1
|
Shen Q, Song G, Lin H, Bai H, Huang Y, Lv F, Wang S. Sensing, Imaging, and Therapeutic Strategies Endowing by Conjugate Polymers for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310032. [PMID: 38316396 DOI: 10.1002/adma.202310032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Conjugated polymers (CPs) have promising applications in biomedical fields, such as disease monitoring, real-time imaging diagnosis, and disease treatment. As a promising luminescent material with tunable emission, high brightness and excellent stability, CPs are widely used as fluorescent probes in biological detection and imaging. Rational molecular design and structural optimization have broadened absorption/emission range of CPs, which are more conductive for disease diagnosis and precision therapy. This review provides a comprehensive overview of recent advances in the application of CPs, aiming to elucidate their structural and functional relationships. The fluorescence properties of CPs and the mechanism of detection signal amplification are first discussed, followed by an elucidation of their emerging applications in biological detection. Subsequently, CPs-based imaging systems and therapeutic strategies are illustrated systematically. Finally, recent advancements in utilizing CPs as electroactive materials for bioelectronic devices are also investigated. Moreover, the challenges and outlooks of CPs for precision medicine are discussed. Through this systematic review, it is hoped to highlight the frontier progress of CPs and promote new breakthroughs in fundamental research and clinical transformation.
Collapse
Affiliation(s)
- Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
2
|
Nguyen TN, Phung VD, Tran VV. Recent Advances in Conjugated Polymer-Based Biosensors for Virus Detection. BIOSENSORS 2023; 13:586. [PMID: 37366951 DOI: 10.3390/bios13060586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Nowadays, virus pandemics have become a major burden seriously affecting human health and social and economic development. Thus, the design and fabrication of effective and low-cost techniques for early and accurate virus detection have been given priority for prevention and control of such pandemics. Biosensors and bioelectronic devices have been demonstrated as promising technology to resolve the major drawbacks and problems of the current detection methods. Discovering and applying advanced materials have offered opportunities to develop and commercialize biosensor devices for effectively controlling pandemics. Along with various well-known materials such as gold and silver nanoparticles, carbon-based materials, metal oxide-based materials, and graphene, conjugated polymer (CPs) have become one of the most promising candidates for preparation and construction of excellent biosensors with high sensitivity and specificity to different virus analytes owing to their unique π orbital structure and chain conformation alterations, solution processability, and flexibility. Therefore, CP-based biosensors have been regarded as innovative technologies attracting great interest from the community for early diagnosis of COVID-19 as well as other virus pandemics. For providing precious scientific evidence of CP-based biosensor technologies in virus detection, this review aims to give a critical overview of the recent research related to use of CPs in fabrication of virus biosensors. We emphasize structures and interesting characteristics of different CPs and discuss the state-of-the-art applications of CP-based biosensors as well. In addition, different types of biosensors such as optical biosensors, organic thin film transistors (OTFT), and conjugated polymer hydrogels (CPHs) based on CPs are also summarized and presented.
Collapse
Affiliation(s)
- Thanh Ngoc Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Viet-Duc Phung
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Vinh Van Tran
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
3
|
Water-soluble polythiophene-based colorimetry for the quick and accurate detection of SARS-CoV-2 RNA. Talanta 2023; 256:124320. [PMID: 36736272 PMCID: PMC9886399 DOI: 10.1016/j.talanta.2023.124320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
The SARS-CoV-2-related Corona Virus Disease 2019 (COVID-19) epidemic has had a significant negative impact on society and endangered global health. To quickly stop and constrain the pandemic, a SARS-CoV-2 detection technology that is sensitive, quick and reasonably priced is urgently required. The widely used reverse-transcription polymerase chain reaction (RT-PCR) requires complex equipment and a fair amount of time. Reverse transcription-loop-mediated isothermal amplification (RT-LAMP) exhibits significant advantage for early detection of COVID-19 without the requirement for expensive equipment by amplifying a little amount of RNA to a detectable level at isothermal condition. Here, a water-soluble polythiophene-based colorimetric method by combining with RT-LAMP is established for fast and sensitive detection of SARS-CoV-2 RNA. The proposed assay has benefits for the quick detection of SARS-CoV-2 RNA at concentrations as low as 10 aM, or 6 copies/μL.
Collapse
|
4
|
Tian D, Zhao D, Li W, Li Z, Zhai M, Feng Q. Interfacial DNA/RNA duplex-templated copper nanoclusters as a label-free electrochemiluminescence strategy for the detection of ribonuclease H. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Jiang Y, Li R, He W, Li Q, Yang X, Li S, Bai W, Li Y. MicroRNA-21 electrochemiluminescence biosensor based on Co-MOF-N-(4-aminobutyl)-N-ethylisoluminol/Ti 3C 2T x composite and duplex-specific nuclease-assisted signal amplification. Mikrochim Acta 2022; 189:129. [PMID: 35237853 DOI: 10.1007/s00604-022-05246-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
A novel electrochemiluminescence (ECL) biosensor for the determination of microRNA-21 (miRNA-21) was developed, based on a hybrid luminescent Co-MOF-ABEI/Ti3C2Tx composite as an ECL luminophore combined with a duplex-specific nuclease (DSN)-assisted signal amplification strategy. The synthesized Co-MOF-ABEI/Ti3C2Tx composite carrying N-(4-aminobutyl)-N-ethylisoluminol (ABEI) exhibited strong and stable ECL in the presence of reactive oxygen species (ROS). The ECL biosensor was fabricated by adsorbing Co-MOF-ABEI/Ti3C2Tx onto a glassy carbon electrode and covalently coupling the probe DNA onto the surface of the Co-MOF-ABEI/Ti3C2Tx-modified electrode. In the presence of the target miRNA-21, the DSN selectively cleaved the complementary DNA section (S1) to miRNA-21, resulting in the release of the transduction section (S2) and the reuse of miRNA-21 in the subsequent amplification cycle. The interaction of the stem-loop structure of the probe DNA with the Co-MOF-ABEI/Ti3C2Tx-modified glassy carbon electrode with S2 strands led to the opening of the annular part of the probe DNA. Then, the opened guanine (G)-rich sequences of probe DNA were exposed and folded into a hemin/G-quadruplex DNAzyme in the presence of hemin. The catalysis of H2O2 to ROS by the hemin/G-quadruplex DNAzyme significantly enhanced ECL intensity, and this intensity was logarithmically proportional to the concentration of target miRNA-21 between 0.00001 and 10 nM, having a limit of detection of 3.7 fM. The designed ECL biosensor can detect miRNA-21 extracted from HeLa cells, indicating its promising application in clinical diagnosis and disease prognosis analysis.
Collapse
Affiliation(s)
- Yang Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Rong Li
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, People's Republic of China
| | - Wenyu He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Qian Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Xia Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Sijia Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Wanqiao Bai
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, People's Republic of China.
