1
|
Hu Z, Yang S. Endohedral metallofullerene molecular nanomagnets. Chem Soc Rev 2024; 53:2863-2897. [PMID: 38324027 DOI: 10.1039/d3cs00991b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Magnetic lanthanide (Ln) metal complexes exhibiting magnetic bistability can behave as molecular nanomagnets, also known as single-molecule magnets (SMMs), suitable for storing magnetic information at the molecular level, thus attracting extensive interest in the quest for high-density information storage and quantum information technologies. Upon encapsulating Ln ion(s) into fullerene cages, endohedral metallofullerenes (EMFs) have been proven as a promising and versatile platform to realize chemically robust SMMs, in which the magnetic properties are able to be readily tailored by altering the configurations of the encapsulated species and the host cages. In this review, we present critical discussions on the molecular structures and magnetic characterizations of EMF-SMMs, with the focus on their peculiar molecular and electronic structures and on the intriguing molecular magnetism arising from such structural uniqueness. In this context, different families of magnetic EMFs are summarized, including mononuclear EMF-SMMs wherein single-ion anisotropy is decisive, dinuclear clusterfullerenes whose magnetism is governed by intramolecular magnetic interaction, and radical-bridged dimetallic EMFs with high-spin ground states that arise from the strong ferromagnetic coupling. We then discuss how molecular assemblies of SMMs can be constructed, in a way that the original SMM behavior is either retained or altered in a controlled manner, thanks to the chemical robustness of EMFs. Finally, on the basis of understanding the structure-magnetic property correlation, we propose design strategies for high-performance EMF-SMMs by engineering ligand fields, electronic structures, magnetic interactions, and molecular vibrations that can couple to the spin states.
Collapse
Affiliation(s)
- Ziqi Hu
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Xiang W, Hu Z, Xin J, Jin H, Jiang Z, Han X, Chen M, Yao YR, Yang S. Steering Single-Electron Metal-Metal Bonds and Hyperfine Coupling between a Transition Metal-Lanthanide Heteronuclear Bimetal Confined in Carbon Cages. J Am Chem Soc 2023; 145:22599-22608. [PMID: 37787921 DOI: 10.1021/jacs.3c07686] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Metal complexes bearing single-electron metal-metal bonds (SEMBs) exhibit unusual electronic structures evoking strong magnetic coupling, and such bonds can be stabilized in the form of dimetallofullerenes (di-EMFs) in which two metals are confined in a carbon cage. Up to now, only a few di-EMFs containing SEMBs are reported, which are all based on a high-symmetry icosahedral (Ih) C80 cage embedding homonuclear rare-earth bimetals, and a chemical modification of the Ih-C80 cage is required to stabilize the SEMB. Herein, by introducing 3d-block transition metal titanium (Ti) along with 4f-block lanthanum (La) into the carbon cage, we synthesized the first crystallographically characterized SEMB-containing 3d-4f heteronuclear di-EMFs based on pristine fullerene cages. Four novel La-Ti heteronuclear di-EMFs were isolated, namely, LaTi@D3h(5)-C78, LaTi@Ih(7)-C80, LaTi@D5h(6)-C80, and LaTi@C2v(9)-C82, and their molecular structures were unambiguously determined by single-crystal X-ray diffraction. Upon increasing the cage size from C78 to C82, the La-Ti distance decreases from 4.31 to 3.97 Å, affording fine-tuning of the metal-metal bonding and hyperfine coupling, as evidenced by an electron spin resonance (ESR) spectroscopic study. Density functional theory (DFT) calculations confirm the existence of SEMB in all four LaTi@C2n di-EMFs, and the accumulation of electron density between La and Ti atoms shifts gradually from the proximity of the Ti atom inside C78 to the center of the LaTi bimetal inside C82 due to the decrease of the La-Ti distance. The electronic properties of LaTi@C2n heteronuclear dimetallofullerenes differ apparently from their homonuclear La2@C2n counterparts, revealing the peculiarity of heteronuclear dimetallofullerenes with the involvement of 3d-block transition metal Ti.
Collapse
Affiliation(s)
- Wenhao Xiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ziqi Hu
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinpeng Xin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Huaimin Jin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhanxin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xinyi Han
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Muqing Chen
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Rong Yao
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Sun J, Wang Y. How Does Spin Play with the Cycloaddition to Paramagnetic Endohedral Metallofullerenes? The Curious Case of TiSc 2N@C 80. Inorg Chem 2022; 61:19183-19192. [DOI: 10.1021/acs.inorgchem.2c02784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jing Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
4
|
Self-driven carbon atom implantation into fullerene embedding metal-carbon cluster. Proc Natl Acad Sci U S A 2022; 119:e2202563119. [PMID: 36122234 PMCID: PMC9522327 DOI: 10.1073/pnas.2202563119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hundreds of members have been synthesized and versatile applications have been promised for endofullerenes (EFs) in the past 30 y. However, the formation mechanism of EFs is still a long-standing puzzle to chemists, especially the mechanism of embedding clusters into charged carbon cages. Here, based on synthesis and structures of two representative vanadium-scandium-carbido/carbide EFs, VSc2C@Ih (7)-C80 and VSc2C2@Ih (7)-C80, a reasonable mechanism-C1 implantation (a carbon atom is implanted into carbon cage)-is proposed to interpret the evolution from VSc2C carbido to VSc2C2 carbide cluster. Supported by theoretical calculations together with crystallographic characterization, the single electron on vanadium (V) in VSc2C@Ih (7)-C80 is proved to facilitate the C1 implantation. While the V=C double bond is identified for VSc2C@Ih (7)-C80, after C1 implantation the distance between V and C atoms in VSc2C2@Ih (7)-C80 falls into the range of single bond lengths as previously shown in typical V-based organometallic complexes. This work exemplifies in situ self-driven implantation of an outer carbon atom into a charged carbon cage, which is different from previous heterogeneous implantation of nonmetal atoms (Group-V or -VIII atoms) driven by high-energy ion bombardment or high-pressure offline, and the proposed C1 implantation mechanism represents a heretofore unknown metal-carbon cluster encapsulation mechanism and can be the fundamental basis for EF family genesis.
Collapse
|
5
|
Jin F, Xin J, Guan R, Xie XM, Chen M, Zhang Q, Popov AA, Xie SY, Yang S. Stabilizing a three-center single-electron metal-metal bond in a fullerene cage. Chem Sci 2021; 12:6890-6895. [PMID: 34123317 PMCID: PMC8153215 DOI: 10.1039/d1sc00965f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Trimetallic carbide clusterfullerenes (TCCFs) encapsulating a quinary M3C2 cluster represent a special family of endohedral fullerenes with an open-shell electronic configuration. Herein, a novel TCCF based on a medium-sized rare earth metal, dysprosium (Dy), is synthesized for the first time. The molecular structure of Dy3C2@I h(7)-C80 determined by single crystal X-ray diffraction shows that the encapsulated Dy3C2 cluster adopts a bat ray configuration, in which the acetylide unit C2 is elevated above the Dy3 plane by ∼1.66 Å, while Dy-Dy distances are ∼3.4 Å. DFT computational analysis of the electronic structure reveals that the endohedral cluster has an unusual formal charge distribution of (Dy3)8+(C2)2-@C80 6- and features an unprecedented three-center single-electron Dy-Dy-Dy bond, which has never been reported for lanthanide compounds. Moreover, this electronic structure is different from that of the analogous Sc3C2@I h(7)-C80 with a (Sc3)9+(C2)3-@C80 6- charge distribution and no metal-metal bonding.
