1
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Active Opioid Antinociceptive Principles for Medicinal Chemistry and Drug Design. Molecules 2023; 28:7089. [PMID: 37894567 PMCID: PMC10609244 DOI: 10.3390/molecules28207089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pain continues to be an enormous global health challenge, with millions of new untreated or inadequately treated patients reported annually. With respect to current clinical applications, opioids remain the mainstay for the treatment of pain, although they are often associated with serious side effects. To optimize their tolerability profiles, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery, and they hold potential for pain management. Traditional medicine has had a long history in clinical practice due to the fact that nature provides a rich source of active principles. For instance, opium had been used for pain management until the 19th century when its individual components, such as morphine, were purified and identified. In this review article, we conducted a literature survey aimed at identifying natural products interacting either directly with opioid receptors or indirectly through other mechanisms controlling opioid receptor signaling, whose structures could be interesting from a drug design perspective.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, Via Santa Sofia n. 97, 95100 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Carmela Parenti
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
2
|
Puls K, Wolber G. Solving an Old Puzzle: Elucidation and Evaluation of the Binding Mode of Salvinorin A at the Kappa Opioid Receptor. Molecules 2023; 28:718. [PMID: 36677775 PMCID: PMC9861206 DOI: 10.3390/molecules28020718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
The natural product Salvinorin A (SalA) was the first nitrogen-lacking agonist discovered for the opioid receptors and exhibits high selectivity for the kappa opioid receptor (KOR) turning SalA into a promising analgesic to overcome the current opioid crisis. Since SalA's suffers from poor pharmacokinetic properties, particularly the absence of gastrointestinal bioavailability, fast metabolic inactivation, and subsequent short duration of action, the rational design of new tailored analogs with improved clinical usability is highly desired. Despite being known for decades, the binding mode of SalA within the KOR remains elusive as several conflicting binding modes of SalA were proposed hindering the rational design of new analgesics. In this study, we rationally determined the binding mode of SalA to the active state KOR by in silico experiments (docking, molecular dynamics simulations, dynophores) in the context of all available mutagenesis studies and structure-activity relationship (SAR) data. To the best of our knowledge, this is the first comprehensive evaluation of SalA's binding mode since the determination of the active state KOR crystal structure. SalA binds above the morphinan binding site with its furan pointing toward the intracellular core while the C2-acetoxy group is oriented toward the extracellular loop 2 (ECL2). SalA is solely stabilized within the binding pocket by hydrogen bonds (C210ECL2, Y3127.35, Y3137.36) and hydrophobic contacts (V1182.63, I1393.33, I2946.55, I3167.39). With the disruption of this interaction pattern or the establishment of additional interactions within the binding site, we were able to rationalize the experimental data for selected analogs. We surmise the C2-substituent interactions as important for SalA and its analogs to be experimentally active, albeit with moderate frequency within MD simulations of SalA. We further identified the non-conserved residues 2.63, 7.35, and 7.36 responsible for the KOR subtype selectivity of SalA. We are confident that the elucidation of the SalA binding mode will promote the understanding of KOR activation and facilitate the development of novel analgesics that are urgently needed.