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China.
| |
Collapse
|
6
|
Electrochemical microRNA detection based on catalytic deposition of G-quadruplex DNAzyme in nanochannels. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01673-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Chen C, He R, Liu X, Zhang Z, Chen L. Highly sensitive microRNA detection by a duplex-specific nuclease amplification triggered three-dimensional DNA machine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5694-5699. [PMID: 34812810 DOI: 10.1039/d1ay01709h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MicroRNAs play important roles in disease diagnosis and therapy. However, current methods for microRNA detection suffer from low sensitivity and cannot directly detect short microRNAs. Herein, we have developed a highly sensitive and selective fluorescent method for direct microRNA detection by combining the duplex-specific nuclease-assisted recycling amplification and the nicking enzyme-powered three-dimensional DNA walker. Target microRNA initiates duplex-specific nuclease-assisted recycling amplification, releasing numerous bipedal walking strands. The released bipedal walking strands hybridize with carboxyfluorescein-labeled track DNA and form nicking recognition site. Driven by the hydrolysis of the nicking enzyme, the bipedal walking strand autonomously moves along the track strand, releasing a large number of carboxyfluorescein-labeled DNA fragments and generating obvious fluorescence signals. This dual-signal amplification method can directly detect microRNA 21 as low as 130 fM and has good selectivity. The proposed method is not only simple for nucleic acid design, but also can be used as a universal method for the highly sensitive detection of all RNAs.
Collapse
Affiliation(s)
- Chaohui Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, PR China.
| | - Rongxiang He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, PR China.
| | - Xiaoyun Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, PR China.
| | - Zhengtao Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, PR China.
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430056, PR China.
| |
Collapse
|
8
|
Abstract
Ribonucleases are useful as biomarkers and can be the source of contamination in laboratory samples, making ribonuclease detection assays important in life sciences research. With recent developments in DNA-based biosensing, several new techniques are being developed to detect ribonucleases. This review discusses some of these methods, specifically those that utilize G-quadruplex DNA structures, DNA-nanoparticle conjugates and DNA nanostructures, and the advantages and challenges associated with them.
Collapse
|
9
|
Sheet SK, Rabha M, Sen B, Patra SK, Aguan K, Khatua S. Ruthenium(II) Complex-Based G-quadruplex DNA Selective Luminescent 'Light-up' Probe for RNase H Activity Detection. Chembiochem 2021; 22:2880-2887. [PMID: 34314094 DOI: 10.1002/cbic.202100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/03/2021] [Indexed: 12/14/2022]
Abstract
A bis-heteroleptic ruthenium(II) complex, 1[PF6 ]2 of benzothiazole amide substituted 2,2'-bipyridine ligand (bmbbipy) has been synthesized for the selective detection of G-quadruplex (GQ) DNA and luminescence-assay-based RNase H activity monitoring. Compound 1[PF6 ]2 exhibited aggregation-caused quenching (ACQ) in water. Aggregate formation was supported by DLS, UV-vis, and 1 H NMR spectroscopy results, and the morphology of aggregated particles was witnessed by SEM and TEM. 1[PF6 ]2 acted as an efficient GQ DNA-selective luminescent light-up probe over single-stranded and double-stranded DNA. The competency of 1[PF6 ]2 for selective GQ structure detection was established by PL and CD spectroscopy. For 1[PF6 ]2 , the PL light-up is exclusively due to the rigidification of the benzothiazole amide side arm in the presence of GQ-DNA. The interaction between the probe and GQ-DNA was analyzed by molecular docking analysis. The GQ structure detection capability of 1[PF6 ]2 was further applied in the luminescent 'off-on' RNase H activity detection. The assay utilized an RNA:DNA hybrid, obtained from 22AG2-RNA and 22AG2-DNA sequences. RNase H solely hydrolyzed the RNA of the RNA:DNA duplex and released G-rich 22AG2-DNA, which was detected via the PL enhancement of 1[PF6 ]2 . The selectivity of RNase H activity detection over various other restriction enzymes was also demonstrated.
Collapse
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Monosh Rabha
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Sumit Kumar Patra
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| |
Collapse
|
10
|
Recent Advancements in Polythiophene-Based Materials and their Biomedical, Geno Sensor and DNA Detection. Int J Mol Sci 2021; 22:ijms22136850. [PMID: 34202199 PMCID: PMC8268102 DOI: 10.3390/ijms22136850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022] Open
Abstract
In this review, the unique properties of intrinsically conducting polymer (ICP) in biomedical engineering fields are summarized. Polythiophene and its valuable derivatives are known as potent materials that can broadly be applied in biosensors, DNA, and gene delivery applications. Moreover, this material plays a basic role in curing and promoting anti-HIV drugs. Some of the thiophene’s derivatives were chosen for different experiments and investigations to study their behavior and effects while binding with different materials and establishing new compounds. Many methods were considered for electrode coating and the conversion of thiophene to different monomers to improve their functions and to use them for a new generation of novel medical usages. It is believed that polythiophenes and their derivatives can be used in the future as a substitute for many old-fashioned ways of creating chemical biosensors polymeric materials and also drugs with lower side effects yet having a more effective response. It can be noted that syncing biochemistry with biomedical engineering will lead to a new generation of science, especially one that involves high-efficiency polymers. Therefore, since polythiophene can be customized with many derivatives, some of the novel combinations are covered in this review.
Collapse
|
11
|
Hwang SH, Kim JH, Park J, Park KS. Fluorescence nucleobase analogue-based strategy with high signal-to-noise ratio for ultrasensitive detection of food poisoning bacteria. Analyst 2021; 145:6307-6312. [PMID: 32706347 DOI: 10.1039/d0an01026j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We developed a simple and ultrasensitive strategy for the identification of foodborne pathogens utilizing a fluorescent nucleobase analogue [2-aminopurine (2-AP)]-containing split G-quadruplex that binds blocker DNA. Compared to a previous strategy that did not use blocker DNA, this strategy showed a significant increase in the signal-to-noise ratio-by approximately 300%-owing to the displacement of the blocker DNA by the target DNA that induces the formation of an active G-quadruplex structure, thereby leading to a substantial increase in the 2-AP fluorescence signal. The proposed strategy was rationally combined with polymerase chain reaction, which resulted in the successful determination of genomic DNA (within the range of 10-106 copies) derived from the food poisoning bacterium Escherichia coli, with a limit of detection of 5.2 copies and high selectivity. In addition, the practical applicability of this method was demonstrated by analyzing E. coli-spiked lettuce samples.