Collapse
Affiliation(s)
- Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China Hefei 230026 China
| | - Jinpeng Xin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China Hefei 230026 China
| | - Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China Hefei 230026 China
| | - Xiao-Ming Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Mate-rials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China Hefei 230026 China
| | - Qianyan Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Mate-rials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden) Helmholtzstrasse 20 Dresden 01069 Germany
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Mate-rials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
6
|
Yu P, Bao L, Yang L, Hao D, Jin P, Shen W, Fang H, Akasaka T, Lu X. Crystallographic Characterization of Ti 2C 2@ D3h(5)-C 78, Ti 2C 2@ C3v(8)-C 82, and Ti 2C 2@ Cs(6)-C 82: Identification of Unsupported Ti 2C 2 Cluster with Cage-Dependent Configurations. Inorg Chem 2020; 59:9416-9423. [PMID: 32551612 DOI: 10.1021/acs.inorgchem.0c01304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fullerene cages are ideal hosts to encapsulate otherwise unstable metallic clusters to form endohedral metallofullerenes (EMFs). Herein, a novel Ti2C2 cluster with two titanium atoms bridged by a C2-unit has been stabilized by three different fullerene cages to form Ti2C2@D3h(5)-C78, Ti2C2@C3v(8)-C82, and Ti2C2@Cs(6)-C82, representing the first examples of unsupported titanium carbide clusters. Crystallographic results show that the configuration of the Ti2C2 cluster changes upon cage variation. In detail, the Ti2C2 cluster adopts a butterfly shape in Ti2C2@C3v(8)-C82 and Ti2C2@Cs(6)-C82 with Ti-C2-Ti dihedral angles of 156.35 and 147.52° and Ti-Ti distances of 3.633 and 3.860 Å, respectively. In sharp contrast, a stretched planar geometry of Ti2C2 is observed in Ti2C2@D3h(5)-C78, where a Ti-C2-Ti angle of 176.87° and a long Ti-Ti distance of 5.000 Å are presented. Consistently, theoretical calculations reveal that the cluster configuration is very sensitive to the cage shape which eventually determines the electronic structures of the hybrid EMF-molecules, thus adding new insights into modern coordination chemistry.
Collapse
Affiliation(s)
- Pengyuan Yu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 China
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 China
| | - Le Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 China
| | - Debo Hao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 China
| | - Peng Jin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 China
| | - Wangqiang Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 China
| | - Hongyun Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 China
| | - Takeshi Akasaka
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 China
| |
Collapse
|
7
|
Yu P, Shen W, Bao L, Pan C, Slanina Z, Lu X. Trapping an unprecedented Ti 3C 3 unit inside the icosahedral C 80 fullerene: a crystallographic survey. Chem Sci 2019; 10:10925-10930. [PMID: 32190248 PMCID: PMC7066662 DOI: 10.1039/c9sc04315b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/14/2019] [Indexed: 11/21/2022] Open
Abstract
The sub-nanometer cavity of fullerene cages is an ideal platform to accommodate otherwise unstable species for accurate structural characterization with, for example, rather accurate single crystal X-ray diffraction (XRD) crystallography. Herein, we report the successful entrapment of an isolated Ti3C3 moiety inside the icosahedral-C80 cage to form Ti3C3@Ih-C80 via an arc-evaporation process in the gas phase. The single crystal XRD crystallographic results unambiguously reveal that the C3-unit adopts an unprecedented cyclopropane-like structure which coordinates with the three titanium atoms in an unexpected fashion where the triangular C3-unit is nearly perpendicular to the Ti3-plane. The intercalation of a cyclopropanated C3-unit into the titanium layer is thus unambiguously confirmed. The theoretical results reveal that the Ti3C3 cluster transfers six electrons to the Ih-C80 cage so that each titanium atom has a positive charge slightly above +2 and the C3-unit is negatively charged with about -1. It is noteworthy that this is the first observation of the cyclopropane-coordination fashion in any reported organometallic complex, providing new insights into coordination chemistry.
Collapse
Affiliation(s)
- Pengyuan Yu
- State Key Laboratory of Materials Processing and Die & Mould Technology , School of Materials Science and Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , 430074 China .
| | - Wangqiang Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology , School of Materials Science and Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , 430074 China .
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology , School of Materials Science and Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , 430074 China .
| | - Changwang Pan
- State Key Laboratory of Materials Processing and Die & Mould Technology , School of Materials Science and Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , 430074 China .
| | - Zdenek Slanina
- State Key Laboratory of Materials Processing and Die & Mould Technology , School of Materials Science and Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , 430074 China .
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology , School of Materials Science and Engineering , Huazhong University of Science and Technology , 1037 Luoyu Road , Wuhan , 430074 China .
| |
Collapse
|
8
|
Schlesier C, Liu F, Dubrovin V, Spree L, Büchner B, Avdoshenko SM, Popov AA. Mixed dysprosium-lanthanide nitride clusterfullerenes DyM 2N@C 80-I h and Dy 2MN@C 80-I h (M = Gd, Er, Tm, and Lu): synthesis, molecular structure, and quantum motion of the endohedral nitrogen atom. NANOSCALE 2019; 11:13139-13153. [PMID: 31268459 DOI: 10.1039/c9nr03593a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Systematic exploration of the synthesis of mixed-metal Dy-M nitride clusterfullerenes (NCFs, M = Gd, Er, Tm, Lu) is performed, and the impact of the second metal on the relative yield is evaluated. We demonstrate that the ionic radius of the metal appears to be the main factor allowing explanation of the relative yields in Dy-M mixed-metal systems with M = Sc, Lu, Er, and Gd. At the same time, Dy-Tm NCFs show anomalously low yields, which is not consistent with the relatively small ionic radius of Tm3+ but can be explained by the high third ionization potential of Tm. Complete separation of Dy-Gd and Dy-Er, as well as partial separation of Dy-Lu M3N@C80 nitride clusterfullerenes, is accomplished by recycling HPLC. The molecular structures of DyGd2N@C80 and DyEr2N@C80 are analyzed by means of single-crystal X-ray diffraction. A remarkable ordering of mixed-metal nitride clusters is found despite similar size and electronic properties of the metals. Possible pyramidalization of the nitride clusters in these and other nitride clusterfullerenes is critically analyzed with the help of DFT calculations and reconstruction of the nitrogen inversion barrier in M3N@C80 molecules is performed. Although a double-well potential with a pyramidal cluster structure is found to be common for most of them, the small size of the inversion barrier often leads to an apparent planar structure of the cluster. This situation is found for those M3N@C80 molecules in which the energy of the lowest vibrational level exceeds that of the inversion barrier, including Dy3N@C80 and DyEr2N@C80. The genuine pyramidal structure can be observed by X-ray diffraction only when the lowest vibrational level is below the inversion barrier, such as those found in Gd3N@C80 and DyGd2N@C80. The quantum nature of molecular vibrations becomes especially apparent when the size of the inversion barrier is comparable to the energy of the lowest vibrational levels.
Collapse
Affiliation(s)
- C Schlesier
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany.
| | - F Liu
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany.
| | - V Dubrovin
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany.
| | - L Spree
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany.
| | - B Büchner
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany.
| | - S M Avdoshenko
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany.
| | - A A Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany.
| |
Collapse
|
9
|
Brandenburg A, Krylov DS, Beger A, Wolter AUB, Büchner B, Popov AA. Carbide clusterfullerene DyYTiC@C 80 featuring three different metals in the endohedral cluster and its single-ion magnetism. Chem Commun (Camb) 2018; 54:10683-10686. [PMID: 30087957 PMCID: PMC6839965 DOI: 10.1039/c8cc04736g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbide clusterfullerene DyYTiC@C80-Ih with three different metal atoms in the endohedral cluster is obtained by arc-discharge synthesis with methane as reactive gas and is successfully isolated by HPLC. The compound shows single-molecule magnetism (SMM) with magnetic hysteresis below 8 K. The SMM properties of DyYTiC@C80 are compared to those of DySc2N@C80 and the influence of the central atom in the endohedral cluster is analyzed.
