1
|
Rosenthal K, Oehling V, Dusny C, Schmid A. Beyond the bulk: disclosing the life of single microbial cells. FEMS Microbiol Rev 2017; 41:751-780. [PMID: 29029257 PMCID: PMC5812503 DOI: 10.1093/femsre/fux044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/08/2017] [Indexed: 01/08/2023] Open
Abstract
Microbial single cell analysis has led to discoveries that are beyond what can be resolved with population-based studies. It provides a pristine view of the mechanisms that organize cellular physiology, unbiased by population heterogeneity or uncontrollable environmental impacts. A holistic description of cellular functions at the single cell level requires analytical concepts beyond the miniaturization of existing technologies, defined but uncontrolled by the biological system itself. This review provides an overview of the latest advances in single cell technologies and demonstrates their potential. Opportunities and limitations of single cell microbiology are discussed using selected application-related examples.
Collapse
Affiliation(s)
- Katrin Rosenthal
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Verena Oehling
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Christian Dusny
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Andreas Schmid
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| |
Collapse
|
2
|
Yeo T, Tan SJ, Lim CL, Lau DPX, Chua YW, Krisna SS, Iyer G, Tan GS, Lim TKH, Tan DS, Lim WT, Lim CT. Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci Rep 2016; 6:22076. [PMID: 26924553 PMCID: PMC4770429 DOI: 10.1038/srep22076] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/05/2016] [Indexed: 12/18/2022] Open
Abstract
Resistance to drug therapy is a major concern in cancer treatment. To probe clones resistant to chemotherapy, the current approach is to conduct pooled cell analysis. However, this can yield false negative outcomes, especially when we are analyzing a rare number of circulating tumor cells (CTCs) among an abundance of other cell types. Here, we develop a microfluidic device that is able to perform high throughput, selective picking and isolation of single CTC to 100% purity from a larger population of other cells. This microfluidic device can effectively separate the very rare CTCs from blood samples from as few as 1 in 20,000 white blood cells. We first demonstrate isolation of pure tumor cells from a mixed population and track variations of acquired T790M mutations before and after drug treatment using a model PC9 cell line. With clinical CTC samples, we then show that the isolated single CTCs are representative of dominant EGFR mutations such as T790M and L858R found in the primary tumor. With this single cell recovery device, we can potentially implement personalized treatment not only through detecting genetic aberrations at the single cell level, but also through tracking such changes during an anticancer therapy.
Collapse
Affiliation(s)
- Trifanny Yeo
- Clearbridge Accelerator Pte Ltd, 81 Science Park Drive, The Chadwick, #02-03, Singapore Science Park 1, Singapore 118257, Singapore
| | - Swee Jin Tan
- Clearbridge Accelerator Pte Ltd, 81 Science Park Drive, The Chadwick, #02-03, Singapore Science Park 1, Singapore 118257, Singapore
| | - Chew Leng Lim
- School of Biological Science, National Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Dawn Ping Xi Lau
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Yong Wei Chua
- Department of Pathology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Sai Sakktee Krisna
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Gopal Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Gek San Tan
- Department of Pathology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Tony Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Daniel S.W. Tan
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
- Cancer Stem Cell Biology, Genome Institute of Singapore, 60 Biopolis St, #02-01, 138672, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
- Duke-NUS Medical School, 8 College Road, 169857, Singapore
- Institute of Molecular and Cell Biology, A*Star, 61 Biopolis Drive Proteos, 138673, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4, #04-08, Singapore 117583, Singapore
- Mechanobiology Institute of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
3
|
Dusny C, Grünberger A, Probst C, Wiechert W, Kohlheyer D, Schmid A. Technical bias of microcultivation environments on single-cell physiology. LAB ON A CHIP 2015; 15:1822-1834. [PMID: 25710324 DOI: 10.1039/c4lc01270d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microscale cultivation systems are important tools to elucidate cellular dynamics beyond the population average and understand the functional architecture of single cells. However, there is scant knowledge about the bias of different microcultivation technologies on cellular functions. We therefore performed a systematic cross-platform comparison of three different microscale cultivation systems commonly harnessed in single-cell analysis: microfluidic non-contact cell traps driven by negative dielectrophoresis, microfluidic monolayer growth chambers, and semi-solid agarose pads. We assessed the specific single-cell growth rates, division rates and morphological characteristics of single Corynebacterium glutamicum cells and microcolonies as a bacterial model organism with medical and biotechnological relevance under standardized growth conditions. Strikingly, the specific single-cell and microcolony growth rates, μmax, were robust and conserved for several cell generations with all three microcultivation technologies, whereas the division rates of cells grown on agarose pads deviated by up to 50% from those of cells cultivated in negative dielectrophoresis traps and monolayer growth chambers. Furthermore, morphological characteristics like cell lengths and division symmetries of individual cells were affected when the cells were grown on agarose pads. This indicated a significant impact of solid cultivation supports on cellular traits. The results demonstrate the impact of microcultivation technology on microbial physiology for the first time and show the need for a careful selection and design of the microcultivation technology in order to allow unbiased analysis of cellular behavior.
