1
|
Li Z, Zhao B, Zhang H, Zhang Y. High-throughput calculations and machine learning modeling of 17O NMR in non-magnetic oxides. Faraday Discuss 2024. [PMID: 39258887 DOI: 10.1039/d4fd00128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The only NMR-active oxygen isotope, oxygen-17 (17O), serves as a sensitive probe due to its large chemical shift range, the electric field gradient at the oxygen site, and the quadrupolar interaction. Consequently, 17O solid-state NMR offers unique insights into local structures and finds significant applications in the studies of disorder, reactivity, and host-guest chemistry. Despite recent advances in sensitivity enhancement, isotopic labeling, and NMR crystallography, the application of 17O solid-state NMR is still hindered by low natural abundance, costly enrichment, and challenges in handling spectrum signals. Density functional theory calculations and machine learning techniques offer an alternative approach to mapping the local crystal structures to NMR parameters. However, the lack of high-quality data remains a challenge, despite the establishment of some datasets. In this study, we implement and execute a high-throughput workflow combining AiiDA and CASTEP to evaluate the NMR parameters. Focusing on non-magnetic oxides, we have chosen over 7100 binary, ternary, and quaternary compounds from the Materials Project database and performed calculations. Furthermore, using various descriptors for the local crystalline environments, we model the 17O NMR parameters using machine learning techniques, further enhancing our ability to predict and understand 17O NMR parameters in oxide crystals.
Collapse
Affiliation(s)
- Zhiyuan Li
- TU Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany.
| | - Bo Zhao
- TU Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany.
| | - Hongbin Zhang
- TU Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany.
| | - Yixuan Zhang
- TU Darmstadt, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany.
| |
Collapse
|
2
|
Jaroszewicz MJ, Altenhof AR, Schurko RW, Frydman L. An automated multi-order phase correction routine for processing ultra-wideline NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107528. [PMID: 37632988 DOI: 10.1016/j.jmr.2023.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Efficient acquisition of wideline solid-state nuclear magnetic resonance (NMR) spectra with patterns affected by large inhomogeneous broadening is accomplished with the use of broadband pulse sequences. These specialized pulse sequences often use frequency-swept pulses, which feature time-dependent phase and amplitude modulations that in turn deliver broad and uniform excitation across large spectral bandwidths. However, the resulting NMR spectra are often affected by complex frequency-dependent phase dispersions, owing to the interplay between the frequency-swept excitations and anisotropic resonance frequencies. Such phase distortions necessitate the use of multi-order non-linear corrections in order to obtain absorptive, distortion-free patterns with uniform phasing. Performing such corrections is often challenging due to the complex interdependence of the linear and non-linear phase contributions, and how these may affect the NMR signal. Hence, processing of these data usually involves calculating the spectra in magnitude mode wherein the phase information is discarded. Herein, we present a fully automated phasing routine that is capable of processing and phase correcting such wideline NMR spectra. Its performance is corroborated via processing of NMR data acquired using both the WURST-CPMG (Wideband, Uniform-Rate, Smooth Truncation with Carr-Purcell Meiboom-Gill acquisition) and BRAIN-CP (BRoadband Adiabatic Inversion Cross Polarization) pulse sequences for a variety of nuclei (i.e., 119Sn, 195Pt, 35Cl, 87Rb, and 14N). Based on both simulated and experimental NMR datasets, it is demonstrated that automatic phase corrections up to and including second order can be readily achieved without a priori information regarding the nature of the phase-distorted NMR datasets, and independently of the exact manner in which time-domain NMR data are collected and subsequently processed. In addition, it is shown that NMR spectra acquired at both single and multiple transmitter frequencies that are processed with this automated phasing routine have improved signal-to-noise properties than those processed with conventional magnitude calculations, along with powder patterns that better match those of ideal NMR spectra, even for datasets possessing low signal-to-noise ratios and/or affected by spectral artifacts.
Collapse
Affiliation(s)
- Michael J Jaroszewicz
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot 7610001, Israel.
| | - Adam R Altenhof
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot 7610001, Israel; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| |
Collapse
|
3
|
GIPAW Pseudopotentials of d Elements for Solid-State NMR. MATERIALS 2022; 15:ma15093347. [PMID: 35591680 PMCID: PMC9101793 DOI: 10.3390/ma15093347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023]
Abstract
Computational methods are increasingly used to support interpreting, assigning and predicting the solid-state nuclear resonance magnetic spectra of materials. Currently, density functional theory is seen to achieve a good balance between efficiency and accuracy in solid-state chemistry. To be specific, density functional theory allows the assignment of signals in nuclear resonance magnetic spectra to specific sites and can help identify overlapped or missing signals from experimental nuclear resonance magnetic spectra. To avoid the difficulties correlated to all-electron calculations, a gauge including the projected augmented wave method was introduced to calculate nuclear resonance magnetic parameters with great success in organic crystals in the last decades. Thus, we developed a gauge including projected augmented pseudopotentials of 21 d elements and tested them on, respectively, oxides or nitrides (semiconductors), calculating chemical shift and quadrupolar coupling constant. This work can be considered the first step to improving the ab initio prediction of nuclear magnetic resonance parameters, and leaves open the possibility for inorganic compounds to constitute an alternative standard compound, with respect to tetramethylsilane, to calculate the chemical shift. Furthermore, this work represents the possibility to obtain results from first-principles calculations, to train a machine-learning model to solve or refine structures using predicted nuclear magnetic resonance spectra.
Collapse
|
4
|
Holmes ST, Hook JM, Schurko RW. Nutraceuticals in Bulk and Dosage Forms: Analysis by 35Cl and 14N Solid-State NMR and DFT Calculations. Mol Pharm 2021; 19:440-455. [PMID: 34792373 DOI: 10.1021/acs.molpharmaceut.1c00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study uses 35Cl and 14N solid-state NMR (SSNMR) spectroscopy and dispersion-corrected plane-wave density functional theory (DFT) calculations for the structural characterization of chloride salts of nutraceuticals in their bulk and dosage forms. For eight nutraceuticals, we measure the 35Cl EFG tensor parameters of the chloride ions and use plane-wave DFT calculations to elucidate relationships between NMR parameters and molecular-level structure, which provide rapid NMR crystallographic assessments of structural features. We employ both 35Cl direct excitation and 1H→35Cl cross-polarization methods to characterize a dosage form containing α-d-glucosamine HCl, observe possible impurity and/or adulterant phases, and quantify the weight percent of the active ingredient. To complement this, we also investigate 14N SSNMR spectroscopy and DFT calculations to characterize nitrogen atoms in the nutraceuticals. This includes a discussion of targeted acquisition experimental protocols (i.e., acquiring a select region of the overall pattern that features key discontinuities) that allow ultrawideline spectra to be acquired rapidly, even for unreceptive samples (i.e., those with long values of T1(14N), short values of T2eff(14N), or very broad patterns). It is hoped that these experimental and computational protocols will be useful for the characterization of various solid forms of nutraceuticals (i.e., salts, polymorphs, hydrates, solvates, cocrystals, amorphous solid dispersions, etc.), help detect impurity and counterfeit solid phases in dosage forms, and serve as a foundation for future NMR crystallographic studies of nutraceutical solid forms, including studies using ab initio crystal structure prediction algorithms.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia.,School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
5
|
NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nat Rev Chem 2021; 5:624-645. [PMID: 37118421 DOI: 10.1038/s41570-021-00309-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 12/23/2022]
Abstract
Solid-state magic-angle spinning NMR spectroscopy is a powerful technique to probe atomic-level microstructure and structural dynamics in metal halide perovskites. It can be used to measure dopant incorporation, phase segregation, halide mixing, decomposition pathways, passivation mechanisms, short-range and long-range dynamics, and other local properties. This Review describes practical aspects of recording solid-state NMR data on halide perovskites and how these afford unique insights into new compositions, dopants and passivation agents. We discuss the applicability, feasibility and limitations of 1H, 13C, 15N, 14N, 133Cs, 87Rb, 39K, 207Pb, 119Sn, 113Cd, 209Bi, 115In, 19F and 2H NMR in typical experimental scenarios. We highlight the pivotal complementary role of solid-state mechanosynthesis, which enables highly sensitive NMR studies by providing large quantities of high-purity materials of arbitrary complexity and of chemical shifts calculated using density functional theory. We examine the broader impact of solid-state NMR on materials research and how its evolution over seven decades has benefitted structural studies of contemporary materials such as halide perovskites. Finally, we summarize some of the open questions in perovskite optoelectronics that could be addressed using solid-state NMR. We, thereby, hope to stimulate wider use of this technique in materials and optoelectronics research.
