1
|
Henriksson A, Neubauer P, Birkholz M. Dielectrophoresis: An Approach to Increase Sensitivity, Reduce Response Time and to Suppress Nonspecific Binding in Biosensors? BIOSENSORS 2022; 12:784. [PMID: 36290922 PMCID: PMC9599301 DOI: 10.3390/bios12100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The performance of receptor-based biosensors is often limited by either diffusion of the analyte causing unreasonable long assay times or a lack of specificity limiting the sensitivity due to the noise of nonspecific binding. Alternating current (AC) electrokinetics and its effect on biosensing is an increasing field of research dedicated to address this issue and can improve mass transfer of the analyte by electrothermal effects, electroosmosis, or dielectrophoresis (DEP). Accordingly, several works have shown improved sensitivity and lowered assay times by order of magnitude thanks to the improved mass transfer with these techniques. To realize high sensitivity in real samples with realistic sample matrix avoiding nonspecific binding is critical and the improved mass transfer should ideally be specific to the target analyte. In this paper we cover recent approaches to combine biosensors with DEP, which is the AC kinetic approach with the highest selectivity. We conclude that while associated with many challenges, for several applications the approach could be beneficial, especially if more work is dedicated to minimizing nonspecific bindings, for which DEP offers interesting perspectives.
Collapse
Affiliation(s)
- Anders Henriksson
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Mario Birkholz
- IHP—Leibniz-Institut für Innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| |
Collapse
|
2
|
Liu Y, Hayes MA. Orders-of-Magnitude Larger Force Demonstrated for Dielectrophoresis of Proteins Enabling High-Resolution Separations Based on New Mechanisms. Anal Chem 2020; 93:1352-1359. [DOI: 10.1021/acs.analchem.0c02763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yameng Liu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Mark A. Hayes
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
3
|
Benhal P, Quashie D, Kim Y, Ali J. Insulator Based Dielectrophoresis: Micro, Nano, and Molecular Scale Biological Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5095. [PMID: 32906803 PMCID: PMC7570478 DOI: 10.3390/s20185095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Abstract
Insulator based dielectrophoresis (iDEP) is becoming increasingly important in emerging biomolecular applications, including particle purification, fractionation, and separation. Compared to conventional electrode-based dielectrophoresis (eDEP) techniques, iDEP has been demonstrated to have a higher degree of selectivity of biological samples while also being less biologically intrusive. Over the past two decades, substantial technological advances have been made, enabling iDEP to be applied from micro, to nano and molecular scales. Soft particles, including cell organelles, viruses, proteins, and nucleic acids, have been manipulated using iDEP, enabling the exploration of subnanometer biological interactions. Recent investigations using this technique have demonstrated a wide range of applications, including biomarker screening, protein folding analysis, and molecular sensing. Here, we review current state-of-art research on iDEP systems and highlight potential future work.
Collapse
Affiliation(s)
- Prateek Benhal
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Yoontae Kim
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA;
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| |
Collapse
|
4
|
Hayes MA. Dielectrophoresis of proteins: experimental data and evolving theory. Anal Bioanal Chem 2020; 412:3801-3811. [PMID: 32314000 PMCID: PMC7250158 DOI: 10.1007/s00216-020-02623-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/28/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
The ability to selectively move and trap proteins is core to their effective use as building blocks and for their characterization. Analytical and preparative strategies for proteins have been pursued and modeled for nearly a hundred years, with great advances and success. Core to all of these studies is the separation, isolation, purification, and concentration of pure homogeneous fractions of a specific protein in solution. Processes to accomplish this useful solution include biphasic equilibrium (chromatographies, extractions), mechanical, bulk property, chemical equilibria, and molecular recognition. Ultimately, the goal of all of these is to physically remove all non-like protein molecules-to the finest detail: all atoms in the full three-dimensional structure being identical down the chemical bond and bulk structure chirality. One strategy which has not been effectively pursued is exploiting the higher order subtle electrical properties of the protein-solvent system. The advent of microfluidic systems has enabled the use of very high electric fields and well-defined gradients such that extremely high resolution separations of protein mixtures are possible. These advances and recognition of these capabilities have caused a re-evaluation of the underlying theoretical models and they were found to be inadequate. New theoretical descriptions are being considered which align more closely to the total forces present and the subtlety of differences between similar proteins. These are focused on the interfacial area between the protein and hydrating solvent molecules, as opposed to the macroscale assumptions of homogeneous solutions and particles. This critical review examines all data which has been published that place proteins in electric field gradients which induce collection of those proteins, demonstrating a force greater than dispersive effects or countering forces. Evolving theoretical constructs are presented and discussed, and a general estimate of future capabilities using the higher order effects and the high fields and precise gradients of microfluidic systems is discussed. Graphical abstract.