Collapse
Affiliation(s)
- Christian Dusny
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
4
|
Son KJ, Shin DS, Kwa T, You J, Gao Y, Revzin A. A microsystem integrating photodegradable hydrogel microstructures and reconfigurable microfluidics for single-cell analysis and retrieval. LAB ON A CHIP 2015; 15:637-641. [PMID: 25421651 DOI: 10.1039/c4lc00884g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We developed a micropatterned photodegradable hydrogel array integrated with reconfigurable microfluidics to enable cell secretion analysis and cell retrieval at the single-cell level. The activity of protease molecules secreted from single cells was monitored using FRET peptides entrapped inside microfabricated compartments. Antibody-modified gel islands tethering cells to the surface could be degraded by UV exposure to release specific single cells of interest.
Collapse
Affiliation(s)
- Kyung Jin Son
- Department of Biomedical Engineering, University of California, Davis, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Dusny C, Schmid A. Microfluidic single-cell analysis links boundary environments and individual microbial phenotypes. Environ Microbiol 2014; 17:1839-56. [DOI: 10.1111/1462-2920.12667] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/02/2014] [Accepted: 10/11/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Dusny
- Department of Solar Materials; Helmholtz Centre for Environmental Research GmbH - UFZ; Permoserstr. 15 Leipzig DE 04318 Germany
- Laboratory of Chemical Biotechnology; Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Andreas Schmid
- Department of Solar Materials; Helmholtz Centre for Environmental Research GmbH - UFZ; Permoserstr. 15 Leipzig DE 04318 Germany
- Laboratory of Chemical Biotechnology; Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| |
Collapse
|
6
|
Grünberger A, Wiechert W, Kohlheyer D. Single-cell microfluidics: opportunity for bioprocess development. Curr Opin Biotechnol 2014; 29:15-23. [DOI: 10.1016/j.copbio.2014.02.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/29/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
|
7
|
Eyer K, Kuhn P, Stratz S, Dittrich PS. A microfluidic chip for the versatile chemical analysis of single cells. J Vis Exp 2013:e50618. [PMID: 24192501 DOI: 10.3791/50618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We present a microfluidic device that enables the quantitative determination of intracellular biomolecules in multiple single cells in parallel. For this purpose, the cells are passively trapped in the middle of a microchamber. Upon activation of the control layer, the cell is isolated from the surrounding volume in a small chamber. The surrounding volume can then be exchanged without affecting the isolated cell. However, upon short opening and closing of the chamber, the solution in the chamber can be replaced within a few hundred milliseconds. Due to the reversibility of the chambers, the cells can be exposed to different solutions sequentially in a highly controllable fashion, e.g. for incubation, washing, and finally, cell lysis. The tightly sealed microchambers enable the retention of the lysate, minimize and control the dilution after cell lysis. Since lysis and analysis occur at the same location, high sensitivity is retained because no further dilution or loss of the analytes occurs during transport. The microchamber design therefore enables the reliable and reproducible analysis of very small copy numbers of intracellular molecules (attomoles, zeptomoles) released from individual cells. Furthermore, many microchambers can be arranged in an array format, allowing the analysis of many cells at once, given that suitable optical instruments are used for monitoring. We have already used the platform for proof-of-concept studies to analyze intracellular proteins, enzymes, cofactors and second messengers in either relative or absolute quantifiable manner.