Collapse
Affiliation(s)
- Ariane Brandenburg
- Leibniz Institute for Solid State and Materials Research (IFW), D-01069 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Yang W, Abella L, Wang Y, Li X, Gu J, Poblet JM, Rodríguez-Fortea A, Chen N. Mixed Dimetallic Cluster Fullerenes: ScGdO@C3v(8)-C82 and ScGdC2@C2v(9)-C82. Inorg Chem 2018; 57:11597-11605. [DOI: 10.1021/acs.inorgchem.8b01646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Yang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Laura Abella
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Yaofeng Wang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaohong Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jiali Gu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Josep M. Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Antonio Rodríguez-Fortea
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Ning Chen
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
11
|
Sabounchei SJ, Sayadi M, Hashemi A, Salehzadeh S, Maleki F, Nematollahi D, Mokhtari B, Hosseinzadeh L. New Pd/Pt-[60]fullerene complexes of phosphorus ylides as anticancer agents: Cytotoxic investigation and DFT calculations. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Wei T, Jin F, Guan R, Huang J, Chen M, Li Q, Yang S. Blending Non-Group-3 Transition Metal and Rare-Earth Metal into a C80
Fullerene Cage with D
5h
Symmetry. Angew Chem Int Ed Engl 2018; 57:10273-10277. [DOI: 10.1002/anie.201800630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Tao Wei
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Jing Huang
- School of Materials and Chemical Engineering; Anhui Jianzhu University; Hefei Anhui 230601 China
- Hefei National Laboratory for Physical Sciences at Microscale; Department of Chemical Physics; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Qunxiang Li
- Hefei National Laboratory for Physical Sciences at Microscale; Department of Chemical Physics; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
13
|
Wei T, Jin F, Guan R, Huang J, Chen M, Li Q, Yang S. Blending Non-Group-3 Transition Metal and Rare-Earth Metal into a C80
Fullerene Cage with D
5h
Symmetry. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tao Wei
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Fei Jin
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Runnan Guan
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Jing Huang
- School of Materials and Chemical Engineering; Anhui Jianzhu University; Hefei Anhui 230601 China
- Hefei National Laboratory for Physical Sciences at Microscale; Department of Chemical Physics; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Qunxiang Li
- Hefei National Laboratory for Physical Sciences at Microscale; Department of Chemical Physics; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale; CAS Key Laboratory of Materials for Energy Conversion; Department of Materials Science and Engineering; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
14
|
Yang S, Wei T, Jin F. When metal clusters meet carbon cages: endohedral clusterfullerenes. Chem Soc Rev 2018; 46:5005-5058. [PMID: 28681052 DOI: 10.1039/c6cs00498a] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fullerenes have the characteristic of a hollow interior, and this unique feature triggers intuitive inspiration to entrap atoms, ions or clusters inside the carbon cage in the form of endohedral fullerenes. In particular, upon entrapping an otherwise unstable metal cluster into a carbon cage, the so-called endohedral clusterfullerenes fulfil the mutual stabilization of the inner metal cluster and the outer fullerene cage with a specific isomeric structure which is often unstable as an empty fullerene. A variety of metal clusters have been reported to form endohedral clusterfullerenes, including metal nitrides, carbides, oxides, sulfides, cyanides and so on, making endohedral clusterfullerenes the most variable and intriguing branch of endohedral fullerenes. In this review article, we present an exhaustive review on all types of endohedral clusterfullerenes reported to date, including their discoveries, syntheses, separations, molecular structures and properties as well as their potential applications in versatile fields such as biomedicine, energy conversion, and so on. At the end, we present an outlook on the prospect of endohedral clusterfullerenes.
Collapse
Affiliation(s)
- Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, China.
| | | | | |
Collapse
|
15
|
Cerón MR, Maffeis V, Stevenson S, Echegoyen L. Endohedral fullerenes: Synthesis, isolation, mono- and bis-functionalization. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.03.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Dang JS, Wang WW, Zheng JJ, Zhao X, Nagase S. Fused-Pentagon-Configuration-Dependent Electron Transfer of Monotitanium-Encapsulated Fullerenes. Inorg Chem 2017; 56:6890-6896. [PMID: 28548829 DOI: 10.1021/acs.inorgchem.7b00284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce monotitanium-based endohedral metallofullerenes (EMFs) using density functional theory calculations. Isomeric C64 fullerenes are initially employed as hosts, and Ti@C64 species show novel features on the electronic structures. Energetically, the preference of titanium residing on triple-fused-pentagon subunits is proposed in theory. More importantly, different from current knowledge on mono-EMFs, electron transfer between titanium and carbon cages is not unified but is essentially dependent on the pentagon distribution of the binding sites, giving rise to variations of the cationic titanium of Ti@C64. Such selective electron-transfer character is extended to the study of the encapsulation of other neighboring metal atoms (i.e., calcium and scandium). Because of their different capabilities to accept d electrons, fullerene cages with distinct fused-pentagon motifs show selective metal encapsulation characters. In addition, some other fullerenes (C44-C48 and C82) are selected as hosts to study the electron-transfer behavior of titanium in smaller fullerenes and larger systems without pentagon adjacency.
Collapse
Affiliation(s)
- Jing-Shuang Dang
- Institute for Chemical Physics & Department of Chemistry, School of Science, Xi'an Jiaotong University , Xi'an 710049, China
| | - Wei-Wei Wang
- Institute for Chemical Physics & Department of Chemistry, School of Science, Xi'an Jiaotong University , Xi'an 710049, China.,Fukui Institute for Fundamental Chemistry, Kyoto University , Kyoto 606-8103, Japan
| | - Jia-Jia Zheng
- Institute for Chemical Physics & Department of Chemistry, School of Science, Xi'an Jiaotong University , Xi'an 710049, China.,Fukui Institute for Fundamental Chemistry, Kyoto University , Kyoto 606-8103, Japan
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry, School of Science, Xi'an Jiaotong University , Xi'an 710049, China
| | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry, Kyoto University , Kyoto 606-8103, Japan
| |
Collapse
|
17
|
Junghans K, Ghiassi KB, Samoylova NA, Deng Q, Rosenkranz M, Olmstead MM, Balch AL, Popov AA. Synthesis and Isolation of the Titanium-Scandium Endohedral Fullerenes-Sc2 TiC@Ih -C80 , Sc2 TiC@D5h -C80 and Sc2 TiC2 @Ih -C80 : Metal Size Tuning of the Ti(IV) /Ti(III) Redox Potentials. Chemistry 2016; 22:13098-107. [PMID: 27459520 PMCID: PMC5029561 DOI: 10.1002/chem.201601655] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 11/15/2022]
Abstract
The formation of endohedral metallofullerenes (EMFs) in an electric arc is reported for the mixed-metal Sc-Ti system utilizing methane as a reactive gas. Comparison of these results with those from the Sc/CH4 and Ti/CH4 systems as well as syntheses without methane revealed a strong mutual influence of all key components on the product distribution. Whereas a methane atmosphere alone suppresses the formation of empty cage fullerenes, the Ti/CH4 system forms mainly empty cage fullerenes. In contrast, the main fullerene products in the Sc/CH4 system are Sc4 C2 @C80 (the most abundant EMF from this synthesis), Sc3 C2 @C80 , isomers of Sc2 C2 @C82 , and the family Sc2 C2 n (2 n=74, 76, 82, 86, 90, etc.), as well as Sc3 CH@C80 . The Sc-Ti/CH4 system produces the mixed-metal Sc2 TiC@C2 n (2 n=68, 78, 80) and Sc2 TiC2 @C2 n (2 n=80) clusterfullerene families. The molecular structures of the new, transition-metal-containing endohedral fullerenes, Sc2 TiC@Ih -C80 , Sc2 TiC@D5h -C80 , and Sc2 TiC2 @Ih -C80 , were characterized by NMR spectroscopy. The structure of Sc2 TiC@Ih -C80 was also determined by single-crystal X-ray diffraction, which demonstrated the presence of a short Ti=C double bond. Both Sc2 TiC- and Sc2 TiC2 -containing clusterfullerenes have Ti-localized LUMOs. Encapsulation of the redox-active Ti ion inside the fullerene cage enables analysis of the cluster-cage strain in the endohedral fullerenes through electrochemical measurements.
