1
|
McGarry J, Mintmier B, Metzger MC, Giri NC, Britt N, Basu P, Wilcoxen J. Insights into periplasmic nitrate reductase function under single turnover. J Biol Inorg Chem 2024; 29:811-819. [PMID: 39633165 DOI: 10.1007/s00775-024-02087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Nitrate reductases play pivotal roles in nitrogen metabolism by leveraging the molybdopterin cofactor to facilitate the reduction of nitrate to nitrite. Periplasmic nitrate reductases (NapA) utilize nitrate as a terminal electron acceptor when oxygen is limiting, helping to drive anaerobic metabolism in bacteria. Despite extensive research into NapA homologs, open questions about the mechanism remain especially at the molecular level. More broadly, little is understood of how the molybdopterin cofactor is tuned for catalysis in these enzymes enabling broad substrate scope and reactivity observed in molybdenum-containing enzymes. Here, we have prepared NapA from Campylobacter jejuni under single turnover conditions to generate a singly reduced enzyme that can be further examined by electron paramagnetic resonance (EPR) spectroscopy. Our results provide new context into the known spectra and related structures of NapA and related enzymes. These insights open new avenues for understanding nitrate reductase mechanisms, molybdenum coordination dynamics, and the role of pyranopterin ligands in catalysis.
Collapse
Affiliation(s)
- Jennifer McGarry
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA
| | - Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Mikayla C Metzger
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nitai C Giri
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nicholas Britt
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA.
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
2
|
Nemykin VN, Sabin JR, Kail BW, Upadhyay A, Hendrich MP, Basu P. Influence of the ligand-field on EPR parameters of cis- and trans-isomers in Mo V systems relevant to molybdenum enzymes: Experimental and density functional theory study. J Inorg Biochem 2023; 245:112228. [PMID: 37149488 PMCID: PMC10330323 DOI: 10.1016/j.jinorgbio.2023.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
The electron paramagnetic resonance (EPR) investigation of mononuclear cis- and trans-(L1O)MoOCl2 complexes [L1OH = bis(3,5-dimethylpyrazolyl)-3-tert-butyl-2-hydroxy-5-methylphenyl)methane] reveals a significant difference in their spin Hamiltonian parameters which reflect different equatorial and axial ligand fields created by the heteroscorpionate donor atoms. Density functional theory (DFT) was used to calculate the values of principal components and relative orientations of the g and A tensors, and the molecular framework in four pairs of isomeric mononuclear oxo‑molybdenum(V) complexes (cis- and trans-(L1O)MoOCl2, cis,cis- and cis,trans-(L-N2S2)MoOCl [L-N2S2H2 = N,N'-dimethyl-N,N'-bis(mercaptophenyl)ethylenediamine], cis,cis- and cis,trans-(L-N2S2)MoO(SCN), and cis- and trans-[(dt)2MoO(OMe)]2- [dtH2 = 2,3-dimercapto-2-butene]). Scalar relativistic DFT calculations were conducted using three different exchange-correlation functionals. It was found that the use of hybrid exchange-correlation functional with 25% of the Hartree-Fock exchange leads to the best quantitative agreement between theory and experiment. A simplified ligand-field approach was used to analyze the influence of the ligand fields in all cis- and trans-isomers on energies and contributions of molybdenum d-orbital manifold to g and A tensors and relative orientations. Specifically, contributions that originated from the spin-orbit coupling of the dxz, dyz, and dx2-y2 orbitals into the ground state have been discussed. The new findings are discussed in the context of the experimental data of mononuclear molybdoenzyme, DMSO reductase.
