretable models for the prediction of spectral maxima, brightness, and oligomeric states of fluorescent proteins. Proteins 2021; 90:732-746. [PMID: 34676905 DOI: 10.1002/prot.26270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/19/2021] [Accepted: 10/15/2021] [Indexed: 11/06/2022]
Abstract
Fluorescent protein (FP) design is among the challenging protein design problems due to the tradeoffs among multiple properties to be optimized. Despite the accumulated efforts in design and characterization, progress has been slow in gaining a full understanding of sequence-property relationships to tackle the multiobjective design problem in FPs. In this study, we approach this problem by developing FPredX, a collection of gradient-boosted decision tree models, which mapped FP sequences to four major design targets of FPs, including excitation maximum, emission maximum, brightness, and oligomeric state. By training using one-hot encoded multiple aligned sequences with hyperparameters optimization in each model, FPredX models showed excellent prediction performance for all target properties compared with existing methods. We further interpreted the FPredX models by comparing the importance of positions along the aligned FP sequence to the predictive performance and suggested positions, which showed differential importance deemed by FPredX models to the prediction of each target property.
Collapse
Affiliation(s)
- Chunlai Tam
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
46
|
Sulatskaya AI, Kosolapova AO, Bobylev AG, Belousov MV, Antonets KS, Sulatsky MI, Kuznetsova IM, Turoverov KK, Stepanenko OV, Nizhnikov AA. β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis. Int J Mol Sci 2021; 22:11316. [PMID: 34768745 PMCID: PMC8582884 DOI: 10.3390/ijms222111316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023] Open
Abstract
Insoluble protein aggregates with fibrillar morphology called amyloids and β-barrel proteins both share a β-sheet-rich structure. Correctly folded β-barrel proteins can not only function in monomeric (dimeric) form, but also tend to interact with one another-followed, in several cases, by formation of higher order oligomers or even aggregates. In recent years, findings proving that β-barrel proteins can adopt cross-β amyloid folds have emerged. Different β-barrel proteins were shown to form amyloid fibrils in vitro. The formation of functional amyloids in vivo by β-barrel proteins for which the amyloid state is native was also discovered. In particular, several prokaryotic and eukaryotic proteins with β-barrel domains were demonstrated to form amyloids in vivo, where they participate in interspecies interactions and nutrient storage, respectively. According to recent observations, despite the variety of primary structures of amyloid-forming proteins, most of them can adopt a conformational state with the β-barrel topology. This state can be intermediate on the pathway of fibrillogenesis ("on-pathway state"), or can be formed as a result of an alternative assembly of partially unfolded monomers ("off-pathway state"). The β-barrel oligomers formed by amyloid proteins possess toxicity, and are likely to be involved in the development of amyloidoses, thus representing promising targets for potential therapy of these incurable diseases. Considering rapidly growing discoveries of the amyloid-forming β-barrels, we may suggest that their real number and diversity of functions are significantly higher than identified to date, and represent only "the tip of the iceberg". Here, we summarize the data on the amyloid-forming β-barrel proteins, their physicochemical properties, and their biological functions, and discuss probable means and consequences of the amyloidogenesis of these proteins, along with structural relationships between these two widespread types of β-folds.
Collapse
Affiliation(s)
- Anna I. Sulatskaya
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia;
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia;
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| |
Collapse
|
47
|
Zhou J, Yang T, Peng B, Shan B, Ding M, Zhang K. Structural Water Molecules Confined in Soft and Hard Nanocavities as Bright Color Emitters. ACS PHYSICAL CHEMISTRY AU 2021; 2:47-58. [PMID: 36855578 PMCID: PMC9718307 DOI: 10.1021/acsphyschemau.1c00020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecules confined in the nanocavity and nanointerface exhibit rich, unique physicochemical properties, e.g., the chromophore in the β-barrel can of green fluorescent protein (GFP) exhibits tunable bright colors. However, the physical origin of their photoluminescence (PL) emission remains elusive. To mimic the microenvironment of the GFP protein scaffold at the molecule level, two groups of nanocavities were created by molecule self-assembly using organic chromophores and by organic functionalization of mesoporous silica, respectively. We provide strong evidence that structural water molecules confined in these nanocavities are color emitters with a universal formula of {X+·(OH-·H2O)·(H2O) n-1}, in which X is hydrated protons (H3O+) or protonated amino (NH3 +) groups as an anchoring point, and that the efficiency of PL is strongly dependent on the stability of the main emitter centers of the structural hydrated hydroxide complex (OH-·H2O), which is a key intermediate to mediate electron transfer dominated by proton transfer at confined nanospace. Further controlled experiments and combined characterizations by time-resolved steady-state and ultrafast transient optical spectroscopy unveil an unusual multichannel radiative and/or nonradiative mechanism dominated by quantum transient states with a distinctive character of topological excitation. The finding of this work underscores the pivotal role of structurally bound H2O in regulating the PL efficiency of aggregation-induced emission luminogens and GFP.