Collapse
Affiliation(s)
- Mark A Hayes
- School of Molecular Sciences, Arizona State University, Mail Stop 1604, Tempe, AZ, 85287, USA.
| |
Collapse
|
5
|
Hölzel R, Pethig R. Protein Dielectrophoresis: I. Status of Experiments and an Empirical Theory. MICROMACHINES 2020; 11:E533. [PMID: 32456059 PMCID: PMC7281080 DOI: 10.3390/mi11050533] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/04/2022]
Abstract
The dielectrophoresis (DEP) data reported in the literature since 1994 for 22 different globular proteins is examined in detail. Apart from three cases, all of the reported protein DEP experiments employed a gradient field factor ∇Em2 that is much smaller (in some instances by many orders of magnitude) than the ~4 1021 V2/m3 required, according to current DEP theory, to overcome the dispersive forces associated with Brownian motion. This failing results from the macroscopic Clausius-Mossotti (CM) factor being restricted to the range 1.0 > CM > -0.5. Current DEP theory precludes the protein's permanent dipole moment (rather than the induced moment) from contributing to the DEP force. Based on the magnitude of the β-dispersion exhibited by globular proteins in the frequency range 1 kHz-50 MHz, an empirically derived molecular version of CM is obtained. This factor varies greatly in magnitude from protein to protein (e.g., ~37,000 for carboxypeptidase; ~190 for phospholipase) and when incorporated into the basic expression for the DEP force brings most of the reported protein DEP above the minimum required to overcome dispersive Brownian thermal effects. We believe this empirically-derived finding validates the theories currently being advanced by Matyushov and co-workers.
Collapse
Affiliation(s)
- Ralph Hölzel
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam-Golm, Germany;
| | - Ronald Pethig
- School of Engineering, Institute for Integrated Micro and Nanosystems, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JF, UK
| |
Collapse
|
6
|
Electrode-based AC electrokinetics of proteins: A mini-review. Bioelectrochemistry 2018; 120:76-82. [DOI: 10.1016/j.bioelechem.2017.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022]
|
7
|
Hakoda M. Development of dielectrophoresis separator with an insulating porous membrane using DC-Offset AC Electric Fields. Biotechnol Prog 2016; 32:1292-1300. [DOI: 10.1002/btpr.2330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/12/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Masaru Hakoda
- Div. of Environmental Engineering Science; Faculty of Science and Technology, Gunma University; Japan
| |
Collapse
|
8
|
Samiei E, Tabrizian M, Hoorfar M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. LAB ON A CHIP 2016; 16:2376-96. [PMID: 27272540 DOI: 10.1039/c6lc00387g] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Following the development of microfluidic systems, there has been a high tendency towards developing lab-on-a-chip devices for biochemical applications. A great deal of effort has been devoted to improve and advance these devices with the goal of performing complete sets of biochemical assays on the device and possibly developing portable platforms for point of care applications. Among the different microfluidic systems used for such a purpose, digital microfluidics (DMF) shows high flexibility and capability of performing multiplex and parallel biochemical operations, and hence, has been considered as a suitable candidate for lab-on-a-chip applications. In this review, we discuss the most recent advances in the DMF platforms, and evaluate the feasibility of developing multifunctional packages for performing complete sets of processes of biochemical assays, particularly for point-of-care applications. The progress in the development of DMF systems is reviewed from eight different aspects, including device fabrication, basic fluidic operations, automation, manipulation of biological samples, advanced operations, detection, biological applications, and finally, packaging and portability of the DMF devices. Success in developing the lab-on-a-chip DMF devices will be concluded based on the advances achieved in each of these aspects.