Collapse
|
6
|
Koppe J, Hansen MR. Minimizing Lineshape Distortions in Static Ultra-wideline Nuclear Magnetic Resonance of Half-Integer Spin Quadrupolar Nuclei. J Phys Chem A 2020; 124:4314-4321. [DOI: 10.1021/acs.jpca.0c03658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonas Koppe
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität, Corrensstr. 28/30, DE-48149 Münster, Germany
| | - Michael Ryan Hansen
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität, Corrensstr. 28/30, DE-48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität, Corrensstrasse 40, D-48149 Münster, Germany
| |
Collapse
|
7
|
Gregorovič A. The many-body expansion approach to ab initio calculation of electric field gradients in molecular crystals. J Chem Phys 2020; 152:124105. [PMID: 32241128 DOI: 10.1063/1.5144735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate calculation of electric field gradients (EFGs) in molecular crystals, despite big advances in ab initio techniques, is still a challenge. Here, we present a new approach to calculate the EFGs in molecular crystals by employing the many-body expansion (MBE) technique with electrostatic embedding. This allows for (i) a reduction in the computational cost or an alternative increase in the level of theory (we use the MP2/6-311++G) and (ii) the ability to monitor EFG convergence by progressively adding more surrounding molecules and/or adding higher many-body interactions. We focus on the 14N EFG and study four (model) compounds in more detail: solid nitrogen, ethylamine, methylamine, and ammonia. Solid nitrogen is rather insensitive to neighbors; for ethylamine and methylamine, the 3-body interactions are found sufficient for a converged EFG, whereas for ammonia, even the inclusion of 5-body interactions is insufficient although convergence is anticipated. We then validate our technique by comparing the experimental and ab initio14N EFGs for 116 organic compounds utilizing their known crystal structures and published EFG. Overall, we find a very good agreement, with a small EFG rms error, which is probably due to other sources, rather than the MBE approximation.
Collapse
Affiliation(s)
- Alan Gregorovič
- Institute "Jožef Stefan", Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Gan Z, Hung I, Nishiyama Y, Amoureux JP, Lafon O, Nagashima H, Trébosc J, Hu B. 14N overtone nuclear magnetic resonance of rotating solids. J Chem Phys 2018; 149:064201. [PMID: 30111134 PMCID: PMC8808743 DOI: 10.1063/1.5044653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 11/14/2022] Open
Abstract
By irradiating and observing at twice the 14N Larmor frequency, overtone (OT) nuclear magnetic resonance (NMR) is capable of obtaining 14NOT spectra without first-order quadrupolar broadening. Direct excitation and detection of the usually "forbidden" double-quantum transition is mediated by the perturbation from the large quadrupole interaction to the spin states quantized by the Zeeman interaction. A recent study [L. A. O'Dell and C. I. Ratcliffe, Chem. Phys. Lett. 514, 168 (2011)] has shown that 14NOT NMR under magic-angle spinning (MAS) can yield high-resolution spectra with typical second-order quadrupolar line shapes allowing the measurement of 14N chemical shift and quadrupolar coupling parameters. This article has also shown that under MAS the main 14NOT peak is shifted by twice the sample spinning frequency with respect to its static position. We present the theory of 14NOT NMR of static or rotating samples and the physical picture of the intriguing spinning-induced shift in the second case. We use perturbation theory for the case of static samples and Floquet theory for rotating samples. In both cases, the results can be described by a so-called OT parameter that scales down the 14NOT radio-frequency (rf) excitation and signal detection. This OT parameter shows that the components of the rf field, which are transverse and longitudinal with respect to the magnetic field, are both effective for 14NOTrf excitation and signal detection. In the case of MAS at angular frequency ωr , the superposition of the excitation and detection components in the OT parameter makes either the +2ωr or -2ωr term the dominant 14NOT signal, depending on the sense of sample spinning with respect to the magnetic field. This leads to an apparent 14NOT signal shifted at twice the spinning frequency. The features of 14NOT NMR spectra for both static and rotating samples are illustrated with simulations. The spinning induced shift and its dependence on the spinning direction are confirmed experimentally by reversing the spinning direction and the field of the 36 T series-connected hybrid magnet at the US National High Magnetic Field Laboratory.
Collapse
Affiliation(s)
- Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | | | | | | | - Hiroki Nagashima
- Univ. Lille, CNRS UMR 8181, UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS UMR 8181, UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
9
|
Makrinich M, Nimerovsky E, Goldbourt A. Pushing the limit of NMR-based distance measurements - retrieving dipolar couplings to spins with extensively large quadrupolar frequencies. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 92:19-24. [PMID: 29751342 DOI: 10.1016/j.ssnmr.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Dipolar recoupling under magic-angle spinning allows to measure accurate inter-nuclear distances provided that the two interacting spins can be efficiently and uniformly excited. Alexander (Lex) Vega has shown that adiabatic transfers of populations in quadrupolar spins during the application of constant-wave (cw) radio-frequency pulses lead to efficient and quantifiable dipolar recoupling curves. Accurate distance determination within and beyond the adiabatic regime using cw pulses is limited by the size of the quadrupolar coupling constant. Here we show that using the approach of long-pulse phase modulation, dipolar recoupling and accurate distances can be obtained for nuclei having extensively large quadrupolar frequencies of 5-10 MHz. We demonstrate such results by obtaining a 31P-79/81Br distance in a compound for which bromine-79 (spin-3/2) has a quadrupolar coupling constant of 11.3 MHz, and a 13C-209Bi distance where the bismuth (spin-9/2) has a quadrupolar coupling constant of 256 MHz, equaling a quadrupolar frequency of 10.7 MHz. For Bromine, we demonstrate that an analytical curve based on the assumption of complete spin saturation fits the data. In the case of bismuth acetate, a C-Bi3 spin system must be used in order to match the correct saturation recoupling curve, and results are in agreement with the crystallographic structure.
Collapse
Affiliation(s)
- M Makrinich
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel
| | - E Nimerovsky
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel
| | - A Goldbourt
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
10
|
Carnevale D, Ji X, Bodenhausen G. Double cross polarization for the indirect detection of nitrogen-14 nuclei in magic angle spinning NMR spectroscopy. J Chem Phys 2018; 147:184201. [PMID: 29141439 DOI: 10.1063/1.5000689] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nitrogen-14 NMR spectra at fast magic-angle spinning rates can be acquired indirectly by means of two-dimensional techniques based on double cross polarization transfer 1H → 14N →1H. Experimental evidence is given for polycrystalline samples of glycine, l-histidine, and the dipeptide Ala-Gly. Either one-bond or long-range correlations can be favored by choosing the length of the cross polarization contact pulses. Longer contact pulses allow the detection of unprotonated nitrogen sites. In contrast to earlier methods that exploited second-order quadrupolar/dipolar cross-terms, cross polarization operates in the manner of the method of Hartmann and Hahn, even for 14N quadrupolar couplings up to 4 MHz. Simulations explain why amorphous samples tend to give rise to featureless spectra because the 14N quadrupolar interactions may vary dramatically with the lattice environment. The experiments are straightforward to set up and are shown to be effective for different nitrogen environments and robust with respect to the rf-field strengths and to the 14N carrier frequency during cross polarization. The efficiency of indirect detection of 14N nuclei by double cross polarization is shown to be similar to that of isotopically enriched 13C nuclei.