Collapse
Affiliation(s)
- Sung Hyun Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | | | | | | |
Collapse
|
12
|
Maddali H, Miles CE, Kohn J, O'Carroll DM. Optical Biosensors for Virus Detection: Prospects for SARS-CoV-2/COVID-19. Chembiochem 2021; 22:1176-1189. [PMID: 33119960 PMCID: PMC8048644 DOI: 10.1002/cbic.202000744] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 12/29/2022]
Abstract
The recent pandemic of the novel coronavirus disease 2019 (COVID-19) has caused huge worldwide disruption due to the lack of available testing locations and equipment. The use of optical techniques for viral detection has flourished in the past 15 years, providing more reliable, inexpensive, and accurate detection methods. In the current minireview, optical phenomena including fluorescence, surface plasmons, surface-enhanced Raman scattering (SERS), and colorimetry are discussed in the context of detecting virus pathogens. The sensitivity of a viral detection method can be dramatically improved by using materials that exhibit surface plasmons or SERS, but often this requires advanced instrumentation for detection. Although fluorescence and colorimetry lack high sensitivity, they show promise as point-of-care diagnostics because of their relatively less complicated instrumentation, ease of use, lower costs, and the fact that they do not require nucleic acid amplification. The advantages and disadvantages of each optical detection method are presented, and prospects for applying optical biosensors in COVID-19 detection are discussed.
Collapse
Affiliation(s)
- Hemanth Maddali
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Catherine E Miles
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Deirdre M O'Carroll
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
13
|
Wang Y, Li M, Zhang Y. Electrochemical detection of microRNA-21 based on a Au nanoparticle functionalized g-C 3N 4 nanosheet nanohybrid as a sensing platform and a hybridization chain reaction amplification strategy. Analyst 2021; 146:2886-2893. [PMID: 33710233 DOI: 10.1039/d1an00029b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, a sensitive sandwich-type electrochemical biosensor for microRNA-21 detection was reported. It was based on the use of a Au NP functionalized graphite-like carbon nitride nanosheet (g-C3N4 NS) nanohybrid (Au NPs-g-C3N4 NS) as a sensing platform and DNA concatemers containing methylene blue (MB) as a signal probe. The signal probe was prepared by using two different single strand DNAs with a complementary sequence (one of them labeled with MB at the 3' end) to form long concatemers via continuous hybridization chain reaction (HCR); thus numerous MB signal molecules were loaded on long concatemers. The biosensor was fabricated following the next step: a thiolated hairpin probe (HP) was first immobilized on the surface of the glassy carbon electrode (GCE) modified with a Au NPs-g-C3N4 NS nanohybrid. After it was blocked with MCH, the modified electrode was sequentially hybridized with microRNA-21 and a signal probe, respectively. As a result, a sandwich structure of HP-microRNA-signal probe covered the surface of the modified electrode. Differential pulse voltammetry (DPV) was employed to measure the sensing signal in phosphate buffered solution (0.10 M PBS, pH 7.4). The experimental conditions were optimized such as the hybridization time and the amount of g-C3N4 NS. The proposed biosensor exhibited a wide linear response range (1.0 fM to 500 nM) and a low limit of detection (0.33 fM; at S/N = 3) under the optimal conditions. Meanwhile, the biosensor could discriminate single base mismatched microRNA-21, indicating that the biosensor possessed high selectivity.
Collapse
Affiliation(s)
- Ya Wang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241002, People's Republic of China.
| | - Mengyao Li
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241002, People's Republic of China.
| | - Yuzhong Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241002, People's Republic of China.
| |
Collapse
|
14
|
Wang H, Wu T, Li M, Tao Y. Recent advances in nanomaterials for colorimetric cancer detection. J Mater Chem B 2020; 9:921-938. [PMID: 33367450 DOI: 10.1039/d0tb02163f] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The early diagnosis of cancer can significantly improve patient survival rates. Colorimetric methods for real-time naked-eye detection have aroused growing interest owing to their low cost, simplicity, and practicability. With the rapid development of nanotechnology, compared with conventional diagnostic methods, nanomaterials with unique physical and chemical properties were applied to improve selectivity and sensitivity in colorimetric detection of cancer biomarkers, such as MUC1 aptamer conjugated PtAuNPs to specifically recognize MUC1 proteins on the cancer cell surfaces, etching of silver nanoprisms to detect prostate-specific antigen, and aggregation or dispersion of AuNPs to sense prostate cancer antigen gene 3 or glutathione, by which the limit of detection (LOD) could approach values down to a few cancer cells per mL, several fg per mL proteins, several ng of nucleic acids, or even tens of nM of organic molecules. Herein, we review the recent progress achieved in developing colorimetric nanosensors for cancer diagnosis, particularly providing an overview of the sensing principles, target biomarkers, advanced nanomaterials employed in the fabrication of sensing platforms, and strategies for improving signal sensitivity and specificity. Finally, we sum up the nanomaterial-based colorimetric cancer detection as well as existing challenges that should be resolved to extend their clinical application.
Collapse
Affiliation(s)
- Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | | | | | | |
Collapse
|
15
|
Smart materials for point-of-care testing: From sample extraction to analyte sensing and readout signal generator. Biosens Bioelectron 2020; 170:112682. [PMID: 33035898 DOI: 10.1016/j.bios.2020.112682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
The last decade has seen a surge of technical developments in the field on point-of-care testing (POCT). While these developments are extremely diverse, the common aim is to implement improved methods for quick, reliable and inexpensive diagnosis of patients within the clinical setting. While examples of successful introduction and use of POCT techniques are growing, further developments are still necessary to create POCT devices with better portability, usability and performance. Advances in smart materials emerge as potentially valuable know-hows to provide a competitive edge to the development of next generation POCT devices. This review describes the key advantages of adopting smart material-based technologies at different analytical stages of a POCT platform. Under these analytical stages which involves sample pre-treatment, analyte sensing and readout signal generator, several concepts and approaches from contemporary research work in using smart material-based technologies will be the major focus in this review. Lastly, challenges and potential outlook in implementing materials technologies from the application point of view for POCT will be discussed.
Collapse
|
16
|
Wang LJ, Ren M, Wang HX, Qiu JG, Jiang B, Zhang CY. Construction of a Quencher-Free Cascade Amplification System for Highly Specific and Sensitive Detection of Serum Circulating miRNAs. Anal Chem 2020; 92:8546-8552. [DOI: 10.1021/acs.analchem.0c01385] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li-juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Ming Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Hou-xiu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - BingHua Jiang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
17
|
Wang Y, Hu N, Liu C, Nie C, He M, Zhang J, Yu Q, Zhao C, Chen T, Chu X. An RNase H-powered DNA walking machine for sensitive detection of RNase H and the screening of related inhibitors. NANOSCALE 2020; 12:1673-1679. [PMID: 31894217 DOI: 10.1039/c9nr07550j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ribonuclease H (RNase H), an intracellular ribonuclease, plays a crucial role in cellular processes and especially relates to many disease processes. Here, we report a novel signal amplification strategy based on an RNase H-powered DNA walking machine for specific and sensitive RNase H activity detection. The DNA walking machine is composed of a small quantity of DNA walker strands and abundant FAM-labeled DNA-RNA chimeric strands on a single gold nanoparticle (AuNP). RNase H can specifically degrade the RNA fragment in a DNA-RNA hybrid duplex and trigger the autonomous movement of a DNA walker strand on the AuNP surface. During this process, each step of the walking can release the FAM-labeled RNA from the surface of the AuNP, realizing the signal amplification for RNase H sensing. This method has been successfully utilized for RNase H activity detection in a complex system and applied for screening of related inhibitors. Therefore, our RNase H-powered DNA walking machine gives a novel platform for RNase H activity detection and RNase H-associated drug discovery.