Collapse
Affiliation(s)
- Victor N Nemykin
- Department of Chemistry, University of Tennessee - Knoxville, Knoxville, TN 37996, USA; Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Jared R Sabin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Brian W Kail
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15216, USA
| | - Anup Upadhyay
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15216, USA; Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Bykowski J, Turnbull D, Hahn N, Boeré RT, Wetmore SD, Gerken M. Lewis Acid Behavior of MoF 5 and MoOF 4: Syntheses and Characterization of MoF 5(NCCH 3), MoF 5(NC 5H 5) n, and MoOF 4(NC 5H 5) n ( n = 1, 2). Inorg Chem 2021; 60:15695-15711. [PMID: 34609865 DOI: 10.1021/acs.inorgchem.1c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Lewis acid-base adducts MoF5(NC5H5)n and MoOF4(NC5H5)n (n = 1, 2) were synthesized from the reactions of MoF5 and MoOF4 with C5H5N and structurally characterized by X-ray crystallography. Whereas the crystal structures of MoF5(NC5H5)2 and MoOF4(NC5H5)2 are isomorphous containing pentagonal-bipyramidal molecules, the fluorido-bridged, heptacoordinate [MoF5(NC5H5)]2 dimer differs starkly from monomeric, hexacoordinate MoOF4(NC5H5). For the weaker Lewis base CH3CN, only the 1:1 adduct, MoF5(NCCH3), could be isolated. All adducts were characterized by Raman spectroscopy in conjunction with vibrational frequency calculations. Multinuclear NMR spectroscopy revealed an unprecedented isomerism of MoOF4(NC5H5)2 in solution, with the pyridyl ligands occupying adjacent or nonadjacent positions in the equatorial plane of the pentagonal bipyramid. Paramagnetic MoF5(NC5H5)2 was characterized by electron paramagnetic resonance (EPR) spectroscopy as a dispersion in solid adamantane as well as in a diamagnetic host lattice of MoOF4(NC5H5)2; EPR parameters were computed using ZORA with the BPW91 functional using relativistic all-electron wave functions for Mo and simulated using EasySpin. Density functional theory calculations (B3LYP) and natural bond orbital analyses were conducted to elucidate the distinctive bonding and structural properties of all adducts reported herein and explore fundamental differences observed in the Lewis acid behavior of MoF5 and MoOF4.
Collapse
Affiliation(s)
- Janelle Bykowski
- Canadian Centre for Research in Advanced Fluorine Technologies and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4Canada
| | - Douglas Turnbull
- Canadian Centre for Research in Advanced Fluorine Technologies and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4Canada
| | - Nolan Hahn
- Canadian Centre for Research in Advanced Fluorine Technologies and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4Canada
| | - René T Boeré
- Canadian Centre for Research in Advanced Fluorine Technologies and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4Canada
| | - Stacey D Wetmore
- Canadian Centre for Research in Advanced Fluorine Technologies and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4Canada
| | - Michael Gerken
- Canadian Centre for Research in Advanced Fluorine Technologies and Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4Canada
| |
Collapse
|
4
|
Normand AT, Bonnin Q, Brandès S, Richard P, Fleurat-Lessard P, Devillers CH, Balan C, Le Gendre P, Kehr G, Erker G. The Taming of Redox-Labile Phosphidotitanocene Cations. Chemistry 2019; 25:2803-2815. [PMID: 30506743 DOI: 10.1002/chem.201805430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Indexed: 11/06/2022]
Abstract
Tame d0 phosphidotitanocene cations stabilized with a pendant tertiary phosphane arm are reported. These compounds were obtained by one-electron oxidation of d1 precursors with [Cp2 Fe][BPh4 ]. The electronic structure of these compounds was studied experimentally (EPR, UV/Vis, and NMR spectroscopy, X-ray diffraction analysis) and through DFT calculations. The theoretical analysis of the bonding situation by using the electron localization function (ELF) shows the presence of π-interactions between the phosphido ligand and Ti in the d0 complexes, whereas dπ-pπ repulsion prevents such interactions in the d1 complexes. In addition, CH-π interactions were observed in several complexes, both in solution and in the solid state, between the phosphido ligand and the phosphane arm. The d0 complexes were found to be light sensitive, and decompose through Ti-P bond homolysis to give TiIII species. A naked d0 phosphidotitanocene cation has been trapped by reaction with diphenylacetylene, yielding a Ti/P frustrated Lewis pair (FLP), which was found to be less reactive than a previously reported Zr analog.