Collapse
Affiliation(s)
- Diego Carnevale
- Departement de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Xiao Ji
- Departement de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Geoffrey Bodenhausen
- Departement de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
11
|
Veinberg SL, Lindquist AW, Jaroszewicz MJ, Schurko RW. Practical considerations for the acquisition of ultra-wideline 14N NMR spectra. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:45-58. [PMID: 28130009 DOI: 10.1016/j.ssnmr.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Several considerations for the acquisition, processing, and analysis of high quality ultra-wideline (UW) 14N solid-state NMR (SSNMR) powder patterns under static conditions are discussed. It is shown that the 14N quadrupolar parameters may be determined accurately using the frequencies of only two discontinuities in 14N NMR powder patterns that are dominated by the first-order quadrupolar interaction, thereby eliminating the need for the acquisition of the entire pattern and concomitantly reducing experimental time. A framework for utilizing the WURST-CPMG pulse sequence to improve the efficiency of UW 14N SSNMR experiments is explored in two parts: (i) a systematic investigation of the design and parameterization of the WURST pulse is presented, and (ii) the development of the practical aspects of CPMG refocusing for the acquisition of UW 14N SSNMR powder patterns is discussed, with a focus on maximizing both signal-to-noise and resolution, and minimizing spectral distortions. Finally, a strategy is demonstrated that allows for the measurement of the 14N quadrupolar parameters for any nitrogen moiety whose quadrupolar coupling constant falls within the range 0.8≤|CQ|≤1.5MHz, by acquiring only two 14N NMR sub-spectra at strategically located transmitter frequencies; these results are compared to full powder patterns which are acquired using frequency-stepped methods. The methodologies and practical considerations outlined herein are not only useful for the rapid acquisition of UW 14N NMR spectra, but may also be modified and applied for UW NMR of a plethora of quadrupolar and spin-1/2 nuclides.
Collapse
Affiliation(s)
- Stanislav L Veinberg
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Austin W Lindquist
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Michael J Jaroszewicz
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4.
| |
Collapse
|
12
|
Jarvis JA, Haies I, Lelli M, Rossini AJ, Kuprov I, Carravetta M, Williamson PTF. Measurement of 14N quadrupole couplings in biomolecular solids using indirect-detection 14N solid-state NMR with DNP. Chem Commun (Camb) 2017; 53:12116-12119. [DOI: 10.1039/c7cc03462h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Insights into protein structure through the determination of 14N quadrupolar interactions using magic-angle spinning dynamic nuclear polarization NMR.
Collapse
Affiliation(s)
- J. A. Jarvis
- Biological Sciences
- University of Southampton
- Southampton
- UK
| | - I. Haies
- Chemistry Department
- University of Southampton
- Southampton
- UK
| | - M. Lelli
- Centre de RMN à Tres Hauts Champs
- Institut de Sciences Analytiques
- Université de Lyon (CNRS/ENS Lyon/UCB Lyon1)
- 69100 Villeurbanne
- France
| | - A. J. Rossini
- Centre de RMN à Tres Hauts Champs
- Institut de Sciences Analytiques
- Université de Lyon (CNRS/ENS Lyon/UCB Lyon1)
- 69100 Villeurbanne
- France
| | - I. Kuprov
- Chemistry Department
- University of Southampton
- Southampton
- UK
| | - M. Carravetta
- Chemistry Department
- University of Southampton
- Southampton
- UK
| | | |
Collapse
|
13
|
Veinberg SL, Friedl ZW, Lindquist AW, Kispal B, Harris KJ, O'Dell LA, Schurko RW. 14N Solid-State NMR Spectroscopy of Amino Acids. Chemphyschem 2016; 17:4011-4027. [DOI: 10.1002/cphc.201600873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Stanislav L. Veinberg
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Zachary W. Friedl
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Austin W. Lindquist
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Brianna Kispal
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Kristopher J. Harris
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Luke A. O'Dell
- Institute for Frontier Materials; Deakin University; Waurn Ponds Campus Geelong Victoria 3220 Australia
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| |
Collapse
|
14
|
Gregorovič A, Apih T, Seliger J. (1)H-(14)N cross-relaxation spectrum analysis in sildenafil and sildenafil citrate. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 78:16-23. [PMID: 27379753 DOI: 10.1016/j.ssnmr.2016.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/24/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
Here we describe a method for the extraction of (14)N quadrupole parameters from a (1)H-(14)N cross-relaxation spectrum by fitting the lineshapes of the (14)N quadrupole transitions. The procedures used typically to fit quadrupole lineshapes are not directly applicable to fit the (1)H-(14)N cross-relaxation spectrum, because the presence of proton homonuclear dipolar interaction broadens the lineshapes considerably and prevents a reliable determination of Cq and η from a single lineshape. Instead, one must fit two or even three lineshapes originating from the same nitrogen site simultaneously. The problem is to identify which lineshapes belong together when many are observed due to the existence of several nitrogen sites. We solve this problem by fitting the spectrum for all possible combinations and find the best-fitting one. This combination then most likely correctly identifies lineshapes belonging to the same nitrogen site. There are two main advantages of our method compared to the typically used method, which relies only on lineshape singularities: (i) the method is "automatic" and does not require knowledge of nitrogen quadrupole parameters in similar environments to aid dip pairing and (ii) the accuracy of quadrupole parameters is better, as proton linewidth is included in the fits. We use sildenafil and sildenafil citrate as model compounds, each with six non-equivalent nitrogen sites.
Collapse
Affiliation(s)
- Alan Gregorovič
- Institute "Jožef Stefan", Jamova 39, 1000 Ljubljana, Slovenia.