Collapse
Affiliation(s)
- Yafang Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xie Y, Wang N, Li Y, Deng T, Li J, Zhang K, Yu R. Cyclodextrin supramolecular inclusion-enhanced pyrene excimer switching for highly selective detection of RNase H. Anal Chim Acta 2019; 1088:137-143. [PMID: 31623709 DOI: 10.1016/j.aca.2019.08.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
Abstract
Here, we report a novel fluorescence method for the highly selective and sensitive detection of RNase H by combining the use of a dual-pyrene-labeled DNA/RNA duplex with supramolecular inclusion-enhanced fluorescence. Initially, the probe is in the "off" state due to the rigidness of the double-stranded duplex, which separates the two pyrene units. In the presence of RNase H, the RNA strand of the DNA/RNA duplex will be hydrolyzed, and the DNA strand transforms into a hairpin structure, bringing close the two pyrene units which in turn enter the hydrophobic cavity of a γ-cyclodextrin. As a result, the pyrene excimer emission is greatly enhanced, thereby realizing the detection of RNase H activity. Under optimal conditions, RNase H detection can be achieved in the range from 0.08 to 4 U/mL, with a detection limit of 0.02 U/mL.
Collapse
Affiliation(s)
- Ye Xie
- Institute of Applied Chemistry, School of Science, College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ningning Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yulong Li
- Institute of Applied Chemistry, School of Science, College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ke Zhang
- Institute of Applied Chemistry, School of Science, College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Ruqin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
19
|
DNA-templated copper nanoparticles as signalling probe for electrochemical determination of microRNA-222. Mikrochim Acta 2019; 187:4. [DOI: 10.1007/s00604-019-4011-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
|
20
|
A label-free colorimetric detection of microRNA via G-quadruplex-based signal quenching strategy. Anal Chim Acta 2019; 1079:207-211. [DOI: 10.1016/j.aca.2019.06.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/24/2019] [Accepted: 06/30/2019] [Indexed: 11/19/2022]
|
21
|
So RC, Carreon-Asok AC. Molecular Design, Synthetic Strategies, and Applications of Cationic Polythiophenes. Chem Rev 2019; 119:11442-11509. [DOI: 10.1021/acs.chemrev.8b00773] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Regina C. So
- Department of Chemistry, Ateneo de Manila University, Loyola Heights, Katipunan, Quezon City 1108, Philippines
| | - Analyn C. Carreon-Asok
- Department of Chemistry, Ateneo de Manila University, Loyola Heights, Katipunan, Quezon City 1108, Philippines
- Department of Chemistry, Xavier University−Ateneo de Cagayan University, Corrales Avenue, Cagayan de Oro City 9000, Philippines
| |
Collapse
|
22
|
Ammanath G, Yeasmin S, Srinivasulu Y, Vats M, Cheema JA, Nabilah F, Srivastava R, Yildiz UH, Alagappan P, Liedberg B. Flow-through colorimetric assay for detection of nucleic acids in plasma. Anal Chim Acta 2019; 1066:102-111. [DOI: 10.1016/j.aca.2019.03.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 01/04/2023]
|
23
|
Zhou Y, Zhang J, Jiang Q, Lu J. An allosteric switch-based hairpin for label-free chemiluminescence detection of ribonuclease H activity and inhibitors. Analyst 2019; 144:1420-1425. [PMID: 30607414 DOI: 10.1039/c8an02006j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To assay enzyme activities and screen its inhibitors, we demonstrated a novel label-free chemiluminescent (CL) aptasensor for the sensitive detection of RNase H activity based on hairpin technology. The specific hairpin structure was a DNA-RNA chimeric strand, which contained a streptavidin aptamer sequence and a blocked RNA sequence. RNase H could specifically recognize and cleave the RNA sequence of the DNA-RNA hybrid stem, liberating the streptavidin aptamer which could be accumulated by streptavidin-coated magnetic microspheres (SA-MP). Then the CL signal was generated due to an instantaneous derivatization reaction between the specific CL reagent 3,4,5-trimethoxyphenyl-glyoxal (TMPG) and the guanine (G) nucleotides in the SA aptamer. This novel assay method exhibited a good linear relationship in the range of 0.1-10 U mL-1 under the optimized conditions. Our results suggested that the developed system was a promising platform for monitoring the RNase H activity and showed great potential in biomedical studies and drug screening.
Collapse
Affiliation(s)
- Ying Zhou
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
| | | | | | | |
Collapse
|
24
|
Zhang LM, Cui YX, Zhu LN, Chu JQ, Kong DM. Cationic porphyrins with large side arm substituents as resonance light scattering ratiometric probes for specific recognition of nucleic acid G-quadruplexes. Nucleic Acids Res 2019; 47:2727-2738. [PMID: 30715502 PMCID: PMC6451126 DOI: 10.1093/nar/gkz064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/14/2019] [Accepted: 01/26/2019] [Indexed: 12/04/2022] Open
Abstract
Specific G-quadruplex-probing is crucial for both biological sciences and biosensing applications. Most reported probes are focused on fluorescent or colorimetric recognition of G-quadruplexes. Herein, for the first time, we reported a new specific G-quadruplex-probing technique-resonance light scattering (RLS)-based ratiometric recognition. To achieve the RLS probing of G-quadruplexes in the important physiological pH range of 7.4-6.0, four water soluble cationic porphyrin derivatives, including an unreported octa-cationic porphyrin, with large side arm substituents were synthesized and developed as RLS probes. These RLS probes were demonstrated to work well for ratiometric recognition of G-quadruplexes with high specificity against single- and double-stranded DNAs, including long double-stranded ones. The working mechanism was speculated to be based on the RLS signal changes caused by porphyrin protonation that was promoted by the end-stacking of porphyrins on G-quadruplexes. This work adds an important member in G-quadruplex probe family, thus providing a useful tool for studies on G-quadruplex-related events concerning G-quadruplex formation, destruction and changes in size, shape and aggregation. As a proof-of-concept example of applications, the RLS probes were demonstrated to work well for label-free and sequence-specific sensing of microRNA. This work also provides a simple and useful way for the preparation of cationic porphyrins with high charges.