Collapse
Affiliation(s)
- Ehsan Samiei
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada.
| | | | | |
Collapse
|
9
|
Wang JC, Ku HY, Shieh DB, Chuang HS. A bead-based fluorescence immunosensing technique enabled by the integration of Förster resonance energy transfer and optoelectrokinetic concentration. BIOMICROFLUIDICS 2016; 10:014113. [PMID: 26865906 PMCID: PMC4733077 DOI: 10.1063/1.4940938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/17/2016] [Indexed: 05/04/2023]
Abstract
Bead-based immunosensing has been growing as a promising technology in the point-of-care diagnostics due to great flexibility. For dilute samples, functionalized particles can be used to collect dispersed analytes and act as carriers for particle manipulation. To realize rapid and visual immunosensing, Förster resonance energy transfer (FRET) was used herein to ensure only the diabetic biomarker, lipocalin 1, to be detected. The measurement was made in an aqueous droplet sandwiched between two parallel plate electrodes. With an electric field and a focused laser beam applying on the microchip simultaneously, the immunocomplexes in the droplet were further concentrated to enhance the FRET fluorescent signal. The optoelectrokinetic technique, termed rapid electrokinetic patterning (REP), has been proven to be excellent in dynamic and programmable particle manipulation. Therefore, the detection can be complete within several tens of seconds. The lower detection limit of the REP-enabled bead-based diagnosis reached nearly 5 nM. The combinative use of FRET and the optoelectrokinetic technique for the bead-based immunosensing enables a rapid measure to diagnose early stage diseases and dilute analytes.
Collapse
Affiliation(s)
| | - Hu-Yao Ku
- Department of Biomedical Engineering, National Cheng Kung University , Tainan, Taiwan
| | - Dar-Bin Shieh
- Medical Device Innovation Center, National Cheng Kung University , Tainan, Taiwan
| | | |
Collapse
|
10
|
Nakano A, Camacho-Alanis F, Ros A. Insulator-based dielectrophoresis with β-galactosidase in nanostructured devices. Analyst 2015; 140:860-8. [PMID: 25479537 PMCID: PMC4386925 DOI: 10.1039/c4an01503g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Insulator-based dielectrophoresis (iDEP) has been explored as a powerful analytical technique in recent years. Unlike with larger entities such as cells, bacteria or organelles, the mechanism of iDEP transport of proteins remains little explored. In this work, we extended the pool of proteins investigated with iDEP in nanostructured devices with β-galactosidase. Our work indicates that β-galactosidase shows concentration due to negative DEP which we compare to DEP response of immunoglobulin G (IgG) encapsulated in micelles also showing negative DEP. Experimental observations are further compared with numerical simulations to elucidate the influence of electrokinetic transport and the magnitude of DEP mobility. Numerical simulations suggest that the DEP mobility calculated using the classical model underestimates the actual contribution of DEP on the experimentally monitored concentration effect of proteins. Moreover, we observed a unique voltage dependent β-galactosidase concentration which we attribute to an additional factor influencing the protein concentration at the nanoconstrictions, namely ion concentration polarization. Our work aids in understanding factors influencing protein iDEP transport which is required for the future development of protein preconcentration or separation methods based on iDEP.
Collapse
Affiliation(s)
- Asuka Nakano
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.
| | | | | |
Collapse
|
11
|
Wang KC, Kumar A, Williams SJ, Green NG, Kim KC, Chuang HS. An optoelectrokinetic technique for programmable particle manipulation and bead-based biosignal enhancement. LAB ON A CHIP 2014; 14:3958-67. [PMID: 25109364 DOI: 10.1039/c4lc00661e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Technologies that can enable concentration of low-abundance biomarkers are essential for early diagnosis of diseases. In this study, an optoelectrokinetic technique, termed Rapid Electrokinetic Patterning (REP), was used to enable dynamic particle manipulation in bead-based bioassays. Various manipulation capabilities, such as micro/nanoparticle aggregation, translation, sorting and patterning, were developed. The technique allows for versatile multi-parameter (voltage, light intensity and frequency) based modulation and dynamically addressable manipulation with simple device fabrication. Signal enhancement of a bead-based bioassay was demonstrated using dilute biotin-fluorescein isothiocyanate (FITC) solutions mixed with streptavidin-conjugated particles and rapidly concentrated with the technique. As compared with a conventional ELISA reader, the REP-enabled detection achieved a minimal readout of 3.87 nM, which was a 100-fold improvement in sensitivity. The multi-functional platform provides an effective measure to enhance detection levels in more bead-based bioassays.
Collapse
Affiliation(s)
- Kuan-Chih Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | | | | | |
Collapse
|
12
|
Nano bioresearch approach by microtechnology. Drug Discov Today 2013; 18:552-9. [PMID: 23402847 DOI: 10.1016/j.drudis.2013.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/15/2012] [Accepted: 02/01/2013] [Indexed: 11/20/2022]
Abstract
To progress in basic science and drug development, convenient methodology for detecting specific biological molecules and their interaction in living organism is in high demand. After more than 20 years of increasing research efforts, micro and nanotechnologies are now mature to propose a new class of miniature devices and principles enabling compartmentalized bioassays. Among them, this review proposes various examples that include array of electro-active microwells for highly parallel single cell analysis, cost-effective nanofluidic for DNA separation, parallel enzymatic reaction in 100pL droplet and high-throughput platform for membrane proteins assays. The micro devices are presented with relevant experiments to foresee their future contribution to translational research and drug discovery.