| | - Tomaž Apih
- Institute "Jožef Stefan", Jamova 39, 1000 Ljubljana, Slovenia
| | - Janez Seliger
- Institute "Jožef Stefan", Jamova 39, 1000 Ljubljana, Slovenia; Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Kobayashi T, Perras FA, Goh TW, Metz TL, Huang W, Pruski M. DNP-Enhanced Ultrawideline Solid-State NMR Spectroscopy: Studies of Platinum in Metal-Organic Frameworks. J Phys Chem Lett 2016; 7:2322-2327. [PMID: 27266444 DOI: 10.1021/acs.jpclett.6b00860] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultrawideline dynamic nuclear polarization (DNP)-enhanced (195)Pt solid-state NMR (SSNMR) spectroscopy and theoretical calculations are used to determine the coordination of atomic Pt species supported within the pores of metal-organic frameworks (MOFs). The (195)Pt SSNMR spectra, with breadths reaching 10 000 ppm, were obtained by combining DNP with broadbanded cross-polarization and CPMG acquisition. Although the DNP enhancements in static samples are lower than those typically observed under magic-angle spinning conditions, the presented measurements would be very challenging using the conventional SSNMR methods. The DNP-enhanced ultrawideline NMR spectra served to separate signals from cis- and trans-coordinated atomic Pt(2+) species supported on the UiO-66-NH2 MOF. Additionally, the data revealed a dominance of kinetic effects in the formation of Pt(2+) complexes and the thermodynamic effects in their reduction to nanoparticles. A single cis-coordinated Pt(2+) complex was confirmed in MOF-253.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Ames Laboratory, U.S. Department of Energy , Ames, Iowa 50011, United States
| | - Frédéric A Perras
- Ames Laboratory, U.S. Department of Energy , Ames, Iowa 50011, United States
| | - Tian Wei Goh
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| | - Tanner L Metz
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| | - Wenyu Huang
- Ames Laboratory, U.S. Department of Energy , Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| | - Marek Pruski
- Ames Laboratory, U.S. Department of Energy , Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|
16
|
Astani EK, Heshmati E, Chen CJ, Hadipour NL. A theoretical study on the characteristics of the intermolecular interactions in the active site of human androsterone sulphotransferase: DFT calculations of NQR and NMR parameters and QTAIM analysis. J Mol Graph Model 2016; 68:14-22. [PMID: 27337388 DOI: 10.1016/j.jmgm.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 05/29/2016] [Accepted: 06/07/2016] [Indexed: 11/29/2022]
Abstract
A theoretical study at the level of density functional theory (DFT) was performed to characterize noncovalent intermolecular interactions, especially hydrogen bond interactions, in the active site of enzyme human androsterone sulphotransferase (SULT2A1/ADT). Geometry optimization, interaction energy, (2)H, (14)N, and (17)O electric field gradient (EFG) tensors, (1)H, (13)C, (17)O, and (15)N chemical shielding (CS) tensors, Natural Bonding Orbital (NBO) analysis, and quantum theory of atoms in molecules (QTAIM) analysis of this active site were investigated. It was found that androsterone (ADT) is able to form hydrogen bonds with residues Ser80, Ile82, and His99 of the active site. The interaction energy calculations and NBO analysis revealed that the ADT molecule forms the strongest hydrogen bond with Ser80. Results revealed that ADT interacts with the other residues through electrostatic and Van der Waals interactions. Results showed that these hydrogen bonds influence on the calculated (2)H, (14)N, and (17)O quadrupole coupling constants (QCCs), as well as (1)H, (13)C, (17)O, and (15)N CS tensors. The magnitude of the QCC and CS changes at each nucleus depends directly on its amount of contribution to the hydrogen bond interaction.
Collapse
Affiliation(s)
- Elahe K Astani
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Emran Heshmati
- Department of Biology, Faculty of Science, Zanjan University, Zanjan, Iran
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Taiwan
| | - Nasser L Hadipour
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, 14115-175, Iran.
| |
Collapse
|
17
|
A study of hydrogen bond effects on the oxygen, nitrogen, and hydrogen electric field gradient tensors in the active site of human dehydroepiandrosterone sulphotransferase: A density-functional theory based treatment. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Veinberg SL, Johnston KE, Jaroszewicz MJ, Kispal BM, Mireault CR, Kobayashi T, Pruski M, Schurko RW. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs. Phys Chem Chem Phys 2016; 18:17713-30. [DOI: 10.1039/c6cp02855a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14N and 15N solid-state NMR at natural abundance are used in tandem for the investigation of pharmaceuticals and their polymorphs.
Collapse
Affiliation(s)
| | | | | | - Brianna M. Kispal
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | | | | | - Marek Pruski
- U.S. DOE Ames Laboratory
- Iowa State University
- Ames
- USA
- Department of Chemistry
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| |
Collapse
|
19
|
Xu J, Lucier BEG, Sinelnikov R, Terskikh VV, Staroverov VN, Huang Y. Monitoring and Understanding the Paraelectric-Ferroelectric Phase Transition in the Metal-Organic Framework [NH4][M(HCOO)3] by Solid-State NMR Spectroscopy. Chemistry 2015; 21:14348-61. [DOI: 10.1002/chem.201501954] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/08/2022]
|
20
|
Shen M, Trébosc J, O'Dell LA, Lafon O, Pourpoint F, Hu B, Chen Q, Amoureux JP. Comparison of various NMR methods for the indirect detection of nitrogen-14 nuclei via protons in solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 258:86-95. [PMID: 26232366 DOI: 10.1016/j.jmr.2015.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
We present an experimental comparison of several through-space Hetero-nuclear Multiple-Quantum Correlation experiments, which allow the indirect observation of homo-nuclear single- (SQ) or double-quantum (DQ) (14)N coherences via spy (1)H nuclei. These (1)H-{(14)N} D-HMQC sequences differ not only by the order of (14)N coherences evolving during the indirect evolution, t1, but also by the radio-frequency (rf) scheme used to excite and reconvert these coherences under Magic-Angle Spinning (MAS). Here, the SQ coherences are created by the application of center-band frequency-selective pulses, i.e. long and low-power rectangular pulses at the (14)N Larmor frequency, ν0((14)N), whereas the DQ coherences are excited and reconverted using rf irradiation either at ν0((14)N) or at the (14)N overtone frequency, 2ν0((14)N). The overtone excitation is achieved either by constant frequency rectangular pulses or by frequency-swept pulses, specifically Wide-band, Uniform-Rate, and Smooth-Truncation (WURST) pulse shapes. The present article compares the performances of four different (1)H-{(14)N} D-HMQC sequences, including those with (14)N rectangular pulses at ν0((14)N) for the indirect detection of homo-nuclear (i) (14)N SQ or (ii) DQ coherences, as well as their overtone variants using (iii) rectangular or (iv) WURST pulses. The compared properties include: (i) the sensitivity, (ii) the spectral resolution in the (14)N dimension, (iii) the rf requirements (power and pulse length), as well as the robustness to (iv) rf offset and (v) MAS frequency instabilities. Such experimental comparisons are carried out for γ-glycine and l-histidine.HCl monohydrate, which contain (14)N sites subject to moderate quadrupole interactions. We demonstrate that the optimum choice of the (1)H-{(14)N} D-HMQC method depends on the experimental goal. When the sensitivity and/or the robustness to offset are the major concerns, the D-HMQC sequence allowing the indirect detection of (14)N SQ coherences should be employed. Conversely, when the highest resolution and/or adjusted indirect spectral width are needed, overtone experiments are the method of choice. The overtone scheme using WURST pulses results in broader excitation bandwidths than that using rectangular pulses, at the expense of reduced sensitivity. Numerically exact simulations also show that the sensitivity of the overtone (1)H-{(14)N} D-HMQC experiment increases for larger quadrupole interactions.
Collapse
Affiliation(s)
- Ming Shen
- UCCS, CNRS UMR 8181, Univ. Lille, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Julien Trébosc
- UCCS, CNRS UMR 8181, Univ. Lille, Villeneuve d'Ascq 59652, France
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3220, Australia
| | - Olivier Lafon
- UCCS, CNRS UMR 8181, Univ. Lille, Villeneuve d'Ascq 59652, France.
| | | | - Bingwen Hu
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Qun Chen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Jean-Paul Amoureux
- UCCS, CNRS UMR 8181, Univ. Lille, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
21
|
Veinberg SL, Friedl ZW, Harris KJ, O'Dell LA, Schurko RW. Ultra-wideline 14N solid-state NMR as a method for differentiating polymorphs: glycine as a case study. CrystEngComm 2015. [DOI: 10.1039/c5ce00060b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14N solid-state NMR is useful for differentiating polymorphs and chemically distinct nitrogen-containing compounds. A case study of glycine is presented.