Collapse
Affiliation(s)
- Katrin Junghans
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069, Dresden, Germany
| | - Kamran B Ghiassi
- Department of Chemistry, University of California, Davis, 95616, USA
| | - Nataliya A Samoylova
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069, Dresden, Germany
| | - Qingming Deng
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069, Dresden, Germany
| | - Marco Rosenkranz
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069, Dresden, Germany
| | | | - Alan L Balch
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069, Dresden, Germany.
| |
Collapse
|
18
|
Romero EL, Echegoyen L. Electron spin resonance spectroscopy of empty and endohedral fullerenes. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elkin L. Romero
- Department of Chemistry; University of Texas at El Paso; 79968 El Paso Texas USA
| | - Luis Echegoyen
- Department of Chemistry; University of Texas at El Paso; 79968 El Paso Texas USA
| |
Collapse
|
19
|
Zhao P, Dang JS, Zhao X. Bingel–Hirsch reaction mechanisms on TiSc2N@Ih-C80: the role of endohedral titanium nitride. Phys Chem Chem Phys 2016; 18:9709-14. [DOI: 10.1039/c6cp00389c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both singly bonded monoadducts and cycloadducts were considered to investigate Bingel–Hirsch reaction on TiSc2N@C80 by density functional theory calculations.
Collapse
Affiliation(s)
- Pei Zhao
- Institute for Chemical Physics & Department of Chemistry
- MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering
- School of Science
- Xi'an Jiaotong University
- Xi'an 710049
| | - Jing-Shuang Dang
- Institute for Chemical Physics & Department of Chemistry
- MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering
- School of Science
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry
- MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering
- School of Science
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
20
|
Sabounchei SJ, Hosseinzadeh M, Hashemi A, Salehzadeh S, Maleki F. P,C-Chelation versus P,P-coordination of unsymmetrical phosphorus ylides in palladacyclopropa[60]fullerene complexes; synthetic, spectroscopic, and theoretical studies. Dalton Trans 2016; 45:13899-906. [DOI: 10.1039/c6dt02332k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New palladacyclopropa[60]fullerene complexes containing P,C-chelated and P,P-coordinated unsymmetrical phosphorus ylides were synthesized and characterized successfully.
Collapse
Affiliation(s)
| | | | - Ali Hashemi
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan
- Iran
| | | | | |
Collapse
|
21
|
Wei T, Wang S, Lu X, Tan Y, Huang J, Liu F, Li Q, Xie S, Yang S. Entrapping a Group-VB Transition Metal, Vanadium, within an Endohedral Metallofullerene: V(x)Sc(3-x)N@I(h)-C80 (x = 1, 2). J Am Chem Soc 2015; 138:207-14. [PMID: 26645852 DOI: 10.1021/jacs.5b10115] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
So far the entrapped metals for the isolated endohedral metallofullerenes (EMFs) are primarily limited to rare earth metals, whereas except group-IVB metals, whether it is possible to entrap other d-block transition metals remains unclear. Herein we report the successful entrapment of the group-VB transition metal vanadium(V) into fullerene cage, affording the heretofore unknown V-containing EMFs. Two novel V-containing EMFs--V(x)Sc(3-x)N@C80 (x = 1, 2)--were isolated, and their molecular structures were unambiguously determined by X-ray crystallography to be I(h)(7)-C80 cage entrapping the planar VSc2N/V2ScN clusters. V(x)Sc(3-x)N@I(h)(7)-C80 (x = 1, 2) were further characterized by UV-vis-NIR and ESR spectroscopies and electrochemistry, revealing that the electronic and magnetic properties of V(x)Sc(3-x)N@I(h)(7)-C80 (x = 1, 2) are tunable upon varying the number of entrapped V atoms (i.e., x value). The molecular structures and electronic properties of V(x)Sc(3-x)N@I(h)(7)-C80 (x = 1, 2) were further compared with those of the reported analogous EMFs based on lanthanide metals and the adjacent group-IVB transition metal Ti, revealing the peculiarity of the group-VB transition metal V-based EMFs.
Collapse
Affiliation(s)
- Tao Wei
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Song Wang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mold Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
| | - Yuanzhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Jing Huang
- Hefei National Laboratory for Physical Sciences at Microscale & Department of Chemical Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Fupin Liu
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Qunxiang Li
- Hefei National Laboratory for Physical Sciences at Microscale & Department of Chemical Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Suyuan Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| |
Collapse
|
22
|
Junghans K, Schlesier C, Kostanyan A, Samoylova NA, Deng Q, Rosenkranz M, Schiemenz S, Westerström R, Greber T, Büchner B, Popov AA. Methan als Selektivitätsverstärker in der Lichtbogensynthese von endohedralen Fullerenen: selektive Synthese des Einzelmolekülmagneten Dy
2
TiC@C
80
und dessen Kongener Dy
2
TiC
2
@C
80. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Katrin Junghans
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung, Helmholtzstraße 20, 01069 Dresden (Deutschland)
| | - Christin Schlesier
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung, Helmholtzstraße 20, 01069 Dresden (Deutschland)
| | - Aram Kostanyan
- Physik‐Institut der Universität Zürich, 8057 Zürich (Schweiz)
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Schweiz)
| | - Nataliya A. Samoylova
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung, Helmholtzstraße 20, 01069 Dresden (Deutschland)
| | - Qingming Deng
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung, Helmholtzstraße 20, 01069 Dresden (Deutschland)
| | - Marco Rosenkranz
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung, Helmholtzstraße 20, 01069 Dresden (Deutschland)
| | - Sandra Schiemenz
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung, Helmholtzstraße 20, 01069 Dresden (Deutschland)
| | | | - Thomas Greber
- Physik‐Institut der Universität Zürich, 8057 Zürich (Schweiz)
| | - Bernd Büchner
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung, Helmholtzstraße 20, 01069 Dresden (Deutschland)
| | - Alexey A. Popov
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung, Helmholtzstraße 20, 01069 Dresden (Deutschland)
| |
Collapse
|
23
|
Junghans K, Schlesier C, Kostanyan A, Samoylova NA, Deng Q, Rosenkranz M, Schiemenz S, Westerström R, Greber T, Büchner B, Popov AA. Methane as a Selectivity Booster in the Arc-Discharge Synthesis of Endohedral Fullerenes: Selective Synthesis of the Single-Molecule Magnet Dy2TiC@C80 and Its Congener Dy2TiC2@C80. Angew Chem Int Ed Engl 2015; 54:13411-5. [PMID: 26350440 PMCID: PMC4902133 DOI: 10.1002/anie.201505870] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/25/2022]
Abstract
The use of methane as a reactive gas dramatically increases the selectivity of the arc‐discharge synthesis of M‐Ti‐carbide clusterfullerenes (M=Y, Nd, Gd, Dy, Er, Lu). Optimization of the process parameters allows the synthesis of Dy2TiC@C80‐I and its facile isolation in a single chromatographic step. A new type of cluster with an endohedral acetylide unit, M2TiC2@C80, is discovered along with the second isomer of M2TiC@C80. Dy2TiC@C80‐(I,II) and Dy2TiC2@C80‐I are shown to be single‐molecule magnets (SMM), but the presence of the second carbon atom in the cluster Dy2TiC2@C80 leads to substantially poorer SMM properties.