Collapse
Affiliation(s)
| | - Gerhard Wolber
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| |
Collapse
|
3
|
Borah B, Dhar Dwivedi K, Chowhan LR. 4‐Hydroxycoumarin: A Versatile Substrate for Transition‐metal‐free Multicomponent Synthesis of Bioactive Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - Kartikey Dhar Dwivedi
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - L. Raju Chowhan
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| |
Collapse
|
4
|
Wang N, Xin H, Xu P, Yu Z, Shou D. Erxian Decoction Attenuates TNF-α Induced Osteoblast Apoptosis by Modulating the Akt/Nrf2/HO-1 Signaling Pathway. Front Pharmacol 2019; 10:988. [PMID: 31551787 PMCID: PMC6748068 DOI: 10.3389/fphar.2019.00988] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Erxian decoction (EXD), a traditional Chinese medicine formula, has been used for treatment of osteoporosis for many years. The purpose of this study was to investigate the pharmacological effect of EXD in preventing osteoblast apoptosis and the underlying mechanism of prevention. Putative targets of EXD were predicted by network pharmacology, and functional and pathway enrichment analyses were also performed. Evaluations of bone mineral density, serum estradiol level, trabecular area fraction, serum calcium levels, and tumor necrosis factor (TNF)-α levels in ovariectomized rats, as well as cell proliferation assays, apoptosis assays, and western blotting in MC3T3-E1 osteoblasts were performed for further experimental validation. Ninety-three active ingredients in the EXD formula and 259 potential targets were identified. Functional and pathway enrichment analyses indicated that EXD significantly influenced the PI3K-Akt signaling pathway. In vivo experiments indicated that EXD treatment attenuated bone loss and decreased TNF-α levels in rats with osteoporosis. In vitro experiments showed that EXD treatment increased cell viability markedly and decreased levels of caspase-3 and the rate of apoptosis. It also promoted phosphorylation of Akt, nuclear translocation of transcription factor NF-erythroid 2-related factor (Nrf2), and hemeoxygenase-1 (HO-1) expression in TNF-α-induced MC3T3-E1 cells. Our results suggest that EXD exerted profound anti-osteoporosis effects, at least partially by reducing production of TNF-α and attenuating osteoblast apoptosis via Akt/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Nani Wang
- Department of Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- School of Pharmacy, Zhejiang Chinese Medical University, China
| | - Hailiang Xin
- School of Pharmacy, Second Military Medical University, China
| | - Pingcui Xu
- Department of Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
- School of Pharmacy, Zhejiang Chinese Medical University, China
| | - Zhongming Yu
- Department of Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Dan Shou
- Department of Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Roach JJ, Shenvi RA. A review of salvinorin analogs and their kappa-opioid receptor activity. Bioorg Med Chem Lett 2018; 28:1436-1445. [PMID: 29615341 PMCID: PMC5912166 DOI: 10.1016/j.bmcl.2018.03.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/23/2022]
Abstract
The plant metabolite salvinorin A potently and selectively agonizes the human kappa-opioid receptor, an emerging target for next-generation analgesics. Here we review analogs of the salvinorin chemotype and their effects on selectivity, affinity and potency. Extensive peripheral modifications using isolated salvinorin A have delivered a trove of SAR information. More deep-seated changes are now possible by advances in chemical synthesis.
Collapse
Affiliation(s)
- Jeremy J Roach
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Line NJ, Burns AC, Butler SC, Casbohm J, Forsyth CJ. Total Synthesis of (-)-Salvinorin A. Chemistry 2016; 22:17983-17986. [PMID: 27758012 DOI: 10.1002/chem.201604853] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Indexed: 11/09/2022]
Abstract
Salvinorin A (1) is natural hallucinogen that binds the human κ-opioid receptor. A total synthesis has been developed that parlays the stereochemistry of l-(+)-tartaric acid into that of (-)-1 via an unprecedented allylic dithiane intramolecular Diels-Alder reaction to obtain the trans-decalin scaffold. Tsuji allylation set the C9 quaternary center and a late-stage stereoselective chiral ligand-assisted addition of a 3-titanium furan upon a C12 aldehyde/C17 methyl ester established the furanyl lactone moiety. The tartrate diol was finally converted into the C1,C2 keto-acetate.