Collapse
Affiliation(s)
| | - Zachary W. Friedl
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada
| | | | - Luke A. O'Dell
- Institute for Frontier Materials
- Deakin University
- Waurn Ponds Campus
- Geelong, Australia
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada
| |
Collapse
|
22
|
Althaus SM, Mao K, Stringer JA, Kobayashi T, Pruski M. Indirectly detected heteronuclear correlation solid-state NMR spectroscopy of naturally abundant 15N nuclei. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2014; 57-58:17-21. [PMID: 24287060 DOI: 10.1016/j.ssnmr.2013.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/22/2013] [Accepted: 11/01/2013] [Indexed: 06/02/2023]
Abstract
Two-dimensional indirectly detected through-space and through-bond (1)H{(15)N} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse (1)H decoupling are evaluated. Remarkable efficiency of polarization transfer can be achieved at a MAS rate of 40 kHz by both cross-polarization and INEPT, which makes these methods applicable for routine characterizations of natural abundance solids. The first measurement of 2D (1)H{(15)N} HETCOR spectrum of natural abundance surface species is also reported.
Collapse
Affiliation(s)
- Stacey M Althaus
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA
| | - Kanmi Mao
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA
| | - John A Stringer
- Agilent Technologies, 900 South Taft, Loveland, CO 80537, USA
| | - Takeshi Kobayashi
- Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA
| | - Marek Pruski
- U.S. DOE Ames Laboratory, Ames, IA 50011-3020, USA; Department of Chemistry, Iowa State University, Ames, IA 50011-3020, USA.
| |
Collapse
|
23
|
Lucier BEG, Johnston KE, Xu W, Hanson JC, Senanayake SD, Yao S, Bourassa MW, Srebro M, Autschbach J, Schurko RW. Unravelling the Structure of Magnus’ Pink Salt. J Am Chem Soc 2014; 136:1333-51. [DOI: 10.1021/ja4076277] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bryan E. G. Lucier
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Karen E. Johnston
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Wenqian Xu
- Department
of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jonathan C. Hanson
- Department
of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sanjaya D. Senanayake
- Department
of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Siyu Yao
- Center for Computational Science & Engineering, and PKU Green Chemistry Centre, Peking University, Beijing 100871, China
| | - Megan W. Bourassa
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Monika Srebro
- Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
- Department
of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-060 Krakow, Poland
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Robert W. Schurko
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| |
Collapse
|
24
|
Harris KJ, Veinberg SL, Mireault CR, Lupulescu A, Frydman L, Schurko RW. Rapid Acquisition of14N Solid-State NMR Spectra with Broadband Cross Polarization. Chemistry 2013; 19:16469-75. [DOI: 10.1002/chem.201301862] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 11/09/2022]
|
25
|
O'Dell LA. The WURST kind of pulses in solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2013; 55-56:28-41. [PMID: 24183812 DOI: 10.1016/j.ssnmr.2013.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
WURST pulses (wideband, uniform rate, smooth truncation) were first introduced two decades ago by Kupče and Freeman as a means of achieving broadband adiabatic inversion of magnetisation for solution-state (13)C decoupling at high magnetic field strengths. In more recent years these pulses have found use in an increasingly diverse range of applications in solid-state NMR. This article reviews a number of recent developments that take advantage of WURST pulses, including broadband excitation, refocusing and cross polarisation for the acquisition of ultra-wideline powder patterns, signal enhancement for half-integer and integer spin quadrupolar nuclei, spectral editing, direct and indirectly observed (14)N overtone MAS, and symmetry-based homonuclear recoupling. Simple mathematical descriptions of WURST pulses and some brief theory behind their operation in the adiabatic and non-adiabatic regimes are provided, and various practical considerations for their use are also discussed.
Collapse
Affiliation(s)
- Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3220, Australia.
| |
Collapse
|
26
|
Abstract
Although solid-state NMR (SSNMR) provides rich information about molecular structure and dynamics, the small spin population differences between pairs of spin states that give rise to NMR transitions make it an inherently insensitive spectroscopic technique in terms of signal acquisition. Scientists have continuously addressed this issue via improvements in NMR hardware and probes, increases in the strength of the magnetic field, and the development of innovative pulse sequences and acquisition methodologies. As a result, researchers can now study NMR-active nuclides previously thought to be unobservable or too unreceptive for routine examination via SSNMR. Several factors can make it extremely challenging to detect signal or acquire spectra using SSNMR: (i) low gyromagnetic ratios (i.e., low Larmor frequencies), (ii) low natural abundances or dilution of the nuclide of interest (e.g., metal nuclides in proteins or in organometallic catalysts supported on silica), (iii) inconvenient relaxation characteristics (e.g., very long longitudinal or very short transverse relaxation times), and/or (iv) extremely broad powder patterns arising from large anisotropic NMR interactions. Our research group has been particularly interested in efficient acquisition of broad NMR powder patterns for a variety of spin-1/2 and quadrupolar (spin > 1/2) nuclides. Traditionally, researchers have used the term "wideline" NMR to refer to experiments yielding broad (1)H and (2)H SSNMR spectra ranging from tens of kHz to ∼250 kHz in breadth. With modern FT NMR hardware, uniform excitation in these spectral ranges is relatively easy, allowing for the acquisition of high quality spectra. However, spectra that range in breadth from ca. 250 kHz to tens of MHz cannot be uniformly excited with conventional, high-power rectangular pulses. Rather, researchers must apply special methodologies to acquire such spectra, which have inherently low S/N because the signal intensity is spread across such large spectral breadths. We have suggested the term ultra-wideline NMR (UWNMR) spectroscopy to describe this set of methodologies. This Account describes recent developments in pulse sequences and strategies for the efficient acquisition of UWNMR spectra. After an introduction to anisotropically broadened NMR patterns, we give a brief history of methods used to acquire UWNMR spectra. We then discuss new acquisition methodologies, including the acquisition of CPMG echo trains and the application of pulses capable of broadband excitation and refocusing. Finally, we present several applications of UWNMR methods that use these broadband pulses.
Collapse
Affiliation(s)
- Robert W. Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4
| |
Collapse
|
27
|
O'Dell LA, Brinkmann A. 14N overtone NMR spectra under magic angle spinning: experiments and numerically exact simulations. J Chem Phys 2013; 138:064201. [PMID: 23425463 DOI: 10.1063/1.4775592] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It was recently shown that high resolution (14)N overtone NMR spectra can be obtained directly under magic angle spinning (MAS) conditions [L. A. O'Dell and C. I. Ratcliffe, Chem. Phys. Lett. 514, 168 (2011)]. Preliminary experimental results showed narrowed powder pattern widths, a frequency shift that is dependent on the MAS rate, and an apparent absence of spinning sidebands, observations which appeared to be inconsistent with previous theoretical treatments. Herein, we reproduce these effects using numerically exact simulations that take into account the full nuclear spin Hamiltonian. Under sample spinning, the (14)N overtone signal is split into five (0, ±1, ±2) overtone sidebands separated by the spinning frequency. For a powder sample spinning at the magic angle, the +2ω(r) sideband is dominant while the others show significantly lower signal intensities. The resultant MAS powder patterns show characteristic quadrupolar lineshapes from which the (14)N quadrupolar parameters and isotropic chemical shift can be determined. Spinning the sample at other angles is shown to alter both the shapes and relative intensities of the five overtone sidebands, with MAS providing the benefit of averaging dipolar couplings and shielding anisotropy. To demonstrate the advantages of this experimental approach, we present the (14)N overtone MAS spectrum obtained from L-histidine, in which powder patterns from all three nitrogen sites are clearly resolved.