Collapse
|
13
|
Chao TC, Hansmeier N. Microfluidic devices for high-throughput proteome analyses. Proteomics 2012; 13:467-79. [PMID: 23135952 DOI: 10.1002/pmic.201200411] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 09/06/2012] [Accepted: 10/05/2012] [Indexed: 12/14/2022]
Abstract
Over the last decades, microfabricated bioanalytical platforms have gained enormous interest due to their potential to revolutionize biological analytics. Their popularity is based on several key properties, such as high flexibility of design, low sample consumption, rapid analysis time, and minimization of manual handling steps, which are of interest for proteomics analyses. An ideal totally integrated chip-based microfluidic device could allow rapid automated workflows starting from cell cultivation and ending with MS-based proteome analysis. By reducing or eliminating sample handling and transfer steps and increasing the throughput of analyses these workflows would dramatically improve the reliability, reproducibility, and throughput of proteomic investigations. While these complete devices do not exist for routine use yet, many improvements have been made in the translation of proteomic sample handling and separation steps into microfluidic formats. In this review, we will focus on recent developments and strategies to enable and integrate proteomic workflows into microfluidic devices.
Collapse
Affiliation(s)
- Tzu-Chiao Chao
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
14
|
Nakano A, Camacho-Alanis F, Chao TC, Ros A. Tuning direct current streaming dielectrophoresis of proteins. BIOMICROFLUIDICS 2012; 6:34108. [PMID: 23908679 PMCID: PMC3423305 DOI: 10.1063/1.4742695] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 05/03/2023]
Abstract
Dielectrophoresis (DEP) of biomolecules has large potential to serve as a novel selectivity parameter for bioanalytical methods such as (pre)concentration, fractionation, and separation. However, in contrast to well-characterized biological cells and (nano)particles, the mechanism of protein DEP is poorly understood, limiting bioanalytical applications for proteins. Here, we demonstrate a detailed investigation of factors influencing DEP of diagnostically relevant immunoglobulin G (IgG) molecules using insulator-based DEP (iDEP) under DC conditions. We found that the pH range in which concentration of IgG due to streaming iDEP occurs without aggregate formation matches the pH range suitable for immunoreactions. Numerical simulations of the electrokinetic factors pertaining to DEP streaming in this range further suggested that the protein charge and electroosmotic flow significantly influence iDEP streaming. These predictions are in accordance with the experimentally observed pH-dependent iDEP streaming profiles as well as the determined IgG molecular properties. Moreover, we observed a transition in the streaming behavior caused by a change from positive to negative DEP induced through micelle formation for the first time experimentally, which is in excellent qualitative agreement with numerical simulations. Our study thus relates molecular immunoglobulin properties to observed iDEP, which will be useful for the future development of protein (pre)concentration or separation methods based on DEP.