Collapse
Affiliation(s)
- Adrien T Normand
- ICMUB, UMR CNRS 6302, Université de Bourgogne, UFR sciences et techniques, 9 rue Alain Savary-BP 47870, 21078, Dijon Cedex, France
| | - Quentin Bonnin
- ICMUB, UMR CNRS 6302, Université de Bourgogne, UFR sciences et techniques, 9 rue Alain Savary-BP 47870, 21078, Dijon Cedex, France
| | - Stéphane Brandès
- ICMUB, UMR CNRS 6302, Université de Bourgogne, UFR sciences et techniques, 9 rue Alain Savary-BP 47870, 21078, Dijon Cedex, France
| | - Philippe Richard
- ICMUB, UMR CNRS 6302, Université de Bourgogne, UFR sciences et techniques, 9 rue Alain Savary-BP 47870, 21078, Dijon Cedex, France
| | - Paul Fleurat-Lessard
- ICMUB, UMR CNRS 6302, Université de Bourgogne, UFR sciences et techniques, 9 rue Alain Savary-BP 47870, 21078, Dijon Cedex, France
| | - Charles H Devillers
- ICMUB, UMR CNRS 6302, Université de Bourgogne, UFR sciences et techniques, 9 rue Alain Savary-BP 47870, 21078, Dijon Cedex, France
| | - Cédric Balan
- ICMUB, UMR CNRS 6302, Université de Bourgogne, UFR sciences et techniques, 9 rue Alain Savary-BP 47870, 21078, Dijon Cedex, France
| | - Pierre Le Gendre
- ICMUB, UMR CNRS 6302, Université de Bourgogne, UFR sciences et techniques, 9 rue Alain Savary-BP 47870, 21078, Dijon Cedex, France
| | - Gerald Kehr
- Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
5
|
Lerayer E, Renaut P, Brandès S, Cattey H, Fleurat-Lessard P, Bouhadir G, Bourissou D, Hierso JC. Planar-Chiral 1,1'-Diboryl Metallocenes: Diastereoselective Synthesis from Boryl Cyclopentadienides and Spin Density Analysis of a Diborylcobaltocene. Inorg Chem 2017; 56:1966-1973. [PMID: 28139922 DOI: 10.1021/acs.inorgchem.6b02510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of nonsubstituted alkali metal cyclopentadienides with haloboranes leads to ∼90:10 mixtures of isomeric diene products that can be deprotonated to give simple boryl cyclopentadienides. We extended this transformation to the sterically hindered lithium tert-butylcyclopentadienide 1 using FBMes2 (Mes = 2,4,6-trimethylphenyl) and ClBCy2 as electrophiles. The boryl group is selectively introduced in the remote position to minimize steric congestion. The new boryl dienes are obtained as mixtures of isomers, and subsequent deprotonation with MeLi or LiHMDS affords the lithium 1,3-disubstituted cyclopentadienides 5a,b in yields over 95%. Direct assembling of tert-butylated boryl cyclopentadienides with MCl2 (M = Fe, Co) selectively leads to 1,1'-planar chiral ferrocenes 6a,b and cobaltocene 7. To shed light into the diastereoselective formation of 6a, DFT calculations were performed. The potential energy surface was scrutinized so as to identify and compare its diastereoisomers and conformers. This stereoselectivity is attributed to minimized steric repulsions between the tert-butyl and the BMes2 groups in the eclipsed conformation of the racemic diastereoisomers. The X-ray structures of boryl diene 2a and diboryl ferrocene 6a are reported. The electronic structure of cobaltocene 7 was analyzed by EPR and DFT calculations. The spin density of this unique open-shell complex is mainly localized on the Co center, but significant spin density is also found on the boron atoms, indicating substantial delocalization of the unpaired electron over the Lewis acid moieties. Consistently, the singly occupied molecular orbital is a combination of a Co-centered 3d orbital with π(BC) orbitals on each CpBMes2 rings. There is only weak, if any, direct M···B interaction in 6 and 7.