Collapse
Affiliation(s)
- Li-Ming Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yun-Xi Cui
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li-Na Zhu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jun-Qing Chu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - De-Ming Kong
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ, Lakshmi D, Sai-Anand G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Ghosh R, Das S, Bhattacharyya K, Chatterjee DP, Biswas A, Nandi AK. Light-Induced Conformational Change of Uracil-Anchored Polythiophene-Regulating Thermo-Responsiveness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12401-12411. [PMID: 30234308 DOI: 10.1021/acs.langmuir.8b02679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tuning the electronic structure of a π-conjugated polymer from the responsive side chains is generally done to get desired optoelectronic properties, and it would be very fruitful when light is used as an exciting tool that can also affect the backbone chain conformation. For this purpose, polythiophene- g-poly-[ N-(6-methyluracilyl)- N, N-dimethylamino chloride]ethyl methacrylate (PTDU) is synthesized. On exposure to diffuse sunlight, the uracil moieties of the grafted chains cause the absorption maximum of PTDU solution to show gradual blue shift of 87 nm and a gradual blue shift of 46 nm in the emission maximum, quenching its fluorescence with time. These effects occur specifically at the absorption range of polythiophene (PT) chromophore on direct exposure of light of different wavelengths, and the optimum wavelength is found to be 420 nm. Impedance study suggests a decrease in charge transfer resistance upon exposure because of conformational change of PTDU. Theoretical study indicates that on exposure to visible light, uracil moieties move toward the backbone to facilitate photoinduced electron transfer between the PT and the uracil, attributing to the variation in optoelectronic properties. Morphological and light-scattering studies exhibit a decrease in particle size because of coiling of the PT backbone and squeezing of the grafted chain on light exposure. The transparent orange-colored PTDU solution becomes hazy with a hike in emission intensity on addition of sodium halides and becomes reversibly transparent or hazy on heating or cooling. The screening of cationic centers of PTDU by varying halide anion concentration tunes the phase transition temperature. Thus, the light-induced variation in the backbone conformation is responsible for tuning the optoelectronic properties and regulates the thermos-responsiveness of the PTDU solution in the presence of halide ions.
Collapse
Affiliation(s)
- Radhakanta Ghosh
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur , Kolkata 700 032 , India
| | - Sujoy Das
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur , Kolkata 700 032 , India
| | - Kalishankar Bhattacharyya
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur , Kolkata 700 032 , India
| | - Dhruba P Chatterjee
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur , Kolkata 700 032 , India
| | - Atosi Biswas
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur , Kolkata 700 032 , India
| | - Arun K Nandi
- Polymer Science Unit , Indian Association for the Cultivation of Science , Jadavpur , Kolkata 700 032 , India
| |
Collapse
|
27
|
Hwang SH, Kwon WY, Eun H, Jeong S, Park JS, Kim KJ, Kim HJ, Lee SH, Park K, Yoon JJ, Yang YH, Park KS. The use of a 2-aminopurine-containing split G-quadruplex for sequence-specific DNA detection. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S950-S955. [PMID: 30314413 DOI: 10.1080/21691401.2018.1521817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A simple, sequence-specific DNA detection method, utilizing a fluorescent 2-aminopurine (2-AP) nucleobase analogue-containing split G-quadruplex as the key detection component, is described. In the sensor, the 2-AP-containing G-quadruplex is split into two segments and linked to a target-specific overhang sequence. The separate G-quadruplex sequences form an active G-quadruplex structure only in the presence of a complementary target DNA, which leads to a significant increase in the intensity of fluorescence from the 2-AP fluorophore. This simple, one-step, homogenous assay was successfully employed to detect target DNA with a high selectivity. In addition, the practical applicability of the detection method was demonstrated by its use in analyzing target DNAs in human serum. To the best of our knowledge, this is the first time that an investigation was carried out in which a fluorescent nucleobase analogue was incorporated into a split G-quadruplex structure and this structure was utilized as the foundation for a specific DNA sensor.
Collapse
Affiliation(s)
- Sung Hyun Hwang
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , Republic of Korea
| | - Woo Young Kwon
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , Republic of Korea
| | - Hyunmin Eun
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , Republic of Korea
| | - Sehan Jeong
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , Republic of Korea
| | - Jun Seok Park
- b Colorectal Cancer Center , Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Kwang Jin Kim
- c Urban Agriculture Research Division , National Institute of Horticultural and Herbal Science, Rural Development Administration , Wanju , Republic of Korea
| | - Hyung Joo Kim
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , Republic of Korea
| | - Sang Hyun Lee
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , Republic of Korea
| | - Kyungmoon Park
- d Department of Biological and Chemical Engineering , Hongik University , Sejong City , Republic of Korea
| | - Jeong-Jun Yoon
- e Intelligent Sustainable Materials R&D Group , Korea Institute of Industrial Technology (KITECH) , Cheonan-si , Republic of Korea
| | - Yung-Hun Yang
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , Republic of Korea
| | - Ki Soo Park
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , Republic of Korea
| |
Collapse
|
28
|
Shi L, Lei J, Zhang B, Li B, Yang CJ, Jin Y. Ultrasensitive and Facile Detection of MicroRNA via a Portable Pressure Meter. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12526-12533. [PMID: 29624369 DOI: 10.1021/acsami.8b02551] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The upregulation of microRNA (miRNA) is highly related with some kinds of tumor, such as breast, prostate, lung, and pancreatic cancers. Therefore, for an important tumor biomarker, the point-of-care testing (POCT) of miRNA is of significant importance and is in great demand for disease diagnosis and clinical prognoses. Herein, a POCT assay for miRNA detection was developed via a portable pressure meter. Two hairpin DNA probes, H1 and H2, were ingeniously designed and functionalized with magnetic beads (MBs) and platinum nanoparticles (PtNPs), respectively, to form MBs-H1 and PtNPs-H2 complexes. In the presence of target microRNA 21 (miR-21), the cyclic strand displacement reaction (SDR) between MBs-H1 and PtNPs-H2 was triggered to continuously form the MBs-H1/PtNPs-H2 duplex. Owing to the amplification of cyclic SDR, numerous PtNPs were enriched onto the surface of MBs to catalytically decompose H2O2 for the generation of much O2. The gas pressure value has a linear relationship with the logarithmic value of miR-21 concentration in the range of 10 fM to 10 pM. The limit of detection is 7.6 fM, which is more sensitive than that in a number of previous reports. Hairpin DNA probes and magnetic separation highly ensured the specificity and reliability. Single-base mutation was easily discriminated, and the detection of miR-21 in the serum sample achieved satisfactory result. Therefore, it offers a reliable POCT strategy for the detection of miRNA, which is of great theoretical and practical importance for POCT clinical diagnostics.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Jing Lei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Bei Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Chaoyong James Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| |
Collapse
|
29
|
Park Y, Lee CY, Kang S, Kim H, Park KS, Park HG. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction. NANOTECHNOLOGY 2018; 29:085501. [PMID: 29269591 DOI: 10.1088/1361-6528/aaa3a3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.