Collapse
Affiliation(s)
- Asuka Nakano
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | |
Collapse
|
15
|
Kumemura M, Collard D, Yoshizawa S, Wee B, Takeuchi S, Fujita H. Enzymatic Reaction in Droplets Manipulated with Liquid Dielectrophoresis. Chemphyschem 2012; 13:3308-12. [DOI: 10.1002/cphc.201200354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/26/2012] [Indexed: 01/16/2023]
|
16
|
Liao KT, Tsegaye M, Chaurey V, Chou CF, Swami NS. Nano-constriction device for rapid protein preconcentration in physiological media through a balance of electrokinetic forces. Electrophoresis 2012; 33:1958-66. [DOI: 10.1002/elps.201100707] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Mikiyas Tsegaye
- Electrical & Computer Engineering; University of Virginia; Charlottesville; VA; USA
| | - Vasudha Chaurey
- Electrical & Computer Engineering; University of Virginia; Charlottesville; VA; USA
| | - Chia-Fu Chou
- Institute of Physics; Academia Sinica; Taipei; Taiwan
| | - Nathan S. Swami
- Electrical & Computer Engineering; University of Virginia; Charlottesville; VA; USA
| |
Collapse
|
17
|
Soe AK, Nahavandi S, Khoshmanesh K. Neuroscience goes on a chip. Biosens Bioelectron 2012; 35:1-13. [DOI: 10.1016/j.bios.2012.02.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/02/2012] [Accepted: 02/06/2012] [Indexed: 01/09/2023]
|
18
|
Daunay B, Lambert P, Jalabert L, Kumemura M, Renaudot R, Agache V, Fujita H. Effect of substrate wettability in liquid dielectrophoresis (LDEP) based droplet generation: theoretical analysis and experimental confirmation. LAB ON A CHIP 2012; 12:361-8. [PMID: 22134670 DOI: 10.1039/c1lc20625g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The generation of droplets for biological reactions at the microscale can be achieved by many techniques, among which the so-called liquid dielectrophoresis technique (LDEP). This is not a new process, but the parameters influencing actuation voltage still need further insight: size and geometry (electrodes width and gap, dielectric thickness), materials (dielectric constant), liquids (surface tension, dielectric constant, conductivity), working conditions (voltage, frequency) and substrate wettability (contact angle). This large experimental space is firstly reduced using non dimensional numbers and then studied in a systematic way thanks to the design of experiments. The contact angle influence is explained thanks to a new analytical model. To summarize, this paper recalls analytical models used to predict the voltage threshold required to develop a liquid rivulet from a mother drop, taking the contact angle into account and providing a large set of experimental results.
Collapse
Affiliation(s)
- B Daunay
- CIRMM, IIS, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505, Tokyo.
| | | | | | | | | | | | | |
Collapse
|
19
|
Salmanzadeh A, Romero L, Shafiee H, Gallo-Villanueva RC, Stremler MA, Cramer SD, Davalos RV. Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. LAB ON A CHIP 2012; 12:182-9. [PMID: 22068834 DOI: 10.1039/c1lc20701f] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, the dielectrophoretic response of prostate tumor initiating cells (TICs) was investigated in a microfluidic system utilizing contactless dielectrophoresis (cDEP). The dielectrophoretic response of prostate TICs was observed to be distinctively different than that for non-TICs, enabling them to be sorted using cDEP. Culturing the sorted TICs generated spheroids, indicating that they were indeed initiating cells. This study presents the first marker-free TIC separation from non-TICs utilizing their electrical fingerprints through dielectrophoresis.
Collapse
Affiliation(s)
- Alireza Salmanzadeh
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Ren H, Xu S, Wu ST. Voltage-expandable liquid crystal surface. LAB ON A CHIP 2011; 11:3426-3430. [PMID: 21901206 DOI: 10.1039/c1lc20367c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Based on dielectrophoretic effect, we report a novel approach which can extensively spread a liquid crystal (LC) interface. With interdigitated striped electrodes, the droplets can be stretched along the striped electrode direction; while with zigzag interdigitated electrodes, the droplets can be further stretched sidewise. In our demonstration, the occupied area of a 1.9-mm-aperture LC droplet doped with 1.2 wt% black dye could be expanded over ∼3.5× at 78 V(rms). The spreading and recovering times were measured to be ∼0.39 s and ∼0.75 s, respectively. The slower response time confirms the extreme expanding of the LC surface. The contrast ratio is over ∼120 : 1 in transmissive mode. Color light switch was also demonstrated by spreading colored-dye doped LC droplets. The mechanical stability of the device was also evaluated. Liquid devices based on this cell structure have the advantages of good stability, simple operation and low power consumption. This work opens a new gateway for voltage controllable, polarization-insensitive, and broadband liquid photonic devices which may find numerous applications in switchable windows, variable optical attenuators, and displays.
Collapse
Affiliation(s)
- Hongwen Ren
- Department of Polymer Nano Science and Engineering, Chonbuk National University, Jeonju, South Korea.