Collapse
Affiliation(s)
- Katrin Junghans
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden (Germany)
| | - Christin Schlesier
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden (Germany)
| | - Aram Kostanyan
- Physik-Institut der Universität Zürich, 8057 Zürich (Switzerland).,Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)
| | - Nataliya A Samoylova
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden (Germany)
| | - Qingming Deng
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden (Germany)
| | - Marco Rosenkranz
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden (Germany)
| | - Sandra Schiemenz
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden (Germany)
| | | | - Thomas Greber
- Physik-Institut der Universität Zürich, 8057 Zürich (Switzerland)
| | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden (Germany)
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden (Germany).
| |
Collapse
|
24
|
Stevenson S, Thompson HR, Arvola KD, Ghiassi KB, Olmstead MM, Balch AL. Isolation of CeLu2N@Ih-C80through a Non-Chromatographic, Two-Step Chemical Process and Crystallographic Characterization of the Pyramidalized CeLu2N within the Icosahedral Cage. Chemistry 2015; 21:10362-8. [DOI: 10.1002/chem.201500915] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 11/07/2022]
|
25
|
Zhao J, Huang X, Jin P, Chen Z. Magnetic properties of atomic clusters and endohedral metallofullerenes. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.12.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Wei T, Liu F, Wang S, Zhu X, Popov AA, Yang S. An Expanded Family of Dysprosium-Scandium Mixed-Metal Nitride Clusterfullerenes: The Role of the Lanthanide Metal on the Carbon Cage Size Distribution. Chemistry 2015; 21:5750-9. [DOI: 10.1002/chem.201406265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/21/2015] [Indexed: 11/07/2022]
|
27
|
Wei T, Wang S, Liu F, Tan Y, Zhu X, Xie S, Yang S. Capturing the long-sought small-bandgap endohedral fullerene Sc3N@C82 with low kinetic stability. J Am Chem Soc 2015; 137:3119-23. [PMID: 25659601 DOI: 10.1021/jacs.5b00199] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The long-sought small-bandgap endohedral fullerene Sc3N@C82 with low kinetic stability has been successfully synthesized and isolated for the first time, for which the molecular structure has been unambiguously determined as Sc3N@C82-C2v(39718) by single crystal X-ray diffraction. The C82-C2v(39718) (or labeled as C82-C2v(9) according to the conventional numbering of the isolated pentagon rule (IPR) isomers based on the Fowler-Monolopoulos spiral algorithm) isomeric cage of Sc3N@C82 agrees well with its most stable isomer previously predicted by DFT computations and is dramatically different to those of the reported counterparts M3N@C82-Cs(39663) (M = Gd, Y) based on a non-IPR C82 isomer, revealing the strong dependence of the cage isomeric structure on the size of the encaged metal for C82-based metal nitride clusterfullerenes (NCFs).
Collapse
Affiliation(s)
- Tao Wei
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China , Hefei 230026, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Liu F, Wang S, Guan J, Wei T, Zeng M, Yang S. Putting a Terbium-Monometallic Cyanide Cluster into the C82 Fullerene Cage: TbCN@C2(5)-C82. Inorg Chem 2014; 53:5201-5. [DOI: 10.1021/ic500353k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fupin Liu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, People’s Republic of China
| | - Song Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, People’s Republic of China
| | - Jian Guan
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, People’s Republic of China
| | - Tao Wei
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, People’s Republic of China
| | - Minxiang Zeng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, People’s Republic of China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, People’s Republic of China
| |
Collapse
|
29
|
Zhang Y, Popov AA. Transition-Metal and Rare-Earth-Metal Redox Couples inside Carbon Cages: Fullerenes Acting as Innocent Ligands. Organometallics 2014. [DOI: 10.1021/om5000387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yang Zhang
- Leibniz-Institute for Solid State and Materials Research (IFW Dresden), D-01171 Dresden, Germany
| | - Alexey A. Popov
- Leibniz-Institute for Solid State and Materials Research (IFW Dresden), D-01171 Dresden, Germany
| |
Collapse
|
30
|
Svitova AL, Ghiassi KB, Schlesier C, Junghans K, Zhang Y, Olmstead MM, Balch AL, Dunsch L, Popov AA. Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage. Nat Commun 2014; 5:3568. [PMID: 24699547 DOI: 10.1038/ncomms4568] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/05/2014] [Indexed: 11/09/2022] Open
Abstract
In all metallofullerenes known before this work, metal atoms form single highly polar bonds with non-metal atoms in endohedral cluster. This is rather surprising for titanium taking into account the diversity of organotitanium compounds. Here we show that the arc-discharge synthesis of mixed titanium-lutetium metallofullerenes in the presence of ammonia, melamine or methane unexpectedly results in the formation of TiLu2C@I(h)-C80 with an icosahedral Ih(7) carbon cage. Single-crystal X-ray diffraction and spectroscopic studies of the compound reveal an unprecedented endohedral cluster with a μ3-carbido ligand and Ti-C double bond. The Ti(IV) in TiLu2C@I(h)-C80 can be reversibly reduced to the Ti(III) state. The Ti = C bonding and Ti-localized lowest unoccupied molecular orbital in TiLu2C@Ih-C80 bear a certain resemblance to titanium alkylidenes. TiLu2C@I(h)-C80 is the first metallofullerene with a multiple bond between a metal and the central, non-metal atom of the endohedral cluster.