Collapse
Affiliation(s)
- Yeonkyung Park
- Department of Chemical and Biomolecular Engineering (BK21+Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | | | | | | | | |
Collapse
|
30
|
Eksin E, Bikkarolla SK, Erdem A, Papakonstantinou P. Chitosan/Nitrogen Doped Reduced Graphene Oxide Modified Biosensor for Impedimetric Detection of microRNA. ELECTROANAL 2018. [DOI: 10.1002/elan.201700663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ece Eksin
- Ege University; Faculty of Pharmacy, Analytical Chemistry Department, Bornova; 35100 Izmir Turkey
- Ege University; The Institute of Natural and Applied Sciences, Biotechnology Department, Bornova; 35100 Izmir Turkey
| | - Santosh Kumar Bikkarolla
- Nanotechnology and Integrated Bio-Engineering Centre, NIBEC, School of Engineering; Ulster University, Jordanstown campus; BT37 OQB United Kingdom
| | - Arzum Erdem
- Ege University; Faculty of Pharmacy, Analytical Chemistry Department, Bornova; 35100 Izmir Turkey
- Ege University; The Institute of Natural and Applied Sciences, Biotechnology Department, Bornova; 35100 Izmir Turkey
| | - Pagona Papakonstantinou
- Nanotechnology and Integrated Bio-Engineering Centre, NIBEC, School of Engineering; Ulster University, Jordanstown campus; BT37 OQB United Kingdom
| |
Collapse
|
31
|
Ghosh R, Chatterjee DP, Das S, Mukhopadhyay TK, Datta A, Nandi AK. Influence of Hofmeister I - on Tuning Optoelectronic Properties of Ampholytic Polythiophene by Varying pH and Conjugating with RNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12739-12749. [PMID: 29028346 DOI: 10.1021/acs.langmuir.7b03147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A significant tuning of optoelectronic properties of polythiophene (PT) chains due to Hofmeister iodide (I-) ion is demonstrated in ampholytic polythiophene [polythiophene-g-poly{(N,N,N-trimethylamino iodide)ethyl methacrylate-co-methacrylic acid}, APT] at different pHs. In acidic medium, the absorption and emission signals of PT chromophore exhibit appreciable blue shift in the presence of I- as counteranion only. The cooperative effect of undissociated -COOH and quaternary ammonium groups immobilize I- near the apolar PT chain causing threading of grafted chains and hence twisting of the backbone attributing to the blue shift. As medium pH is increased, dethreading of the PT backbone occurs due to ionization of -COOH group, releasing quencher iodide ions from the vicinity of the PT chains resulting in a red shift in absorption and a sharp hike in fluorescence intensity (390 times) for an increase of excitons lifetime. With an increase of pH, morphology changes from a multivesicular aggregate with vacuoles to smaller size vesicles and finally to nanofibrillar network structure. Dethreading is also found when APT interacts with RNA showing a significant hike of fluorescence (22 times) for displacing iodide ions forming a nanofibrillar network morphology. Threading and dethreading also affect the resistance, capacitance, and Warburg impedance values of APT. Molecular dynamics simulation of a model APT chain in a water box supports the threading at lower pH where the iodide ions pose nearer to the PT chain than that at higher pH causing dethreading. So the influence of Hofmeister I- ion is established for tuning the optoelectronic properties of a novel PT based polyampholyte by changing pH or by conjugating with RNA.
Collapse
Affiliation(s)
- Radhakanta Ghosh
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Dhruba P Chatterjee
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Sujoy Das
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Titas K Mukhopadhyay
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Ayan Datta
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - Arun K Nandi
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
32
|
Xu J, Han K, Liu D, Lin L, Miao P. Isothermal amplification detection of miRNA based on the catalysis of nucleases and voltammetric characteristics of silver nanoparticles. MOLECULAR BIOSYSTEMS 2017; 12:3550-3555. [PMID: 27785510 DOI: 10.1039/c6mb00659k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MiRNAs are a fascinating kind of biomolecule due to their vital functions in gene regulation and potential value as biomarkers for serious diseases including cancers. Exploiting convenient and sensitive methods for miRNA expression assays is imperative. In this study, we employ an exonuclease (RecJf) and a nicking endonuclease (Nt.BbvCI) to catalyse isothermal reactions for the amplified detection of miRNA. The degree of cyclical enzymatic amplification depends on the initial target miRNA level, which can determine the density of DNA probes bound on the electrode surface. Since DNA probes with an amino group at the 3' end are able to locate silver nanoparticles on the electrode, which provide intense stripping responses, the sensitive quantification of miRNA can be achieved. The proposed method has a limit of detection as low as 35 aM, with remarkable specificity, which offers a new approach for investigating miRNA networks and for clinical diagnosis applications.
Collapse
Affiliation(s)
- Jianhua Xu
- Department of Laboratory Science, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | - Kun Han
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.
| | - Dongdong Liu
- Department of Laboratory Science, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | - Li Lin
- Department of Laboratory Science, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, P. R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.
| |
Collapse
|
33
|
Colorimetric detection of microRNA based hybridization chain reaction for signal amplification and enzyme for visualization. Anal Biochem 2017; 528:7-12. [DOI: 10.1016/j.ab.2017.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/25/2022]
|
34
|
Peng L, Zhang P, Chai Y, Yuan R. Bi-directional DNA Walking Machine and Its Application in an Enzyme-Free Electrochemiluminescence Biosensor for Sensitive Detection of MicroRNAs. Anal Chem 2017; 89:5036-5042. [DOI: 10.1021/acs.analchem.7b00418] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lichun Peng
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Pu Zhang
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
35
|
Das S, Routh P, Ghosh R, Chatterjee DP, Nandi AK. Water-soluble ionic polythiophenes for biological and analytical applications. POLYM INT 2016. [DOI: 10.1002/pi.5295] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sandip Das
- Polymer Science Unit; Indian Association for the Cultivation of Science; Jadavpur Kolkata - 700032 India
| | - Parimal Routh
- Polymer Science Unit; Indian Association for the Cultivation of Science; Jadavpur Kolkata - 700032 India
| | - Radhakanta Ghosh
- Polymer Science Unit; Indian Association for the Cultivation of Science; Jadavpur Kolkata - 700032 India
| | - Dhruba P Chatterjee
- Polymer Science Unit; Indian Association for the Cultivation of Science; Jadavpur Kolkata - 700032 India
| | - Arun K Nandi
- Polymer Science Unit; Indian Association for the Cultivation of Science; Jadavpur Kolkata - 700032 India
| |
Collapse
|
36
|
Ultrasensitive, colorimetric detection of microRNAs based on isothermal exponential amplification reaction-assisted gold nanoparticle amplification. Biosens Bioelectron 2016; 86:1011-1016. [DOI: 10.1016/j.bios.2016.07.042] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/02/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022]
|
37
|
Tu W, Cao H, Zhang L, Bao J, Liu X, Dai Z. Dual Signal Amplification Using Gold Nanoparticles-Enhanced Zinc Selenide Nanoflakes and P19 Protein for Ultrasensitive Photoelectrochemical Biosensing of MicroRNA in Cell. Anal Chem 2016; 88:10459-10465. [PMID: 27723295 DOI: 10.1021/acs.analchem.6b02381] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using Au nanoparticles (NPs)-decorated, water-soluble, ZnSe-COOH nanoflakes (NFs), an ultrasensitive photoelectrochemical (PEC) biosensing strategy based on the dual signal amplification was proposed. As a result of the localized surface plasmon resonance (SPR) of Au NPs, the ultraviolet-visible absorption spectrum of Au NPs overlapped with emission spectrum of ZnSe-COOH NFs, which generated efficient resonant energy transfer (RET) between ZnSe-COOH NFs and Au NPs. The RET improved photoelectric conversion efficiency of ZnSe-COOH NFs and significantly amplified PEC signal. Taking advantage of the specificity and high affinity of p19 protein for 21-23 bp double-stranded RNA, p19 protein was introduced. P19 protein could generate remarkable steric hindrance, which blocked interfacial electron transfer and impeded the access of the ascorbic acid to electrode surface for scavenging holes. This led to the dramatic decrease of photocurrent intensity and the amplification of PEC signal change versus concentration change of target. Using microRNA (miRNA)-122a as a model analyte, an ultrasensitive signal-off PEC biosensor for miRNA detection was developed under 405 nm irradiation at -0.30 V. Owing to RET and remarkable steric hindrance of p19 protein as dual signal amplification, the proposed strategy exhibited a wide linear range from 350 fM to 5 nM, with a low detection limit of 153 fM. It has been successfully applied to analyze the level of miRNA-122a in HeLa cell, which would have promising prospects for early diagnosis of tumor.