Collapse
Affiliation(s)
- Nathan J Line
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH, 43210, USA
| | - Aaron C Burns
- Dart NeuroScience LLC, 12278 Scripps Summit Dr., San Diego, CA, 92131, USA
| | - Sean C Butler
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX, 75799, USA
| | - Jerry Casbohm
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH, 43210, USA
| | - Craig J Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH, 43210, USA
| |
Collapse
|
7
|
El-Khoury J, Sahakian N. The Association of Salvia divinorum and Psychotic Disorders: A Review of the Literature and Case Series. J Psychoactive Drugs 2015; 47:286-92. [PMID: 26317561 DOI: 10.1080/02791072.2015.1073815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The association of substance abuse and psychotic disorders is of interest to clinicians, academics, and lawmakers. Commonly abused substances, such as cannabis, cocaine, amphetamines, and alcohol, have all been associated with substance-induced psychosis. Hallucinogens can induce desired psychedelic effects and undesirable psychomimetic reactions. These are usually transient and resolve once the duration of action is over. Sometimes, these effects persist, causing distress and requiring intervention. This article focuses on the hallucinogenic substance Salvia divinorum, the use of which has been observed, particularly among youth worldwide. We present background information based on a review of the literature and on our own clinical encounters, as highlighted by two original case reports. We hypothesize that consumption of Salvia divinorum could be associated with the development of psychotic disorders. We propose that clinicians routinely inquire about the use of Salvia in patients with substance use disorders or psychotic illnesses. More research is required to assess any relationship between Salvia divinorum and psychosis. Additionally, we advocate increased public and medical awareness of this substance and other emerging drugs of abuse.
Collapse
Affiliation(s)
- Joseph El-Khoury
- a Consultant Adult and Addiction Psychiatrist, Department of Psychiatry , American University of Beirut Medical Center , Beirut , Lebanon
| | - Nayiri Sahakian
- b PGY-4 Psychiatry, Department of Psychiatry and Clinical Psychology , St. George Hospital University Medical Center , Beirut , Lebanon
| |
Collapse
|
8
|
Salvinorin A content in legal high products of Salvia divinorum sold in Mexico. Forensic Sci Int 2015; 249:197-201. [DOI: 10.1016/j.forsciint.2015.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 11/17/2022]
|
9
|
Rijo P, Duarte A, Francisco AP, Semedo-Lemsaddek T, Simões MF. In vitro
Antimicrobial Activity of Royleanone Derivatives Against Gram-Positive Bacterial Pathogens. Phytother Res 2013; 28:76-81. [DOI: 10.1002/ptr.4961] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Patrícia Rijo
- Faculdade de Farmácia da Universidade de Lisboa; Research Institute of Medicines and Pharmaceutical Sciences - iMed.UL; Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
- CBios - Research Center for Health Sciences & Technologies (Lab. Pharmacology and Therapeutics); Universidade Lusófona; Campo Grande 376 1749-024 Lisboa Portugal
| | - Aida Duarte
- Faculdade de Farmácia da Universidade de Lisboa; Research Institute of Medicines and Pharmaceutical Sciences - iMed.UL; Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Ana Paula Francisco
- Faculdade de Farmácia da Universidade de Lisboa; Research Institute of Medicines and Pharmaceutical Sciences - iMed.UL; Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| | - Teresa Semedo-Lemsaddek
- Faculdade de Medicina Veterinária, Centro de Investigação Interdisciplinar em Sanidade Animal; Universidade Técnica de Lisboa; Av. da Universidade Técnica 1300-477 Lisboa Portugal
| | - Maria Fátima Simões
- Faculdade de Farmácia da Universidade de Lisboa; Research Institute of Medicines and Pharmaceutical Sciences - iMed.UL; Av. Prof. Gama Pinto 1649-003 Lisboa Portugal
| |
Collapse
|
10
|
Ichikawa A, Ono H, Mikata Y. Crystal structures of Mosher's salt and ester elucidated by X-ray crystallography. CrystEngComm 2013. [DOI: 10.1039/c3ce41160e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Lovell KM, Vasiljevik T, Araya JJ, Lozama A, Prevatt-Smith KM, Day VW, Dersch CM, Rothman RB, Butelman ER, Kreek MJ, Prisinzano TE. Semisynthetic neoclerodanes as kappa opioid receptor probes. Bioorg Med Chem 2012; 20:3100-10. [PMID: 22464684 DOI: 10.1016/j.bmc.2012.02.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 12/01/2022]
Abstract
Modification of the furan ring of salvinorin A (1), the main active component of Salvia divinorum, has resulted in novel neoclerodane diterpenes with opioid receptor affinity and activity. Conversion of the furan ring to an aldehyde at the C-12 position (5) has allowed for the synthesis of analogues with new carbon-carbon bonds at that position. Previous methods for forming these bonds, such as Grignard and Stille conditions, have met with limited success. We report a palladium catalyzed Liebeskind-Srogl cross-coupling reaction of a thioester and a boronic acid that occurs at neutral pH and ambient temperature to produce ketone analogs at C-12. To the best of our knowledge, this is the first reported usage of the Liebeskind-Srogl reaction to diversify a natural product scaffold. We also describe a one-step protocol for the conversion of 1 to 12-epi-1 (3) through microwave irradiation. Previously, this synthetically challenging process has required multiple steps. Additionally, we report in this study that alkene 9 and aromatic analogues 12, 19, 23, 25, and 26 were discovered to retain affinity and selectivity at kappa opioid receptors (KOP). Finally, we report that the furan-2-yl analog of 1 (31) has similar affinity to 1. Collectively, these findings suggest that different aromatic groups appended directly to the decalin core may be well tolerated by KOP receptors, and may generate further ligands with affinity and activity at KOP receptors.