Collapse
Affiliation(s)
- A L Svitova
- Department of Electrochemistry and Conducting Polymers, Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstrasse 20, Dresden 01069, Germany
| | - K B Ghiassi
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - C Schlesier
- Department of Electrochemistry and Conducting Polymers, Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstrasse 20, Dresden 01069, Germany
| | - K Junghans
- Department of Electrochemistry and Conducting Polymers, Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstrasse 20, Dresden 01069, Germany
| | - Y Zhang
- Department of Electrochemistry and Conducting Polymers, Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstrasse 20, Dresden 01069, Germany
| | - M M Olmstead
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - A L Balch
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - L Dunsch
- Department of Electrochemistry and Conducting Polymers, Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstrasse 20, Dresden 01069, Germany
| | - A A Popov
- Department of Electrochemistry and Conducting Polymers, Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstrasse 20, Dresden 01069, Germany
| |
Collapse
|
31
|
Deng Q, Popov AA. Clusters Encapsulated in Endohedral Metallofullerenes: How Strained Are They? J Am Chem Soc 2014; 136:4257-64. [DOI: 10.1021/ja4122582] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qingming Deng
- Leibniz Institute for Solid State and Materials Research, D-01171 Dresden, Germany
| | - Alexey A. Popov
- Leibniz Institute for Solid State and Materials Research, D-01171 Dresden, Germany
| |
Collapse
|
32
|
Wang T, Wang C. Endohedral metallofullerenes based on spherical I(h)-C(80) cage: molecular structures and paramagnetic properties. Acc Chem Res 2014; 47:450-8. [PMID: 24328037 DOI: 10.1021/ar400156z] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fullerenes are carbon cages assembled from fused hexagons andpentagons that have closed networks and conjugated π systems. The curve of the fullerene structure requires that the constituent carbon atoms take on a pyramidal shape and produces extra strain energy. However, the highly symmetrical geometry of the fullerene decreases the surface tension in these structures, so highly symmetrical fullerenes are usually very stable. For example, C60 with icosahedral symmetry (Ih) is the most stable fullerene molecule. However, another highly symmetrical fullerene, Ih-C80, is extremely unstable. The reason for this difference is the open-shell electronic structure of Ih-C80, which has a 4-fold degenerate HOMO occupied by only two electrons. Predictably, once the degenerate HOMO of Ih-C80 accepts six more electrons, it forms a closed-shell electronic structure similar to Ih-C60 and with comparable stability. Because the hollow structure of fullerenes can encapsulate metal atoms and those internal metals can transfer electrons to the fullerene cage, the encapsulation of metal clusters may provide an ideal technique for the stabilization of the Ih-C80 fullerenes. In this Account, we focus on the molecular structures and paramagnetic properties of spherical Ih-C80 endohedral fullerenes encaging a variety of metal moieties, such as metal atoms (Mn), metal nitride (M3N), metal carbide (MnC2), metal carbonitride (M3CN), and metal oxides (M4Om). We introduce several types of endohedral metallofullerenes such as Sc4C2@Ih-C80, which exhibits a Russian-doll-like structure, and Sc3CN@Ih-C80, which encapsulates a planar metal carbonitride cluster. In addition, we emphasize the paramagnetic properties of Ih-C80-based metallofullerenes, such as Sc3C2@Ih-C80, Y2@C79N, and M3N@Ih-C80, to show how those spin-active species can present a controllable paramagnetism. This Account highlights an inspiring molecular world within the spherical Ih-C80 cages of various metallofullerenes.
Collapse
Affiliation(s)
- Taishan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
| |
Collapse
|
33
|
Zhang Y, Popov AA, Dunsch L. Endohedral metal or a fullerene cage based oxidation? Redox duality of nitride clusterfullerenes Ce(x)M(3-x)N@C(78-88) (x = 1, 2; M = Sc and Y) dictated by the encaged metals and the carbon cage size. NANOSCALE 2014; 6:1038-1048. [PMID: 24292599 DOI: 10.1039/c3nr05433k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Redox behavior of endohedral metallofullerenes, in particular their oxidation process, can be classified as a fullerene-based or endohedral species-based process according to the mechanism of the electron transfer. Here we report on the phenomenon of the strain-driven electrochemical behavior achieved by encapsulating the cerium-containing clusters into a series of carbon cages ranging from C78 to C88. The Ce-based mixed metal nitride clusterfullerenes CexM3-xN@C2n (x = 1, 2; M = Sc or Y; 2n = 78-88) were synthesized and characterized. The magnitude of the inherent strain caused by the limited inner space of the carbon cage for the relatively large nitride clusters can be varied by choosing different scaffold metals (Sc, Lu, or Y) to tailor the size of the encaged CexM3-xN cluster and by matching the nitride cluster with different fullerene cages in the size range from C78 to C88. The redox properties of CexM3-xN@C2n were investigated by cyclic and square wave voltammetry. The mechanism of the electrochemical oxidation of Ce-based mixed metal nitride clusterfullerenes, in particular whether the fullerene-based oxidation or the Ce(III) → Ce(IV) process is observed, is found to be dependent on the scaffold metal and the size of the fullerene cage. The endohedral oxidation of Ce(III) to Ce(IV) was observed for a number of compounds as revealed by the negative shift of their oxidation potentials with respect to the values measured for the non-Ce analogues. Experimental studies are supported by DFT calculations. We conclude that the prerequisites for the Ce-based endohedral oxidation process are suitable inherent cluster-cage strain and sufficiently high oxidation potential of the fullerene cage.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Electrochemistry and Conducting Polymers, Leibniz-Institute for Solid State and Materials Research (IFW Dresden), D-01171 Dresden, Germany.
| | | | | |
Collapse
|
34
|
|
35
|
An improbable monometallic cluster entrapped in a popular fullerene cage: YCN@C(s)(6)-C82. Sci Rep 2013; 3:1487. [PMID: 23512079 PMCID: PMC3601605 DOI: 10.1038/srep01487] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/05/2013] [Indexed: 11/08/2022] Open
Abstract
Since the first proposal that fullerenes are capable of hosting atoms, ions, or clusters by the late Smalley in 1985, tremendous examples of endohedral metallofullerenes (EMFs) have been reported. Breaking the dogma that monometallofullerenes (mono-EMFs) always exist in the form of M@C2n while clusterfullerenes always require multiple (two to four) metal cations to stabilize a cluster that is unstable as a single moiety, here we show an unprecedented monometallic endohedral clusterfullerene entrapping an yttrium cyanide cluster inside a popular C82 cage--YCN@C(s)(6)-C82. X-ray crystallography and (13)C NMR characterization unambiguously determine the cage symmetry and the endohedal cyanide structure, unexpectedly revealing that the entrapped YCN cluster is triangular. The unprecedented monometallic clusterfullerene structure unveiled by YCN@C(s)(6)-C82 opens up a new avenue for stabilizing a cluster by a single metal cation within a carbon cage, and will surely stimulate further studies on the stability and formation mechanism of EMFs.
Collapse
|
36
|
Affiliation(s)
- Alexey A Popov
- Department of Electrochemistry and Conducting Polymers, Leibniz-Institute for Solid State and Materials Research (IFW) Dresden , D-01171 Dresden, Germany
| | | | | |
Collapse
|
37
|
Lu X, Feng L, Akasaka T, Nagase S. Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 2013; 41:7723-60. [PMID: 22907208 DOI: 10.1039/c2cs35214a] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endohedral metallofullerenes (EMFs), a new class of hybrid molecules formed by encapsulation of metallic species inside fullerene cages, exhibit unique properties that differ distinctly from those of empty fullerenes because of the presence of metals and their hybridization effects via electron transfer. This critical review provides a balanced but not an exhaustive summary regarding almost all aspects of EMFs, including the history, the classification, current progress in the synthesis, extraction, isolation, and characterization of EMFs, as well as their physiochemical properties and applications in fields such as electronics, photovoltaics, biomedicine, and materials science. Emphasis is assigned to experimentally obtained results, especially the X-ray crystallographic characterizations of EMFs and their derivatives, rather than theoretical calculations, although the latter has indeed enhanced our knowledge of metal-cage interactions. Finally, perspectives related to future developments and challenges in the research of EMFs are proposed. (381 references).