Collapse
Affiliation(s)
- Luke A O'Dell
- Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, M40, Ottawa, Ontario K1A 0R6, Canada
| | | |
Collapse
|
28
|
Bräuniger T, Jansen M. Solid-state NMR Spectroscopy of Quadrupolar Nuclei in Inorganic Chemistry. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300102] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Perras FA, Viger-Gravel J, Burgess KMN, Bryce DL. Signal enhancement in solid-state NMR of quadrupolar nuclei. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2013; 51-52:1-15. [PMID: 23336997 DOI: 10.1016/j.ssnmr.2012.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/13/2012] [Accepted: 11/18/2012] [Indexed: 06/01/2023]
Abstract
Recent progress in the development and application of signal enhancement methods for NMR of quadrupolar nuclei in solids is presented. First, various pulse schemes for manipulating the populations of the satellite transitions in order to increase the signal of the central transition (CT) in stationary and rotating solids are evaluated (e.g., double-frequency sweeps, hyperbolic secant pulses). Second, the utility of the quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) and WURST-QCPMG pulse sequences for the rapid and efficient acquisition of particularly broad CT powder patterns is discussed. Third, less frequently used experiments involving polarization transfer from abundant nuclear spins (cross-polarization) or from unpaired electrons (dynamic nuclear polarization) are assessed in the context of recent examples. Advantages and disadvantages of particular enhancement schemes are highlighted and an outlook on possible future directions for the signal enhancement of quadrupolar nuclei in solids is offered.
Collapse
Affiliation(s)
- Frédéric A Perras
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Tatton AS, Pham TN, Vogt FG, Iuga D, Edwards AJ, Brown SP. Probing Hydrogen Bonding in Cocrystals and Amorphous Dispersions Using 14N–1H HMQC Solid-State NMR. Mol Pharm 2013; 10:999-1007. [DOI: 10.1021/mp300423r] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew S. Tatton
- Department
of Physics, University of Warwick, Coventry
CV4 7AL, United Kingdom
| | - Tran N. Pham
- GlaxoSmithKline plc, Product Development, Gunnels Wood Road, Stevenage
SG1 2NY, United Kingdom
| | - Frederick G. Vogt
- GlaxoSmithKline plc, Product Development, 709 Swedeland
Road, King of Prussia, Pennsylvania
19406, United States
| | - Dinu Iuga
- Department
of Physics, University of Warwick, Coventry
CV4 7AL, United Kingdom
| | - Andrew J. Edwards
- GlaxoSmithKline plc, Product Development, Gunnels Wood Road, Stevenage
SG1 2NY, United Kingdom
| | - Steven P. Brown
- Department
of Physics, University of Warwick, Coventry
CV4 7AL, United Kingdom
| |
Collapse
|
31
|
Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azaïs T, Ashbrook SE, Griffin JM, Yates JR, Mauri F, Pickard CJ. First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist's point of view. Chem Rev 2012; 112:5733-79. [PMID: 23113537 DOI: 10.1021/cr300108a] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, Université Pierre et Marie Curie, CNRS UMR, Collège de France, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Marini A, Zupančič B, Domenici V, Mennucci B, Zalar B, Veracini CA. A Photosensitive Liquid Crystal Studied by14N NMR,2H NMR, and DFT Calculations. Chemphyschem 2012; 13:3958-65. [DOI: 10.1002/cphc.201200546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/28/2012] [Indexed: 11/11/2022]
|
33
|
Sutrisno A, Terskikh VV, Shi Q, Song Z, Dong J, Ding SY, Wang W, Provost BR, Daff TD, Woo TK, Huang Y. Characterization of Zn-Containing Metal-Organic Frameworks by Solid-State67Zn NMR Spectroscopy and Computational Modeling. Chemistry 2012; 18:12251-9. [DOI: 10.1002/chem.201201563] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Indexed: 11/06/2022]
|
34
|
Perras FA, Widdifield CM, Bryce DL. QUEST-QUadrupolar Exact SofTware: a fast graphical program for the exact simulation of NMR and NQR spectra for quadrupolar nuclei. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2012; 45-46:36-44. [PMID: 22763585 DOI: 10.1016/j.ssnmr.2012.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 05/28/2023]
Abstract
We present a new program for the exact simulation of solid-state NMR spectra of quadrupolar nuclei in stationary powdered samples which employs diagonalization of the combined Zeeman-quadrupolar Hamiltonian. The program, which we call QUEST (QUadrupolar Exact SofTware), can simulate NMR spectra over the full regime of Larmor and quadrupolar frequency ratios, which encompasses scenarios ranging from high-field NMR to nuclear quadrupole resonance (NQR, where the Larmor frequency is zero) and does not make use of approximations when treating the quadrupolar interaction. With the use of the fast powder averaging scheme of Alderman, Solum, and Grant, exact NMR spectral simulations are only marginally slower than the second-order perturbation theory counterpart. The program, which uses a graphical user interface, also incorporates chemical shift anisotropy and non-coincident chemical shift and quadrupolar tensor frames. The program is validated against newly-acquired experimental data through several examples including: the low-field (79/81)Br NMR spectra of CaBr(2), the (14)N overtone NMR spectrum of glycine, the (187)Re NQR spectra of Re(2)(CO)(10), and lastly the (127)I overtone NQR spectrum of SrI(2), which, to the best of our knowledge, represents the first direct acquisition of an overtone NQR spectrum for a powdered sample.
Collapse
Affiliation(s)
- Frédéric A Perras
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
35
|
O’Dell LA, Ratcliffe CI, Kong X, Wu G. Multinuclear Solid-State Nuclear Magnetic Resonance and Density Functional Theory Characterization of Interaction Tensors in Taurine. J Phys Chem A 2012; 116:1008-14. [DOI: 10.1021/jp210844t] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luke A. O’Dell
- Steacie Institute for Molecular Sciences, National Research Council, 100
Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Christopher I. Ratcliffe
- Steacie Institute for Molecular Sciences, National Research Council, 100
Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Xianqi Kong
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario, K7L 3N6, Canada
| | - Gang Wu
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario, K7L 3N6, Canada
| |
Collapse
|
36
|
O'Dell LA. Direct detection of nitrogen-14 in solid-state NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 59:295-318. [PMID: 22027340 DOI: 10.1016/j.pnmrs.2011.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/07/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Luke A O'Dell
- Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Drive, Ottawa, Ontario, Canada K1N 5A2.
| |
Collapse
|
37
|
Penner GH, Webber R, O’Dell LA. A multinuclear NMR and quantum chemical study of solid trimethylammonium chloride. CAN J CHEM 2011. [DOI: 10.1139/v11-034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The solid salt, trimethylammonium chloride (TMAC), is investigated by a combination of NMR spectroscopic techniques and quantum chemical calculations. Chemical shift and nuclear quadrupolar interaction parameters have been measured for 35Cl, 1H/2H, and 15N/14N. These parameters have also been calculated as a function of the hydrogen position in the N···H···Cl fragment. Overall, the measured parameters are consistent with a structure in which the hydrogen is completely transferred to the nitrogen (i.e., N–H···Cl). The high hydrogen chemical shift (10.9 ppm by 2H CP/MAS) and relatively small deuterium quadrupolar coupling constant (127 kHz) indicate a moderately strong N–H···Cl hydrogen bond. A pronounced deuterium isotope effect on the 35Cl quadrupolar coupling constant is observed.
Collapse
Affiliation(s)
- Glenn H. Penner
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Renee Webber
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Luke A. O’Dell
- Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
38
|
|
39
|
Wong A, Smith ME, Terskikh V, Wu G. Obtaining accurate chemical shifts for all magnetic nuclei (1H, 13C, 17O, and 27Al) in tris(2,4-pentanedionato-O,O′)aluminium(III) — A solid-state NMR case study. CAN J CHEM 2011. [DOI: 10.1139/v11-046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report a complete set of high-resolution solid-state NMR spectra for all magnetic nuclei (1H, 13C, 17O, and 27Al) in the α-form of tris(2,4-pentanedionato-O,O′)aluminium(III), α-Al(acac)3. These high-resolution NMR spectra were obtained by using a host of solid-state NMR techniques: standard cross-polarization under the magic-angle spinning (CPMAS) method for 13C, 1-D homonuclear decoupling using the windowed DUMBO sequence for 1H, double-rotation (DOR) for 17O and 27Al, and multiple-quantum MAS for 27Al. Some experiments were performed at multiple magnetic fields. We show that the isotropic chemical shifts obtained for 1H, 13C, 17O, and 27Al nuclei in α-Al(acac)3 are highly resolved and accurate, regardless of the nature of the targeted nuclear spins (i.e., spin-1/2 or quadrupolar) and, as such, can be treated equally in comparison with computational chemical shifts obtained from a gauge-including projector-augmented wave (GIPAW) plane-wave pseudopotential DFT method.