Collapse
Affiliation(s)
- Jiafeng Zhou
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Taiqun Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bo Peng
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bingqian Shan
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng Ding
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kun Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, College
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China,Laboratoire
de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie
de Lyon, Université de Lyon, 46 Allée d’italie, 69364 Lyon cedex 07, France,Shandong
Provincial Key Laboratory of Chemical Energy Storage and Novel Cell
Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, P. R. China,
| |
Collapse
|
48
|
Liu L, Wang B, Li S, Xu F, He Q, Pan C, Gao X, Yao W, Song X. Convenient Genetic Encoding of Phenylalanine Derivatives through Their α-Keto Acid Precursors. Biomolecules 2021; 11:1358. [PMID: 34572570 PMCID: PMC8470325 DOI: 10.3390/biom11091358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The activity and function of proteins can be improved by incorporation of non-canonical amino acids (ncAAs). To avoid the tedious synthesis of a large number of chiral phenylalanine derivatives, we synthesized the corresponding phenylpyruvic acid precursors. Escherichia coli strain DH10B and strain C321.ΔA.expΔPBAD were selected as hosts for phenylpyruvic acid bioconversion and genetic code expansion using the MmPylRS/pyltRNACUA system. The concentrations of keto acids, PLP and amino donors were optimized in the process. Eight keto acids that can be biotransformed and their coupled genetic code expansions were identified. Finally, the genetic encoded ncAAs were tested for incorporation into fluorescent proteins with keto acids.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Bohao Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Sheng Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Fengyuan Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Qi He
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Chun Pan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| | - Xiaoda Song
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; (L.L.); (B.W.); (S.L.); (F.X.); (Q.H.)
| |
Collapse
|
49
|
Enhancing the tropism of bacteria via genetically programmed biosensors. Nat Biomed Eng 2021; 6:94-104. [PMID: 34326488 DOI: 10.1038/s41551-021-00772-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/25/2021] [Indexed: 01/01/2023]
Abstract
Engineered bacteria for therapeutic applications would benefit from control mechanisms that confine the growth of the bacteria within specific tissues or regions in the body. Here we show that the tropism of engineered bacteria can be enhanced by coupling bacterial growth with genetic circuits that sense oxygen, pH or lactate through the control of the expression of essential genes. Bacteria that were engineered with pH or oxygen sensors showed preferential growth in physiologically relevant acidic or oxygen conditions, and reduced growth outside the permissive environments when orally delivered to mice. In syngeneic mice bearing subcutaneous tumours, bacteria engineered with both hypoxia and lactate biosensors coupled through an AND gate showed increased tumour specificity. The multiplexing of genetic circuits may be more broadly applicable for enhancing the localization of bacteria to specified niches.
Collapse
|
50
|
Henrikus SS, Tassis K, Zhang L, van der Velde JHM, Gebhardt C, Herrmann A, Jung G, Cordes T. Characterization of Fluorescent Proteins with Intramolecular Photostabilization*. Chembiochem 2021; 22:3283-3291. [PMID: 34296494 PMCID: PMC9291837 DOI: 10.1002/cbic.202100276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Indexed: 11/10/2022]
Abstract
Genetically encodable fluorescent proteins have revolutionized biological imaging in vivo and in vitro. Despite their importance, their photophysical properties, i. e., brightness, count-rate and photostability, are relatively poor compared to synthetic organic fluorophores or quantum dots. Intramolecular photostabilizers were recently rediscovered as an effective approach to improve photophysical properties of organic fluorophores. Here, direct conjugation of triplet-state quenchers or redox-active substances creates high local concentrations of photostabilizer around the fluorophore. In this paper, we screen for effects of covalently linked photostabilizers on fluorescent proteins. We produced a double cysteine mutant (A206C/L221C) of α-GFP for attachment of photostabilizer-maleimides on the β-barrel near the chromophore. Whereas labelling with photostabilizers such as trolox, a nitrophenyl group, and cyclooctatetraene, which are often used for organic fluorophores, had no effect on α-GFP-photostability, a substantial increase of photostability was found upon conjugation to azobenzene. Although the mechanism of the photostabilizing effects remains to be elucidated, we speculate that the higher triplet-energy of azobenzene might be crucial for triplet-quenching of fluorophores in the blue spectral range. Our study paves the way for the development of fluorescent proteins with photostabilizers in the protein barrel by methods such as unnatural amino acid incorporation.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.,Biophysical Chemistry, Saarland University, Campus Building B2.2, 66123, Saarbrücken, Germany.,current address: Francis Crick Institute, 1 Midland Road, London, NW1 AT1, UK
| | - Konstantinos Tassis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Lei Zhang
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, München - Planegg-Martinsried, Germany
| | - Jasper H M van der Velde
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, München - Planegg-Martinsried, Germany
| | - Andreas Herrmann
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Gregor Jung
- Biophysical Chemistry, Saarland University, Campus Building B2.2, 66123, Saarbrücken, Germany
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.,Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, München - Planegg-Martinsried, Germany
| |
Collapse
|