Collapse
Affiliation(s)
- Xing Lu
- State Key Laboratory of Material Processing and Die & Mould Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China.
| | | | | | | |
Collapse
|
38
|
Liu F, Guan J, Wei T, Wang S, Jiao M, Yang S. A Series of Inorganic Solid Nitrogen Sources for the Synthesis of Metal Nitride Clusterfullerenes: The Dependence of Production Yield on the Oxidation State of Nitrogen and Counter Ion. Inorg Chem 2013; 52:3814-22. [DOI: 10.1021/ic302436k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fupin Liu
- Hefei National
Laboratory for Physical Sciences at Microscale, CAS Key Laboratory
of Materials for Energy Conversion and Department of Materials Science
and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Jian Guan
- Hefei National
Laboratory for Physical Sciences at Microscale, CAS Key Laboratory
of Materials for Energy Conversion and Department of Materials Science
and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Tao Wei
- Hefei National
Laboratory for Physical Sciences at Microscale, CAS Key Laboratory
of Materials for Energy Conversion and Department of Materials Science
and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Song Wang
- Hefei National
Laboratory for Physical Sciences at Microscale, CAS Key Laboratory
of Materials for Energy Conversion and Department of Materials Science
and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Mingzhi Jiao
- Hefei National
Laboratory for Physical Sciences at Microscale, CAS Key Laboratory
of Materials for Energy Conversion and Department of Materials Science
and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Shangfeng Yang
- Hefei National
Laboratory for Physical Sciences at Microscale, CAS Key Laboratory
of Materials for Energy Conversion and Department of Materials Science
and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
| |
Collapse
|
39
|
Xu Y, Guo J, Wei T, Chen X, Yang Q, Yang S. Micron-sized hexagonal single-crystalline rods of metal nitride clusterfullerene: preparation, characterization, and photoelectrochemical application. NANOSCALE 2013; 5:1993-2001. [PMID: 23370116 DOI: 10.1039/c2nr33586g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Micron-sized hexagonal single-crystalline Sc(3)N@C(80) rods have been successfully prepared for the first time by a liquid-liquid interfacial precipitation (LLIP) method with the first utilization of p-xylene as the solvent dissolving Sc(3)N@C(80). The effect of the concentration of the Sc(3)N@C(80) solution on the size and length of the Sc(3)N@C(80) rods has been studied, indicating that the length of Sc(3)N@C(80) rods can be readily controlled by varying the concentration of the Sc(3)N@C(80) solution. The crystal structure of the Sc(3)N@C(80) rods has been investigated by XRD and the electron diffraction patterns, pointing to a hexagonal system. The growth kinetics of the Sc(3)N@C(80) rods has been studied by monitoring the morphology evolution of the Sc(3)N@C(80) crystals, and a plausible mechanism is proposed, featuring an intermediate hexagonal star-shaped prism structure with grooves. Raman spectroscopic characterization confirmed that the Sc(3)N@C(80) rods are composed of monomeric pristine Sc(3)N@C(80) molecules and no polymerization has occurred in the crystal lattice, and a significant Raman enhancement in the low-energy region is observed. According to the UV-vis-NIR absorption spectroscopic study of the Sc(3)N@C(80) rods, where much broader and stronger absorptions in the visible and near-infrared regions than that of the Sc(3)N@C(80) solution were revealed, we conclude that the electronic structure of the Sc(3)N@C(80) molecule is largely perturbed upon formation of micron-sized single-crystalline rods because of the strong intermolecular π-π interactions. Finally photoelectrochemical application of the Sc(3)N@C(80) rods was studied based on a Sc(3)N@C(80) rods-modified ITO electrode prepared by electrophoretic deposition and revealed a higher photocurrent response than that obtained in the Sc(3)N@C(80) films drop-coated onto an ITO electrode.
Collapse
Affiliation(s)
- Ying Xu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion & Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
| | | | | | | | | | | |
Collapse
|
40
|
Yang H, Wang Z, Jin H, Hong B, Liu Z, Beavers CM, Olmstead MM, Balch AL. Isolation and Crystallographic Characterization of Sm@C2v(3)-C80 Through Cocrystal Formation with NiII(octaethylporphyrin) or Bis(ethylenedithio)tetrathiafulvalene. Inorg Chem 2013; 52:1275-84. [DOI: 10.1021/ic301794r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hua Yang
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
| | - Zhimin Wang
- College of Biology and Environmental
Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Hongxiao Jin
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
| | - Bo Hong
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
| | - Ziyang Liu
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
| | - Christine M. Beavers
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Marilyn M. Olmstead
- Department of Chemistry, University of California, One Shields Avenue, Davis,
California 95616, United States
| | - Alan L. Balch
- Department of Chemistry, University of California, One Shields Avenue, Davis,
California 95616, United States
| |
Collapse
|
41
|
Li FF, Chen N, Mulet-Gas M, Triana V, Murillo J, Rodríguez-Fortea A, Poblet JM, Echegoyen L. Ti2S@D3h(24109)-C78: a sulfide cluster metallofullerene containing only transition metals inside the cage. Chem Sci 2013. [DOI: 10.1039/c3sc51124c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Yang S, Chen C, Li X, Wei T, Liu F, Wang S. Bingel–Hirsch monoadducts of TiSc2N@Ih-C80versus Sc3N@Ih-C80: reactivity improvement via internal metal atom substitution. Chem Commun (Camb) 2013; 49:10844-6. [DOI: 10.1039/c3cc46277c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Theoretical study on aluminum carbide endohedral fullerene-Al4C@C80. J Mol Model 2012; 19:1205-9. [DOI: 10.1007/s00894-012-1665-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|
44
|
Popov AA, Chen N, Pinzón JR, Stevenson S, Echegoyen LA, Dunsch L. Redox-active scandium oxide cluster inside a fullerene cage: spectroscopic, voltammetric, electron spin resonance spectroelectrochemical, and extended density functional theory study of Sc4O2@C80 and its ion radicals. J Am Chem Soc 2012; 134:19607-18. [PMID: 22924339 DOI: 10.1021/ja306728p] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The clusterfullerene Sc(4)O(2)@C(80) with a mixed redox state of scandium was found to be an exciting molecule for endohedral electrochemistry as demonstrated by means of an in situ electron spin resonance (ESR) spectroelectrochemical study of the spin density distribution in its electrochemically generated cation and anion radicals. The compound exhibits two reversible reduction and oxidation steps with a relatively small electrochemical gap of 1.10 V. The ESR spectra of the ion radicals have a rich hyperfine structure caused by two pairs of equivalent Sc atoms. The Sc-based hyperfine structure with large hyperfine coupling constants shows that both oxidation and reduction of Sc(4)O(2)@C(80) are in cavea redox processes, which is the subject of endohedral electrochemistry. The assignment of the experimentally determined a((45)Sc) values to the two types of Sc atoms in the Sc(4)O(2) cluster was accomplished by extended density functional theory and molecular dynamics simulations. Sc atoms adopting a divalent state in the neutral Sc(4)O(2)@C(80) exhibited an especially large coupling constant of 150.4 G in the cation radical, which is the record high a((45)Sc) value for Sc-based endohedral metallofullerenes. Such a high value is explained by the nature of the highest occupied molecular orbital (HOMO) localized on the six-atom Sc(4)O(2) cluster. This HOMO is a Sc-Sc bonding MO and hence has large contributions from the 4s atomic orbitals of Sc(II). We claim that ESR spectroelectrochemistry is an invaluable experimental tool in the studies of metal-metal bonding in endohedral metallofullerenes and in endohedral electrochemistry.
Collapse
Affiliation(s)
- Alexey A Popov
- Leibniz-Institute for Solid State and Materials Research, Department of Electrochemistry and Conducting Polymers, 01069 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Zhang Y, Popov AA, Schiemenz S, Dunsch L. Synthesis, isolation, and spectroscopic characterization of holmium-based mixed-metal nitride clusterfullerenes: HoxSc3-xN@C80 (x=1, 2). Chemistry 2012; 18:9691-8. [PMID: 22745152 DOI: 10.1002/chem.201200574] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/09/2012] [Indexed: 11/06/2022]
Abstract
The synthesis, isolation and spectroscopic characterization of holmium-based mixed metal nitride clusterfullerenes Ho(x) Sc(3-x) N@C(80) (x=1, 2) are reported. Two isomers of Ho(x) Sc(3-x) N@C(80) (x=1, 2) were synthesized by the reactive gas atmosphere method and isolated by multistep recycling HPLC. The isomeric structures of Ho(x) Sc(3-x) N@C(80) (x=1, 2) were characterized by laser-desorption time-of-flight (LD-TOF) mass spectrometry and UV/Vis/NIR, FTIR and Raman spectroscopy. A comparative study of M(x) Sc(3-x) N@C(80) (M=Gd, Dy, Lu, Ho) demonstrates the dependence of their electronic and vibrational properties on the encaged metal. Despite the distinct perturbation induced by 4f(10) electrons, we report the first paramagnetic (13) C NMR study on Ho(x) Sc(3-x) N@C(80) (I; x=1, 2) and confirm I(h) -symmetric cage structure. A (45) Sc NMR study on HoSc(2) N@C(80) (I, II) revealed a temperature-dependent chemical shift in the temperature range of 268-308 K.