Collapse
Affiliation(s)
- Alan Wong
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Mark E. Smith
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Victor Terskikh
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Gang Wu
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
40
|
Jakobsen HJ, Bildsøe H, Gan Z, Brey WW. Experimental aspects in acquisition of wide bandwidth solid-state MAS NMR spectra of low-γ nuclei with different opportunities on two commercial NMR spectrometers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 211:195-206. [PMID: 21704544 DOI: 10.1016/j.jmr.2011.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 05/31/2023]
Abstract
The acquisition and different appearances observed for wide bandwidth solid-state MAS NMR spectra of low-γ nuclei, using (14)N as an illustrative nucleus and employing two different commercial spectrometers (Varian, 14.1T and Bruker, 19.6T), have been compared/evaluated and optimized from an experimental NMR and an electronic engineering point of view, to account for the huge differences in these spectra. The large differences in their spectral appearances, employing the recommended/standard experimental set-up for the two different spectrometers, are shown to be associated with quite large differences in the electronic design of the two types of preamplifiers, which are connected to their respective probes through a 50Ω cable, and are here completely accounted for. This has led to different opportunities for optimum performances in the acquisition of nearly ideal wide bandwidth spectra for low-γ nuclei on the two spectrometers by careful evaluation of the length for the 50Ω probe-to-preamp cable for the Varian system and appropriate changes to the bandwidth (Q) of the NMR probe used on the Bruker spectrometer. Earlier, we reported quite distorted spectra obtained with Varian Unity INOVA spectrometers (at 11.4 and 14.1T) in several exploratory wide bandwidth (14)N MAS NMR studies of inorganic nitrates and amino acids. These spectra have now been compared/evaluated with fully analyzed (14)N MAS spectra correspondingly acquired at 19.6T on a Bruker spectrometer. It is shown that our upgraded version of the STARS simulation/iterative-fitting software is capable of providing identical sets for the molecular spectral parameters and corresponding fits to the experimental spectra, which fully agree with the electronic measurements, despite the highly different appearances for the MAS NMR spectra acquired on the Varian and Bruker spectrometers.
Collapse
Affiliation(s)
- Hans J Jakobsen
- Instrument Centre for Solid-State NMR Spectroscopy and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
41
|
Lucier BE, Reidel AR, Schurko RW. Multinuclear solid-state NMR of square-planar platinum complexes — Cisplatin and related systems. CAN J CHEM 2011. [DOI: 10.1139/v11-033] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multinuclear solid-state nuclear magnetic resonance (SSNMR) experiments have been performed on cisplatin and four related square-planar compounds. The wideband uniform rate smooth truncation – Carr–Purcell–Meiboom–Gill (WURST–CPMG) pulse sequence was utilized in NMR experiments to acquire 195Pt, 14N, and 35Cl ultra-wideline NMR spectra of high quality. Standard Hahn-echo and magic-angle spinning 195Pt NMR experiments are also performed to refine extracted chemical shielding (CS) tensor parameters. Platinum magnetic shielding (MS) tensor orientations are calculated using both plane-wave density functional theory (DFT) and standard DFT methods. The tensor orientations are shown to be highly constrained by molecular symmetry elements, but also influenced to some degree by intermolecular interactions. 14N WURST–CPMG experiments were performed on three compounds and electric field gradient (EFG) parameters (the quadrupolar coupling constant, CQ, and the asymmetry parameter, ηQ) are reported. First principles calculations of the 14N EFG tensor parameters and orientations and affirm their dependence on the local hydrogen bonding environment. 35Cl WURST–CPMG experiments on cisplatin and transplatin are reported, using two different static magnetic fields to extract EFG and CS tensor parameters, and 35Cl EFG tensor magnitudes and orientations are predicted using first principles calculations. Transverse (T2) relaxation data for all nuclei are used to investigate heteronuclear dipolar relaxation mechanisms, as well as the nature of the local hydrogen bonding environments.
Collapse
Affiliation(s)
- Bryan E.G. Lucier
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Alex R. Reidel
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
42
|
Charpentier T. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2011; 40:1-20. [PMID: 21612895 DOI: 10.1016/j.ssnmr.2011.04.006] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/24/2011] [Accepted: 04/25/2011] [Indexed: 05/18/2023]
Abstract
In 2001, Mauri and Pickard introduced the gauge including projected augmented wave (GIPAW) method that enabled for the first time the calculation of all-electron NMR parameters in solids, i.e. accounting for periodic boundary conditions. The GIPAW method roots in the plane wave pseudopotential formalism of the density functional theory (DFT), and avoids the use of the cluster approximation. This method has undoubtedly revitalized the interest in quantum chemical calculations in the solid-state NMR community. It has quickly evolved and improved so that the calculation of the key components of NMR interactions, namely the shielding and electric field gradient tensors, has now become a routine for most of the common nuclei studied in NMR. Availability of reliable implementations in several software packages (CASTEP, Quantum Espresso, PARATEC) make its usage more and more increasingly popular, maybe indispensable in near future for all material NMR studies. The majority of nuclei of the periodic table have already been investigated by GIPAW, and because of its high accuracy it is quickly becoming an essential tool for interpreting and understanding experimental NMR spectra, providing reliable assignments of the observed resonances to crystallographic sites or enabling a priori prediction of NMR data. The continuous increase of computing power makes ever larger (and thus more realistic) systems amenable to first-principles analysis. In the near future perspectives, as the incorporation of dynamical effects and/or disorder are still at their early developments, these areas will certainly be the prime target.
Collapse
Affiliation(s)
- Thibault Charpentier
- CEA, IRAMIS, SIS2M, Laboratoire de Structure et Dynamique par Résonance Magnétique, UMR CEA-CNRS 3299, F-91191 Gif-sur-Yvette cedex, France.
| |
Collapse
|
43
|
MacGregor AW, O'Dell LA, Schurko RW. New methods for the acquisition of ultra-wideline solid-state NMR spectra of spin-1/2 nuclides. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 208:103-113. [PMID: 21130011 DOI: 10.1016/j.jmr.2010.10.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/15/2010] [Accepted: 10/16/2010] [Indexed: 05/30/2023]
Abstract
The Wideband Uniform Rate Smooth Truncation - Carr-Purcell Meiboom-Gill (WURST-CPMG) pulse sequence was recently introduced as a new method of acquiring ultra-wideline solid-state NMR (SSNMR) patterns of quadrupolar nuclei (Chem. Phys. Lett. 464 (2008) 97). Herein, we describe the application of the WURST-CPMG pulse sequence to stationary samples (i.e., non-spinning or "static" samples) of various spin-1/2 nuclides ((119)Sn, (207)Pb, (199)Hg and (195)Pt) in order to examine its effectiveness for acquiring ultra-wideline SSNMR patterns. WURST-CPMG is compared to the CPMG and Cross Polarization (CP)-CPMG pulse sequences in select cases ((119)Sn and (207)Pb, respectively), and its usefulness in obtaining ultra-wideline SSNMR spectra in a piecewise fashion is explored. In addition, a preliminary investigation of pulses generated using optimal control theory (OCT) for the purpose of wideline excitation is presented; spectra acquired using these pulses are compared with standard, rectangular pulses of similar pulse powers. Both methods show much promise for acquiring high quality wideline patterns dominated by chemical shift anisotropy, with minimal distortions and significantly reduced experimental times.