Collapse
Affiliation(s)
- Klaus Eyer
- Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | | | | | | |
Collapse
|
8
|
Eyer K, Stratz S, Kuhn P, Küster SK, Dittrich PS. Implementing Enzyme-Linked Immunosorbent Assays on a Microfluidic Chip To Quantify Intracellular Molecules in Single Cells. Anal Chem 2013; 85:3280-7. [DOI: 10.1021/ac303628j] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- K. Eyer
- Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10,
CH-8093 Zurich, Switzerland
| | - S. Stratz
- Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10,
CH-8093 Zurich, Switzerland
| | - P. Kuhn
- Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10,
CH-8093 Zurich, Switzerland
| | - S. K. Küster
- Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10,
CH-8093 Zurich, Switzerland
| | - P. S. Dittrich
- Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10,
CH-8093 Zurich, Switzerland
| |
Collapse
|
9
|
Fritzsch FS, Dusny C, Frick O, Schmid A. Single-Cell Analysis in Biotechnology, Systems Biology, and Biocatalysis. Annu Rev Chem Biomol Eng 2012; 3:129-55. [DOI: 10.1146/annurev-chembioeng-062011-081056] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Frederik S.O. Fritzsch
- Single Cell Laboratory, Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., D-44227 Dortmund, Germany;
| | - Christian Dusny
- Single Cell Laboratory, Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., D-44227 Dortmund, Germany;
| | - Oliver Frick
- Laboratory of Chemical Biotechnology, Technische Universität Dortmund, D-44227 Dortmund, Germany
| | - Andreas Schmid
- Single Cell Laboratory, Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., D-44227 Dortmund, Germany;
- Laboratory of Chemical Biotechnology, Technische Universität Dortmund, D-44227 Dortmund, Germany
| |
Collapse
|
10
|
Eyer K, Kuhn P, Hanke C, Dittrich PS. A microchamber array for single cell isolation and analysis of intracellular biomolecules. LAB ON A CHIP 2012; 12:765-72. [PMID: 22183159 DOI: 10.1039/c2lc20876h] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present a microfluidic device that enables the determination of intracellular biomolecules in multiple single cells. The cells are individually trapped and isolated in a microchamber array. Since the microchambers can be opened and closed reversibly, the cells can be exposed to different solutions sequentially, e.g. for incubation, washing steps, labelling and finally, for lysis. The tightly sealed microchambers enable the retention and analysis of cell lysate derived from single cells. The performance of the device is demonstrated by monitoring the levels of the cofactors NADPH and NADH both in healthy mammalian cells and in cells exposed to oxidative stress. The platform was also used to determine the toxic impact of the alkaloid camptothecin on the intracellular enzyme glucose-6-phosphate dehydrogenase levels. In general, the device is applicable for the analysis of cell auto-stimulation and the detection of intracellular metabolite concentration or expression levels of proteins.
Collapse
Affiliation(s)
- Klaus Eyer
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
11
|
Hanke C, Waide S, Kettler R, Dittrich PS. Monitoring induced gene expression of single cells in a multilayer microchip. Anal Bioanal Chem 2011; 402:2577-85. [DOI: 10.1007/s00216-011-5595-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/02/2011] [Accepted: 11/20/2011] [Indexed: 01/09/2023]
|
12
|
Affiliation(s)
- Yuqing Lin
- Department of Chemistry, University of Gothenburg, S-41296, Gothenburg, Sweden
| | | | | | | |
Collapse
|
13
|
Ryan D, Ren K, Wu H. Single-cell assays. BIOMICROFLUIDICS 2011; 5:21501. [PMID: 21559238 PMCID: PMC3089644 DOI: 10.1063/1.3574448] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 03/11/2011] [Indexed: 05/03/2023]
Abstract
This review presents an overview of literature that describes the applications of microfluidics to assay individual cells. We quantify the content of an individual mammalian cell, so that we can understand what criteria a single-cell assay must satisfy to be successful. We put in context the justification for single-cell assays and identify the characteristics that are relevant to single-cell assays. We review the literature from the past 24 months that describe the methods that use microfabrication-conventional or otherwise-and microfluidics in particular to study individual cells, and we present our views on how an increasing emphasis on three-dimensional cell culture and the demonstration of the first chemically defined cell might impact single-cell assays.
Collapse
Affiliation(s)
- Declan Ryan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
14
|
Salieb-Beugelaar GB, Simone G, Arora A, Philippi A, Manz A. Latest developments in microfluidic cell biology and analysis systems. Anal Chem 2010; 82:4848-64. [PMID: 20462184 DOI: 10.1021/ac1009707] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Naumann JM, Küttner G, Bureik M. Expression and Secretion of a CB4-1 scFv–GFP Fusion Protein by Fission Yeast. Appl Biochem Biotechnol 2010; 163:80-9. [DOI: 10.1007/s12010-010-9018-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/17/2010] [Indexed: 11/28/2022]
|
16
|
Chemical and biological single cell analysis. Curr Opin Biotechnol 2010; 21:12-20. [DOI: 10.1016/j.copbio.2010.01.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 01/09/2010] [Indexed: 11/20/2022]
|
17
|
Single cell analytics: an overview. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 124:99-122. [PMID: 21072695 DOI: 10.1007/10_2010_96] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The research field of single cell analysis is rapidly expanding, driven by developments in flow cytometry, microscopy, lab-on-a-chip devices, and many other fields. The promises of these developments include deciphering cellular mechanisms and the quantification of cell-to-cell differences, ideally with spatio-temporal resolution. However, these promises are challenging as the analytical techniques have to cope with minute analyte amounts and concentrations. We formulate first these challenges and then present state-of-the-art analytical techniques available to investigate the different cellular hierarchies--from the genome to the phenome, i.e., the sum of all phenotypes.
Collapse
|