Collapse
Affiliation(s)
- Kimberly M Lovell
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Prevatt-Smith KM, Lovell KM, Simpson DS, Day VW, Douglas JT, Bosch P, Dersch CM, Rothman RB, Kivell B, Prisinzano TE. Potential Drug Abuse Therapeutics Derived from the Hallucinogenic Natural Product Salvinorin A. MEDCHEMCOMM 2011; 2:1217-1222. [PMID: 22442751 PMCID: PMC3307802 DOI: 10.1039/c1md00192b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous structure-activity relationship studies of salvinorin A have shown that modification of the acetate functionality off the C-2 position to a methoxy methyl or methoxy ethyl ether moiety leads to increased potency at KOP receptors. However, the reason for this increase remains unclear. Here we report our efforts towards the synthesis and evaluation of C-2 constrained analogs of salvinorin A. These analogs were evaluated at opioid receptors in radioligand binding experiments as well as in the GTP-γ-S functional assay. One compound, 5, was found to have affinity and potency at κ opioid (KOP) receptors comparable to salvinorin A. In further studies, 5 was found to attenuate cocaine-induced drug seeking behavior in rats comparably to salvinorin A. This finding represents the first example of a salvinorin A analog that has demonstrated anti-addictive capabilities.
Collapse
Affiliation(s)
- Katherine M. Prevatt-Smith
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, KS 66045
| | - Kimberly M. Lovell
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, KS 66045
| | - Denise S. Simpson
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, KS 66045
| | - Victor W. Day
- Small Molecule X-Ray Crystallography Lab, University of Kansas, 1251 Wescoe Hall Drive, Malott 6044, Lawrence, KS 66045
| | - Justin T. Douglas
- Nuclear Magnetic Resonance Laboratory, University of Kansas, 1251 Wescoe Hall Drive, Malott 3002, Lawrence, KS 66045
| | - Peter Bosch
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Christina M. Dersch
- Clinical Psychopharmacology Section, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Triad Building, Suite 4400, Baltimore, MD 21224
| | - Richard B. Rothman
- Clinical Psychopharmacology Section, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Triad Building, Suite 4400, Baltimore, MD 21224
| | - Bronwyn Kivell
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Thomas E. Prisinzano
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, KS 66045
| |
Collapse
|
13
|
Lovell KM, Prevatt-Smith KM, Lozama A, Prisinzano TE. Synthesis of neoclerodane diterpenes and their pharmacological effects. Top Curr Chem (Cham) 2011; 299:141-85. [PMID: 21630517 DOI: 10.1007/128_2010_82] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Salvinorin A is a neoclerodane diterpene that has been shown to be an agonist at kappa opioid receptors. Its unique structure makes it an attractive target for synthetic organic chemists due to its seven chiral centers and diterpene scaffold. This molecule is also interesting to pharmacologists because it is a non-serotonergic hallucinogen, and the first opioid ligand discovered that lacks a basic nitrogen. There have been several total synthesis approaches to salvinorin A, and these will be detailed within this chapter. Additionally, research efforts have concentrated on structure modification of the salvinorin A scaffold through semi-synthetic methods. Most modifications have focused on the manipulation of the acetate at C-2 and the furan ring. However, chemistry has also been developed to generate analogs at the C-1 ketone, the C-4 methyl ester, and the C-17 lactone. The synthetic methodologies developed for the salvinorin A scaffold will be described, as well as specific analogs with interesting biological activities.