Collapse
Affiliation(s)
- Emmanuel Lerayer
- Université de Bourgogne Franche-Comté , Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB UMR 6302 CNRS), 9 Avenue Alain Savary, 21078 Dijon, France
| | - Patrice Renaut
- Université de Bourgogne Franche-Comté , Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB UMR 6302 CNRS), 9 Avenue Alain Savary, 21078 Dijon, France
| | - Stéphane Brandès
- Université de Bourgogne Franche-Comté , Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB UMR 6302 CNRS), 9 Avenue Alain Savary, 21078 Dijon, France
| | - Hélène Cattey
- Université de Bourgogne Franche-Comté , Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB UMR 6302 CNRS), 9 Avenue Alain Savary, 21078 Dijon, France
| | - Paul Fleurat-Lessard
- Université de Bourgogne Franche-Comté , Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB UMR 6302 CNRS), 9 Avenue Alain Savary, 21078 Dijon, France
| | - Ghenwa Bouhadir
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier/CNRS UMR 5069 , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier/CNRS UMR 5069 , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Jean-Cyrille Hierso
- Université de Bourgogne Franche-Comté , Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB UMR 6302 CNRS), 9 Avenue Alain Savary, 21078 Dijon, France.,Institut Universitaire de France (IUF) , 103 Boulevard Saint Michel, 75005 Paris Cedex, France
| |
Collapse
|
6
|
Young CG. Chemical systems modeling the d1 Mo(V) states of molybdenum enzymes. J Inorg Biochem 2016; 162:238-252. [PMID: 27432259 DOI: 10.1016/j.jinorgbio.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/14/2016] [Accepted: 06/03/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Charles G Young
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
7
|
Doonan CJ, Gourlay C, Nielsen DJ, Ng VWL, Smith PD, Evans DJ, George GN, White JM, Young CG. d(1) Oxosulfido-Mo(V) Compounds: First Isolation and Unambiguous Characterization of an Extended Series. Inorg Chem 2015; 54:6386-96. [PMID: 26046577 DOI: 10.1021/acs.inorgchem.5b00708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaction of Tp(iPr)Mo(VI)OS(OAr) with cobaltocene in toluene results in the precipitation of brown, microcrystalline oxosulfido-Mo(V) compounds, [CoCp2][Tp(iPr)Mo(V)OS(OAr)] (Cp(-) = η(5)-C5H5(-), Tp(iPr)(-) = hydrotris(3-isopropylpyrazol-1-yl)borate, OAr(-) = phenolate or 2-(s)Bu, 2-(t)Bu, 3-(t)Bu, 4-(s)Bu, 4-Ph, 3,5-(s)Bu2, 2-CO2Me, 2-CO2Et or 2-CO2Ph derivative thereof). The compounds are air- and water-sensitive and display ν(Mo═O) and ν(Mo[Formula: see text]S) IR absorption bands at ca. 890 and 435 cm(-1), respectively, 20-40 cm(-1) lower in energy than the corresponding bands in Tp(iPr)MoOS(OAr). They are electrochemically active and exhibit three reversible cyclovoltammetric waves (E(Mo(VI)/Mo(V)) = -0.40 to -0.66 V, E([CoCp2](+)/CoCp2) = -0.94 V and E(CoCp2/[CoCp2](-)) = -1.88 V vs SCE). Structural characterization of [CoCp2][Tp(iPr)MoOS(OC6H4CO2Et-2)]·2CH2Cl2 revealed a distorted octahedral Mo(V) anion with Mo═O and Mo[Formula: see text]S distances of 1.761(5) and 2.215(2) Å, respectively, longer than corresponding distances in related Tp(iPr)MoOS(OAr) compounds. The observation of strong S(1s) → (S(3p) + Mo(4d)) S K-preedge transitions indicative of a d(1) sulfido-Mo(V) moiety and the presence of short Mo═O (ca. 1.72 Å) and Mo[Formula: see text]S (ca. 2.25 Å) backscattering contributions in the Mo K-edge EXAFS further support the oxosulfido-Mo(V) formulation. The compounds are EPR-active, exhibiting highly anisotropic (Δg 0.124-0.150), rhombic, frozen-glass spectra with g1 close to the value observed for the free electron (ge = 2.0023). Spectroscopic studies are consistent with the presence of a highly covalent Mo[Formula: see text]S π* singly occupied molecular orbital. The compounds are highly reactive, with reactions localized at the terminal sulfido ligand. For example, the compounds react with cyanide and PPh3 to produce thiocyanate and SPPh3, respectively, and various (depending on solvent) oxo-Mo(V) species. Reactions with copper reagents also generally lead to desulfurization and the formation of oxo-Mo(V) or -Mo(IV) complexes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Graham N George
- §Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | | | - Charles G Young