Collapse
Affiliation(s)
- Alan W MacGregor
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | | | | |
Collapse
|
44
|
Sutrisno A, Liu L, Xu J, Huang Y. Natural abundance solid-state 67Zn NMR characterization of microporous zinc phosphites and zinc phosphates at ultrahigh magnetic field. Phys Chem Chem Phys 2011; 13:16606-17. [DOI: 10.1039/c1cp20947g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
45
|
O’Dell LA, Schurko RW, Harris KJ, Autschbach J, Ratcliffe CI. Interaction Tensors and Local Dynamics in Common Structural Motifs of Nitrogen: A Solid-State 14N NMR and DFT Study. J Am Chem Soc 2010; 133:527-46. [DOI: 10.1021/ja108181y] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luke A. O’Dell
- Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Drive, Ottawa, K1A 0R6 Ontario, Canada, Department of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4 Ontario, Canada, and Department of Chemistry, 312 Natural Sciences Complex, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Robert W. Schurko
- Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Drive, Ottawa, K1A 0R6 Ontario, Canada, Department of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4 Ontario, Canada, and Department of Chemistry, 312 Natural Sciences Complex, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Kristopher J. Harris
- Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Drive, Ottawa, K1A 0R6 Ontario, Canada, Department of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4 Ontario, Canada, and Department of Chemistry, 312 Natural Sciences Complex, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Drive, Ottawa, K1A 0R6 Ontario, Canada, Department of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4 Ontario, Canada, and Department of Chemistry, 312 Natural Sciences Complex, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Christopher I. Ratcliffe
- Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Drive, Ottawa, K1A 0R6 Ontario, Canada, Department of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4 Ontario, Canada, and Department of Chemistry, 312 Natural Sciences Complex, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
46
|
O’Dell LA, Ratcliffe CI. Crystal Structure Based Design of Signal Enhancement Schemes for Solid-State NMR of Insensitive Half-Integer Quadrupolar Nuclei. J Phys Chem A 2010; 115:747-52. [DOI: 10.1021/jp111531e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luke A. O’Dell
- Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Drive, Ottawa, K1A 0R6, Ontario, Canada
| | - Christopher I. Ratcliffe
- Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Drive, Ottawa, K1A 0R6, Ontario, Canada
| |
Collapse
|
47
|
Bonhomme C, Gervais C, Coelho C, Pourpoint F, Azaïs T, Bonhomme-Coury L, Babonneau F, Jacob G, Ferrari M, Canet D, Yates JR, Pickard CJ, Joyce SA, Mauri F, Massiot D. New perspectives in the PAW/GIPAW approach: J(P-O-Si) coupling constants, antisymmetric parts of shift tensors and NQR predictions. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48 Suppl 1:S86-S102. [PMID: 20589728 DOI: 10.1002/mrc.2635] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In 2001, Pickard and Mauri implemented the gauge including projected augmented wave (GIPAW) protocol for first-principles calculations of NMR parameters using periodic boundary conditions (chemical shift anisotropy and electric field gradient tensors). In this paper, three potentially interesting perspectives in connection with PAW/GIPAW in solid-state NMR and pure nuclear quadrupole resonance (NQR) are presented: (i) the calculation of J coupling tensors in inorganic solids; (ii) the calculation of the antisymmetric part of chemical shift tensors and (iii) the prediction of (14)N and (35)Cl pure NQR resonances including dynamics. We believe that these topics should open new insights in the combination of GIPAW, NMR/NQR crystallography, temperature effects and dynamics. Points (i), (ii) and (iii) will be illustrated by selected examples: (i) chemical shift tensors and heteronuclear (2)J(P-O-Si) coupling constants in the case of silicophosphates and calcium phosphates [Si(5)O(PO(4))(6), SiP(2)O(7) polymorphs and α-Ca(PO(3))(2)]; (ii) antisymmetric chemical shift tensors in cyclopropene derivatives, C(3)X(4) (X = H, Cl, F) and (iii) (14)N and (35)Cl NQR predictions in the case of RDX (C(3)H(6)N(6)O(6)), β-HMX (C(4)H(8)N(8)O(8)), α-NTO (C(2)H(2)N(4)O(3)) and AlOPCl(6). RDX, β-HMX and α-NTO are explosive compounds.
Collapse
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée, Université Pierre et Marie Curie, Paris 06, CNRS UMR 7574, Collège de France, 75005 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Griffin JM, Yates JR, Berry AJ, Wimperis S, Ashbrook SE. High-Resolution 19F MAS NMR Spectroscopy: Structural Disorder and Unusual J Couplings in a Fluorinated Hydroxy-Silicate. J Am Chem Soc 2010; 132:15651-60. [DOI: 10.1021/ja105347q] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- John M. Griffin
- School of Chemistry and EaStCHEM, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K., Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K., Department of Earth Sciences and Engineering, Imperial College London, South Kensington SW7 2AZ, U.K., Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, U.K., and School of Chemistry and WestCHEM, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Jonathan R. Yates
- School of Chemistry and EaStCHEM, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K., Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K., Department of Earth Sciences and Engineering, Imperial College London, South Kensington SW7 2AZ, U.K., Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, U.K., and School of Chemistry and WestCHEM, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Andrew J. Berry
- School of Chemistry and EaStCHEM, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K., Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K., Department of Earth Sciences and Engineering, Imperial College London, South Kensington SW7 2AZ, U.K., Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, U.K., and School of Chemistry and WestCHEM, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Stephen Wimperis
- School of Chemistry and EaStCHEM, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K., Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K., Department of Earth Sciences and Engineering, Imperial College London, South Kensington SW7 2AZ, U.K., Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, U.K., and School of Chemistry and WestCHEM, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Sharon E. Ashbrook
- School of Chemistry and EaStCHEM, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K., Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K., Department of Earth Sciences and Engineering, Imperial College London, South Kensington SW7 2AZ, U.K., Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, U.K., and School of Chemistry and WestCHEM, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
49
|
Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2009.12.040] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Chen L, Wang Q, Hu B, Lafon O, Trébosc J, Deng F, Amoureux JP. Measurement of hetero-nuclear distances using a symmetry-based pulse sequence in solid-state NMR. Phys Chem Chem Phys 2010; 12:9395-405. [PMID: 20577687 DOI: 10.1039/b926546e] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Symmetry-based Resonance-Echo DOuble-Resonance (S-REDOR) method is proposed for measuring hetero-nuclear dipolar couplings between two different spin-1/2 nuclei, under fast magic-angle spinning. The hetero-nuclear dipolar couplings are restored by employing the SR4 sequence, which requires the rf-field strength to be only twice the spinning frequency. The S-REDOR experiment is extended to S-RESPDOR (Symmetry-based Resonance-Echo Saturation-Pulse DOuble-Resonance) for determining dipolar coupling between a spin-1/2 nucleus (e.g.(13)C) and (14)N. It is demonstrated that S-REDOR and S-RESPDOR methods suppress efficiently the homo-nuclear dipolar interaction of the irradiated nucleus and benefit from high robustness to the rf-field inhomogeneity, chemical shielding and dipolar truncation. Therefore, these methods allow the measurement of (13)C/(14,15)N distances, with (13)C observation, in uniformly (13)C-labeled samples. Furthermore, we provide analytical solutions for the S-REDOR and S-RESPDOR dephasing curves. These solutions facilitate the measurement of hetero-nuclear distances from experimental data.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | |
Collapse
|