Collapse
Affiliation(s)
- Kimberly M Lovell
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045-7582, USA
| | | | | | | |
Collapse
|
14
|
Lozama A, Cunningham CW, Caspers MJ, Douglas JT, Dersch CM, Rothman RB, Prisinzano TE. Opioid receptor probes derived from cycloaddition of the hallucinogen natural product salvinorin A. JOURNAL OF NATURAL PRODUCTS 2011; 74:718-726. [PMID: 21338114 PMCID: PMC3081938 DOI: 10.1021/np1007872] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
As part of our continuing efforts toward more fully understanding the structure-activity relationships of the neoclerodane diterpene salvinorin A, we report the synthesis and biological characterization of unique cycloadducts through [4+2] Diels-Alder cycloaddition. Microwave-assisted methods were developed and successfully employed, aiding in functionalizing the chemically sensitive salvinorin A scaffold. This demonstrates the first reported results for both cycloaddition of the furan ring and functionalization via microwave-assisted methodology of the salvinorin A skeleton. The cycloadducts yielded herein introduce electron-withdrawing substituents and bulky aromatic groups into the C-12 position. Kappa opioid (KOP) receptor space was explored through aromatization of the bent oxanorbornadiene system possessed by the cycloadducts to a planar phenyl ring system. Although dimethyl- and diethylcarboxylate analogues 5 and 6 retain some affinity and selectivity for KOP receptors and are full agonists, their aromatized counterparts 13 and 14 have reduced affinity for KOP receptors. The methods developed herein signify a novel approach toward rapidly probing the structure-activity relationships of furan-containing natural products.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas E. Prisinzano
- To whom correspondence should be addressed: Tel: (785) 864-3267. Fax: (785) 864-5326.
| |
Collapse
|
15
|
Cunningham CW, Rothman RB, Prisinzano TE. Neuropharmacology of the naturally occurring kappa-opioid hallucinogen salvinorin A. Pharmacol Rev 2011; 63:316-47. [PMID: 21444610 DOI: 10.1124/pr.110.003244] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Salvia divinorum is a perennial sage native to Oaxaca, Mexico, that has been used traditionally in divination rituals and as a treatment for the "semimagical" disease panzón de borrego. Because of the intense "out-of-body" experiences reported after inhalation of the pyrolized smoke, S. divinorum has been gaining popularity as a recreational hallucinogen, and the United States and several other countries have regulated its use. Early studies isolated the neoclerodane diterpene salvinorin A as the principal psychoactive constituent responsible for these hallucinogenic effects. Since the finding that salvinorin A exerts its potent psychotropic actions through the activation of KOP receptors, there has been much interest in elucidating the underlying mechanisms behind its effects. These effects are particularly remarkable, because 1) salvinorin A is the first reported non-nitrogenous opioid receptor agonist, and 2) its effects are not mediated by the 5-HT(2A) receptor, the classic target of hallucinogens such as lysergic acid diethylamide and mescaline. Rigorous investigation into the structural features of salvinorin A responsible for opioid receptor affinity and selectivity has produced numerous receptor probes, affinity labels, and tools for evaluating the biological processes responsible for its observed psychological effects. Salvinorin A has therapeutic potential as a treatment for pain, mood and personality disorders, substance abuse, and gastrointestinal disturbances, and suggests that nonalkaloids are potential scaffolds for drug development for aminergic G-protein coupled receptors.
Collapse
|