- ¶Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
8
|
van Stipdonk MJ, Basu P, Dille SA, Gibson JK, Berden G, Oomens J. Infrared multiple photon dissociation spectroscopy of a gas-phase oxo-molybdenum complex with 1,2-dithiolene ligands. J Phys Chem A 2014; 118:5407-18. [PMID: 24988369 PMCID: PMC4338922 DOI: 10.1021/jp503222v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Electrospray
ionization (ESI) in the negative ion mode was used
to create anionic, gas-phase oxo-molybdenum complexes with dithiolene
ligands. By varying ESI and ion transfer conditions, both doubly and
singly charged forms of the complex, with identical formulas, could
be observed. Collision-induced dissociation (CID) of the dianion generated
exclusively the monoanion, while fragmentation of the monoanion involved
decomposition of the dithiolene ligands. The intrinsic structure of
the monoanion and the dianion were determined by using wavelength-selective
infrared multiple-photon dissociation (IRMPD) spectroscopy and density
functional theory calculations. The IRMPD spectrum for the dianion
exhibits absorptions that can be assigned to (ligand) C=C,
C–S, C—C≡N, and Mo=O stretches. Comparison
of the IRMPD spectrum to spectra predicted for various possible conformations
allows assignment of a pseudo square pyramidal structure with C2v symmetry, equatorial coordination
of MoO2+ by the S atoms of the dithiolene ligands, and
a singlet spin state. A single absorption was observed for the oxidized
complex. When the same scaling factor employed for the dianion is
used for the oxidized version, theoretical spectra suggest that the
absorption is the Mo=O stretch for a distorted square pyramidal
structure and doublet spin state. A predicted change in conformation
upon oxidation of the dianion is consistent with a proposed bonding
scheme for the bent-metallocene dithiolene compounds [Lauher, J. W.; Hoffmann, R. J. Am.
Chem. Soc.1976, 98, 1729−1742], where a large
folding of the dithiolene moiety along the S···S vector
is dependent on the occupancy of the in-plane metal d-orbital.
Collapse
Affiliation(s)
- Michael J van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University , 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | | | | | | | | | | |
Collapse
|
9
|
Goetsch WR, Solntsev PV, Van Stappen C, Purchel AA, Dudkin SV, Nemykin VN. Electron-Transfer Processes in 3,4-Diferrocenylpyrroles: Insight into a Missing Piece of the Polyferrocenyl-Containing Pyrroles Family. Organometallics 2013. [DOI: 10.1021/om400901w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wil R. Goetsch
- Department of Chemistry and
Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Pavlo V. Solntsev
- Department of Chemistry and
Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Casey Van Stappen
- Department of Chemistry and
Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Anatolii A. Purchel
- Department of Chemistry and
Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Semen V. Dudkin
- Department of Chemistry and
Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Victor N. Nemykin
- Department of Chemistry and
Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| |
Collapse
|
10
|
Pimkov IV, Nigam A, Venna K, Fleming FF, Solntsev PV, Nemykin VN, Basu P. Dithiolopyranthione Synthesis, Spectroscopy and an Unusual Reactivity with DDQ. J Heterocycl Chem 2013; 50:879-886. [PMID: 25328243 PMCID: PMC4200397 DOI: 10.1002/jhet.1715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The bicyclic pyran thiolone tetrahydro-3αH-[1,3]dithiolo[4,5-β]pyran-2-thione (3a) engages in a highly unusual fragmentation in the presence of DDQ. The pyran thiolone, 3a, was synthesized by chlorination of 3,4-dihydro-2H-pyran (1), followed by condensing with CS2 and NaSH. Reaction of 3a with DDQ generates the isomerized pyran thiolone tetrahydro-3αH-[1,3]dithiolo[4,5-β]pyran-2-thione (3b) and 4-benzyl-5-(3-hydroxypropyl)-1,3-dithiole-2-thione (4) via a deep-seated rearrangement. The identity of 3b was confirmed by single crystal X-ray analysis: P21/c, a=5.807(9) Å, b = 12.99(2) Å, c = 11.445(15), β=113.23(6)°. Mechanistic experiments and computational insight is used to explain the likely sequence of events in the highly unusual formation of 4. Collectively, these results establish fundamental reactivity patterns for further research in this area.