| | | | | |
Collapse
|
21
|
Wu T, Suzuki Y. Engineering superlyophobic surfaces as the microfluidic platform for droplet manipulation. LAB ON A CHIP 2011; 11:3121-3129. [PMID: 21789298 DOI: 10.1039/c0lc00513d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We propose robust engineering superlyophobic surfaces (SLS) as a universal microfluidic platform for droplet manipulation enabling electric actuation, featured with characteristics of highly nonwetting, low adhesion, and low friction for various liquids including water and oil. To functionalize SLS with embedded electrodes, two configurations with continuous and discrete topologies have been designed and compared. The discrete configuration is found to be superior upon comparison of their fabrication, microstructures and nonwetting performances. We also present new formulation of SLS pressure stability for linear, square and hexagonal pattern layouts, and propose a criterion for three wetting states (the Cassie-Baxter, partial Cassie-Baxter and Wenzel states) by introducing two dimensionless parameters, which are supported by our experimental data. Droplet manipulation experiments including deformation and transport on electrode-embedded SLS were performed, showing that present SLS reduce adhesion and flow resistance of oil droplets respectively by 98% and 73% compared with a smooth hydrophobic surface, and the excellent hydrodynamic performances are applicable for a wide range of droplet velocity. Simulation of an oil droplet electrically actuated on SLS predicts the significantly increased droplet motion for a low solid fraction and a relatively large droplet size.
Collapse
Affiliation(s)
- Tianzhun Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Xingang West 135, Guangzhou, 510275, PR China.
| | | |
Collapse
|
22
|
Nakano A, Chao TC, Camacho-Alanis F, Ros A. Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device. Electrophoresis 2011; 32:2314-22. [PMID: 21792990 DOI: 10.1002/elps.201100037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/31/2011] [Accepted: 04/13/2011] [Indexed: 11/09/2022]
Abstract
Dielectrophoresis (DEP) has demonstrated to be a versatile tool to manipulate micro- and nanoparticles with applications for positioning, separation and fractionation. Recent developments of DEP have also shown that DEP can be used for the manipulation of biomolecules, such as DNA. Here, we focus on the manipulation of proteins using insulator-based dielectrophoresis (iDEP). We designed suitable post arrays in a microfluidic channel and use numerical simulations to calculate the electric field distribution as well as concentration of proteins according to a convection-diffusion model for both negative and positive DEP. Experimentally, we find DEP trapping of mainly protein aggregates in phosphate buffer. However, when adding a charged zwitterionic detergent, we observed DEP streamlining of immunoglobulin G (IgG) and bovine serum albumin (BSA). Our experimental observations are in excellent agreement with numerical simulations and indicate positive DEP behavior of IgG and BSA under the employed experimental conditions. Our results demonstrate DEP streaming of proteins in an iDEP device for the first time and indicate the potential of protein DEP for separation and fractionation.
Collapse
Affiliation(s)
- Asuka Nakano
- Department of Chemistry and Biochemistry, Arizona State University, Tempe 85287-1604, USA
| | | | | | | |
Collapse
|
23
|
Liu KK, Wu RG, Chuang YJ, Khoo HS, Huang SH, Tseng FG. Microfluidic systems for biosensing. SENSORS (BASEL, SWITZERLAND) 2010; 10:6623-61. [PMID: 22163570 PMCID: PMC3231127 DOI: 10.3390/s100706623] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/20/2010] [Accepted: 06/30/2010] [Indexed: 01/09/2023]
Abstract
In the past two decades, Micro Fluidic Systems (MFS) have emerged as a powerful tool for biosensing, particularly in enriching and purifying molecules and cells in biological samples. Compared with conventional sensing techniques, distinctive advantages of using MFS for biomedicine include ultra-high sensitivity, higher throughput, in-situ monitoring and lower cost. This review aims to summarize the recent advancements in two major types of micro fluidic systems, continuous and discrete MFS, as well as their biomedical applications. The state-of-the-art of active and passive mechanisms of fluid manipulation for mixing, separation, purification and concentration will also be elaborated. Future trends of using MFS in detection at molecular or cellular level, especially in stem cell therapy, tissue engineering and regenerative medicine, are also prospected.
Collapse
Affiliation(s)
- Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Ren-Guei Wu
- Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan; E-Mails: (R.-G.W.), (H.S.K.)
| | - Yun-Ju Chuang
- Department of Biomedical Engineering, Ming Chuang University, Taoyuan County 333, Taiwan; E-Mail: (Y.-J.C.)
| | - Hwa Seng Khoo
- Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan; E-Mails: (R.-G.W.), (H.S.K.)
| | - Shih-Hao Huang
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan; E-Mail: (S.-H.H.)
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan; E-Mails: (R.-G.W.), (H.S.K.)
- Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; E-Mail: (F.-G.T.)
| |
Collapse
|
24
|
Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A. Latest Developments in Micro Total Analysis Systems. Anal Chem 2010; 82:4830-47. [PMID: 20462185 DOI: 10.1021/ac100969k] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Arora
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Giuseppina Simone
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Georgette B. Salieb-Beugelaar
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Jung Tae Kim
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Andreas Manz
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| |
Collapse
|