Collapse
Affiliation(s)
- Wenwen Tu
- Jiangsu Key Laboratory of Biofunctional Materials and Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University , Nanjing, 210023, People's Republic of China
| | - Huijuan Cao
- Jiangsu Key Laboratory of Biofunctional Materials and Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University , Nanjing, 210023, People's Republic of China
| | - Long Zhang
- Jiangsu Key Laboratory of Biofunctional Materials and Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University , Nanjing, 210023, People's Republic of China
| | - Jianchun Bao
- Jiangsu Key Laboratory of Biofunctional Materials and Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University , Nanjing, 210023, People's Republic of China
| | - Xuhui Liu
- Jiangsu Key Laboratory of Biofunctional Materials and Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University , Nanjing, 210023, People's Republic of China
| | - Zhihui Dai
- Jiangsu Key Laboratory of Biofunctional Materials and Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University , Nanjing, 210023, People's Republic of China
| |
Collapse
|
38
|
Rajwar D, Ammanath G, Cheema JA, Palaniappan A, Yildiz UH, Liedberg B. Tailoring Conformation-Induced Chromism of Polythiophene Copolymers for Nucleic Acid Assay at Resource Limited Settings. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8349-8357. [PMID: 26956217 DOI: 10.1021/acsami.5b12171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here we report on the design and synthesis of cationic water-soluble thiophene copolymers as reporters for colorimetric detection of microRNA (miRNA) in human plasma. Poly(3-alkoxythiophene) (PT) polyelectrolytes with controlled ratios of pendant groups such as triethylamine/1-methyl imidazole were synthesized for optimizing interaction with target miRNA sequence (Tseq). Incorporation of specific peptide nucleic acid (PNA) sequences with the cationic polythiophenes yielded distinguishable responses upon formation of fluorescent PT-PNA-Tseq triplex and weakly fluorescent PT-Tseq duplex, thereby enabling selective detection of target miRNA. Unlike homopolymers of PT (hPT), experimental results indicate the possibility of utilizing copolymers of PT (cPT) with appropriate ratios of pendant groups for miRNA assay in complex matrices such as plasma. As an illustration, colorimetric responses were obtained for lung cancer associated miRNA sequence (mir21) in human plasma, with a detection limit of 10 nM, illustrating the feasibility of proposed methodology for clinical applications without involving sophisticated instrumentation. The described methodology therefore possesses high potential for low-cost nucleic acid assays in resource-limited settings.
Collapse
Affiliation(s)
- Deepa Rajwar
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798
| | - Gopal Ammanath
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798
| | - Jamal Ahmed Cheema
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798
| | - Alagappan Palaniappan
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798
| | - Umit Hakan Yildiz
- Department of Chemistry, Izmir Institute of Technology , Urla, 35430 Izmir, Turkey
| | - Bo Liedberg
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798
| |
Collapse
|
39
|
Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor. Biosens Bioelectron 2016; 77:451-6. [DOI: 10.1016/j.bios.2015.09.068] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/18/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
|
40
|
Zhou Y, Zhang J, Zhao L, Li Y, Chen H, Li S, Cheng Y. Visual Detection of Multiplex MicroRNAs Using Cationic Conjugated Polymer Materials. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1520-1526. [PMID: 26709618 DOI: 10.1021/acsami.5b11135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A simple, visual, and specific method for simultaneous detection of multiplex microRNAs (miRNAs) has been developed by integrating duplex-specific nuclease (DSN)-induced amplification with cationic conjugated polymer (CCP) materials. The probe DNA with a complementary sequence to target miRNA is labeled with fluorescein dye (FAM). Without target miRNA, the single-strand DNA probe cannot be digested by DSN. Upon adding CCPs, efficient fluorescence resonance energy transfer (FRET) from CCP to FAM occurs owing to strong electrostatic interactions between CCP and the DNA probe. In the presence of target miRNA, the DNA probe hybridizes with target miRNA followed by digestion to small nucleotide fragments by DSN; meanwhile, the miRNA is released and subsequently interacts again with the probe, resulting in the cycled digestion of the DNA probe. In this case, weak electrostatic interactions between oligonucleotide fragments and CCP lead to inefficient FRET from CCP to FAM. Thus, by triggering the FRET signal from CCP to FAM, miRNA can be specially detected, and the fluorescence color change based on FRET can be visualized directly with the naked eye under an UV lamp. Furthermore, an energy transfer cascade can be designed using CCP and DNA probes labeled at the 5'-terminus with FAM and Cy3 dyes, and the multistep FRET processes offer the ability of simultaneous detection of multiplex miRNAs.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, Hebei, P. R. China
| | - Jiangyan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, Hebei, P. R. China
| | - Likun Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, Hebei, P. R. China
| | - Yingcun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, Hebei, P. R. China
| | - Hui Chen
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Shengliang Li
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Yongqiang Cheng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University , Baoding 071002, Hebei, P. R. China
| |
Collapse
|
41
|
Chen F, Lin M, Zhao Y, Zhao Y. Catalase-functionalized SiO2 nanoparticles mediate growth of gold nanoparticles for plasmonic biosensing of attomolar microRNA with the naked eye. RSC Adv 2016. [DOI: 10.1039/c5ra27574a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A plasmonic biosensor for specific detection of attomolar microRNA with the naked eye was developed based on catalase/streptavidin-functionalized SiO2 nanoparticles and hairpin capture probe-coated magnetic beads.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Manli Lin
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Yue Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| |
Collapse
|
42
|
Lu L, Wang W, Yang C, Kang TS, Leung CH, Ma DL. Iridium(iii) complexes with 1,10-phenanthroline-based N^N ligands as highly selective luminescent G-quadruplex probes and application for switch-on ribonuclease H detection. J Mater Chem B 2016; 4:6791-6796. [DOI: 10.1039/c6tb02316a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A study was performed to investigate the relationship between molecular structure and G4 sensing ability for a series of iridium(iii) complexes. The complex7was used to construct a G4-based assay for RNase H.