Collapse
Affiliation(s)
- Igor V. Pimkov
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Archana Nigam
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Kiran Venna
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Fraser F. Fleming
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Pavlo V. Solntsev
- Department of Chemistry, The University of Minnesota-Duluth, Duluth, MN 55812
| | - Victor N. Nemykin
- Department of Chemistry, The University of Minnesota-Duluth, Duluth, MN 55812
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| |
Collapse
|
11
|
Biaso F, Burlat B, Guigliarelli B. DFT Investigation of the Molybdenum Cofactor in Periplasmic Nitrate Reductases: Structure of the Mo(V) EPR-Active Species. Inorg Chem 2012; 51:3409-19. [DOI: 10.1021/ic201533p] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frédéric Biaso
- Unité de Bioénergétique
et Ingénierie des Protéines, UMR 7281, Centre National
de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée,
and Aix-Marseille University, 31 Chemin
Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Bénédicte Burlat
- Unité de Bioénergétique
et Ingénierie des Protéines, UMR 7281, Centre National
de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée,
and Aix-Marseille University, 31 Chemin
Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Bruno Guigliarelli
- Unité de Bioénergétique
et Ingénierie des Protéines, UMR 7281, Centre National
de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée,
and Aix-Marseille University, 31 Chemin
Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
12
|
Rajapakshe A, Astashkin AV, Klein EL, Reichmann D, Mendel RR, Bittner F, Enemark JH. Structural studies of the molybdenum center of mitochondrial amidoxime reducing component (mARC) by pulsed EPR spectroscopy and 17O-labeling. Biochemistry 2011; 50:8813-22. [PMID: 21916412 DOI: 10.1021/bi2005762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial amidoxime reducing components (mARC-1 and mARC-2) represent a novel group of Mo-containing enzymes in eukaryotes. These proteins form the catalytic part of a three-component enzyme complex known to be responsible for the reductive activation of several N-hydroxylated prodrugs. No X-ray crystal structures are available for these enzymes as yet. A previous biochemical investigation [Wahl, B., et al. (2010) J. Biol. Chem., 285, 37847-37859 ] has revealed that two of the Mo coordination positions are occupied by sulfur atoms from a pyranopterindithiolate (molybdopterin, MPT) cofactor. In this work, we have used continuous wave and pulsed electron paramagnetic resonance (EPR) spectroscopy and density functional theoretical (DFT) calculations to determine the nature of remaining ligands in the Mo(V) state of the active site of mARC-2. Experiments with samples in D(2)O have identified the exchangeable equatorial ligand as a hydroxyl group. Experiments on samples in H(2)(17)O-enriched buffer have shown the presence of a slowly exchangeable axial oxo ligand. Comparison of the experimental (1)H and (17)O hyperfine interactions with those calculated using DFT has shown that the remaining nonexchangeable equatorial ligand is, most likely, protein-derived and that the possibility of an equatorial oxo ligand can be excluded.
Collapse
Affiliation(s)
- Asha Rajapakshe
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Hernandez-Marin E, Seth M, Ziegler T. Density Functional Theory Study of the Magnetic Circular Dichroism Spectra of Molybdenyl Complexes. Inorg Chem 2010; 49:6066-76. [DOI: 10.1021/ic100624q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Michael Seth
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Tom Ziegler
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
14
|
Hernandez-Marin E, Seth M, Ziegler T. Density Functional Theory Study of the Electron Paramagnetic Resonance Parameters and the Magnetic Circular Dichroism Spectrum for Model Compounds of Dimethyl Sulfoxide Reductase. Inorg Chem 2010; 49:1566-76. [DOI: 10.1021/ic901888q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elizabeth Hernandez-Marin
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Michael Seth
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tom Ziegler
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|