Collapse
Affiliation(s)
- Lihua Lu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- Department of Chemistry
| | - Wanhe Wang
- Department of Chemistry
- Hong Kong Baptist University
- Hong Kong
- China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Hong Kong
- China
| |
Collapse
|
43
|
Zhang J, Wu DZ, Cai SX, Chen M, Xia YK, Wu F, Chen JH. An immobilization-free electrochemical impedance biosensor based on duplex-specific nuclease assisted target recycling for amplified detection of microRNA. Biosens Bioelectron 2016; 75:452-7. [DOI: 10.1016/j.bios.2015.09.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
|
44
|
Gao X, Xu LP, Wu T, Wen Y, Ma X, Zhang X. An enzyme-amplified lateral flow strip biosensor for visual detection of MicroRNA-224. Talanta 2016; 146:648-54. [DOI: 10.1016/j.talanta.2015.06.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/15/2015] [Accepted: 06/20/2015] [Indexed: 12/21/2022]
|
45
|
Electrochemical biosensor for microRNA detection based on hybridization protection against nuclease S1 digestion. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-3005-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Palaniappan A, Cheema JA, Rajwar D, Ammanath G, Xiaohu L, Koon LS, Yi W, Yildiz UH, Liedberg B. Polythiophene derivative on quartz resonators for miRNA capture and assay. Analyst 2015; 140:7912-7. [PMID: 26478920 DOI: 10.1039/c5an01663k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel approach for miRNA assay using a cationic polythiophene derivative, poly[3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrobromide] (PT), immobilized on a quartz resonator is proposed. The cationic PT enables capturing of all RNA sequences in the sample matrix via electrostatic interactions, resulting in the formation of PT-RNA duplex structures on quartz resonators. Biotinylated peptide nucleic acid (b-PNA) sequences are subsequently utilized for the RNA assay, upon monitoring the PT-RNA-b-PNA triplex formation. Signal amplification is achieved by anchoring avidin coated nanoparticles to b-PNA in order to yield responses at clinically relevant concentration regimes. Unlike conventional nucleic acid assay methodologies that usually quantify a specific sequence of RNA, the proposed approach enables the assay of any RNA sequence in the sample matrix upon hybridization with a PNA sequence complementary to the RNA of interest. As an illustration, successful detection of mir21, (a miRNA sequence associated with lung cancer) is demonstrated with a limit of detection of 400 pM. Furthermore, precise quantification of mir21 in plasma samples is demonstrated without requiring PCR and sophisticated instrumentation.
Collapse
Affiliation(s)
- Al Palaniappan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen Y, Xiang Y, Yuan R, Chai Y. Intercalation of quantum dots as the new signal acquisition and amplification platform for sensitive electrochemiluminescent detection of microRNA. Anal Chim Acta 2015; 891:130-5. [DOI: 10.1016/j.aca.2015.07.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 11/17/2022]
|
48
|
A hybrid chimeric system for versatile and ultra-sensitive RNase detection. Sci Rep 2015; 5:9558. [PMID: 25828752 PMCID: PMC4381352 DOI: 10.1038/srep09558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/11/2015] [Indexed: 12/21/2022] Open
Abstract
We developed a new versatile strategy that allows the detection of several classes of RNases (i.e., targeting ss- or ds-RNA, DNA/RNA hetero-hybrid or junctions) with higher sensitivity than existing assays. Our two-step approach consists of a DNA-RNA-DNA chimeric Hairpin Probe (cHP) conjugated to magnetic microparticles and containing a DNAzyme sequence in its terminal region, and molecular beacons for fluorescence signal generation. In the first step, the digestion of the RNA portion of the cHP sequences in presence of RNases leads to the release of multiple copies of the DNAzyme in solution. Then, after magnetic washing, each DNAzyme molecule elicits the catalytic cleavage of numerous molecular beacons, providing a strong amplification of the overall sensitivity of the assay. We successfully applied our approach to detect very low concentrations of RNase A, E. coli RNase I, and RNase H. Furthermore, we analyzed the effect of two antibiotics (penicillin and streptomycin) on RNase H activity, demonstrating the applicability of our strategy for the screening of inhibitors. Finally, we exploited our system to detect RNase activity directly in crude biological samples (i.e., blood and saliva) and in cell culture medium, highlighting its suitability as cheap and sensitive tool for the detection of RNase levels.
Collapse
|
49
|
Cheng FF, He TT, Miao HT, Shi JJ, Jiang LP, Zhu JJ. Electron transfer mediated electrochemical biosensor for microRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2979-2985. [PMID: 25588109 DOI: 10.1021/am508690x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) have emerged as new candidates as diagnostic and prognostic biomarkers for the detection of a wide variety of cancers; thus, sensitive and selective detection of microRNAs is significant for early-phase cancer diagnosis and disease prevention. A novel and simple electrochemical miRNA biosensor was developed using Cd(2+)-modified titanium phosphate nanoparticles as signal unit, two DNA as capture probes, and Ru(NH3)6(3+) as electron transfer mediator. Large quantities of cadmium ions were mounted in titanium phosphate spheres to output the electrochemical signal. Because of the presence of Ru(NH3)6(3+) molecules that interacted with DNA base-pairs as electron wire, the electrochemical signal significantly increased more than 5 times. This approach achieved a wide dynamic linear range from 1.0 aM to 10.0 pM with an ultralow limit detection of 0.76 aM, exerting a substantial enhancement in sensitivity. Moreover, the proposed biosensor was sufficiently selective to discriminate the target miRNAs from homologous miRNAs and could be used for rapid and direct analysis of miRNAs in human serum. Therefore, this strategy provides a new and ultrasensitive platform for miRNA expression profiling in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Fang-Fang Cheng
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | | | | | | | | | | |
Collapse
|
50
|
Zhang J, Wu D, Chen Q, Chen M, Xia Y, Cai S, Zhang X, Wu F, Chen J. Label-free microRNA detection based on terbium and duplex-specific nuclease assisted target recycling. Analyst 2015; 140:5082-9. [DOI: 10.1039/c5an01042j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we describe a novel label-free fluorescence method for microRNA-21 (miR-21) detection based on terbium (Tb3+) and duplex-specific nuclease (DSN) assisted target recycling.
Collapse
Affiliation(s)
- Jing Zhang
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology
- and College of Life Sciences
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Dongzhi Wu
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - QiuXiang Chen
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - Mei Chen
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - Yaokun Xia
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - Shuxian Cai
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - Xi Zhang
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - Fang Wu
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis
- The School of Pharmacy
- Fujian Medical University
- Fuzhou
- China
| |
Collapse
|