Collapse
Affiliation(s)
- Yang Zhang
- Group of Electrochemistry and Conducting Polymers, Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, 101171 Dresden, Germany
| | | | | | | |
Collapse
|
46
|
Westerström R, Dreiser J, Piamonteze C, Muntwiler M, Weyeneth S, Brune H, Rusponi S, Nolting F, Popov A, Yang S, Dunsch L, Greber T. An Endohedral Single-Molecule Magnet with Long Relaxation Times: DySc2N@C80. J Am Chem Soc 2012; 134:9840-3. [DOI: 10.1021/ja301044p] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rasmus Westerström
- Physik-Institut, Universität Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Jan Dreiser
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Cinthia Piamonteze
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Matthias Muntwiler
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Stephen Weyeneth
- Physik-Institut, Universität Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
| | - Harald Brune
- Institute of Condensed Matter
Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Stefano Rusponi
- Institute of Condensed Matter
Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Frithjof Nolting
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Alexey Popov
- Department of Electrochemistry
and Conducting Polymers, Leibniz Institute of Solid State and Materials Research, Dresden, D-01069 Dresden, Germany
| | - Shangfeng Yang
- Department of Electrochemistry
and Conducting Polymers, Leibniz Institute of Solid State and Materials Research, Dresden, D-01069 Dresden, Germany
- Hefei National Laboratory for
Physical Sciences at Microscale, Department of Materials Science and
Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Lothar Dunsch
- Department of Electrochemistry
and Conducting Polymers, Leibniz Institute of Solid State and Materials Research, Dresden, D-01069 Dresden, Germany
| | - Thomas Greber
- Physik-Institut, Universität Zürich, Winterthurerstrasse
190, CH-8057 Zürich, Switzerland
| |
Collapse
|
47
|
Chen N, Beavers CM, Mulet-Gas M, Rodríguez-Fortea A, Munoz EJ, Li YY, Olmstead MM, Balch AL, Poblet JM, Echegoyen L. Sc2S@C(s)(10528)-C72: a dimetallic sulfide endohedral fullerene with a non isolated pentagon rule cage. J Am Chem Soc 2012; 134:7851-60. [PMID: 22519825 DOI: 10.1021/ja300765z] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A non isolated pentagon rule metallic sulfide clusterfullerene, Sc(2)S@C(s)(10528)-C(72), has been isolated from a raw mixture of Sc(2)S@C(2n) (n = 35-50) obtained by arc-discharging graphite rods packed with Sc(2)O(3) and graphite powder under an atmosphere of SO(2) and helium. Multistage HPLC methods were utilized to isolate and purify the Sc(2)S@C(72). The purified Sc(2)S@C(s)(10528)-C(72) was characterized by mass spectrometry, UV-vis-NIR absorption spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction. The crystallographic analysis unambiguously elucidated that the C(72) fullerene cage violates the isolated pentagon rule, and the cage symmetry was assigned to C(s)(10528)-C(72). The electrochemical behavior of Sc(2)S@C(s)(10528)-C(72) shows a major difference from those of Sc(2)S@C(s)(6)-C(82) and Sc(2)S@C(3v)(8)-C(82) as well as the other metallic clusterfullerenes. Computational studies show that the Sc(2)S cluster transfers four electrons to the C(72) cage and C(s)(10528)-C(72) is the most stable cage isomer for both empty C(72)(4-) and Sc(2)S@C(72), among the many possibilities. The structural differences between the reported fullerenes with C(72) cages are discussed, and it is concluded that both the transfer of four electrons to the cage and the geometrical requirements of the encaged Sc(2)S cluster play important roles in the stabilization of the C(s)(10528)-C(72) cage.
Collapse
Affiliation(s)
- Ning Chen
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen C, Liu F, Li S, Wang N, Popov AA, Jiao M, Wei T, Li Q, Dunsch L, Yang S. Titanium/yttrium mixed metal nitride clusterfullerene TiY2N@C80: synthesis, isolation, and effect of the group-III metal. Inorg Chem 2012; 51:3039-45. [PMID: 22324808 DOI: 10.1021/ic202354u] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titanium/yttrium mixed metal nitride clusterfullerene (MMNCF) TiY(2)N@C(80) has been successfully synthesized, representing the first Ti-containing non-scandium MMNCF. TiY(2)N@C(80) has been isolated by multistep HPLC and characterized by various spectroscopies in combination with DFT computations. The electronic absorption property of TiY(2)N@C(80) was characterized by UV-vis-NIR spectroscopy, indicating the resemblance to that of TiSc(2)N@C(80) with broad shoulder absorptions. The optical band gap of TiY(2)N@C(80) (1.39 eV) is very close to that of TiSc(2)N@C(80) (1.43 eV) but much smaller than that of Y(3)N@C(80)(I(h), 1.58 eV). Such a resemblance of the overall absorption feature of TiY(2)N@C(80) to TiSc(2)N@C(80) suggests that TiY(2)N@C(80) has a similar electronic configuration to that of TiSc(2)N@C(80), that is, (TiY(2)N)(6+)@C(80)(6-). FTIR spectroscopic study and DFT calculations accomplish the assignment of the C(80):I(h) isomer to the cage structure of TiY(2)N@C(80), with the C(1) conformer being the lowest energy structure, which is different from the C(s) conformer assigned to TiSc(2)N@C(80). The electrochemical properties of TiY(2)N@C(80) were investigated by cyclic voltammetry, revealing the reversible first oxidation and first reduction step with E(1/2) at 0.00 and -1.13 V, respectively, both of which are more negative than those of TiSc(2)N@C(80), while the electrochemical energy gap of TiY(2)N@C(80) (1.11 V) is almost the same as that of TiSc(2)N@C(80) (1.10 V). Contrary to the reversible first reduction step, the second and third reduction steps of TiY(2)N@C(80) are irreversible, and this redox behavior is dramatically different from that of TiSc(2)N@C(80), which shows three reversible reduction steps, indicating the strong influence of the encaged group-III metal (Y or Sc) on the electronic properties of TiM(2)N@C(80) (M = Y, Sc).
Collapse
Affiliation(s)
- Chuanbao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jiao M, Zhang W, Xu Y, Wei T, Chen C, Liu F, Yang S. Urea as a New and Cheap Nitrogen Source for the Synthesis of Metal Nitride Clusterfullerenes: The Role of Decomposed Products on the Selectivity of Fullerenes. Chemistry 2012; 18:2666-73. [DOI: 10.1002/chem.201101040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/08/2011] [Indexed: 11/08/2022]
|
50
|
Yang S, Liu F, Chen C, Jiao M, Wei T. Fullerenes encaging metal clusters--clusterfullerenes. Chem Commun (Camb) 2011; 47:11822-39. [PMID: 21720619 DOI: 10.1039/c1cc12318a] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clusterfullerenes represent a novel branch of endohedral fullerenes, which are characterized by a robust fullerene cage with metal clusters encaged in its hollow. Since the discovery of nitride clusterfullerenes (NCFs) in 1999, the family of clusterfullerenes has been significantly expanded within the past decade, with new members including carbide clusterfullerenes (CCFs), hydrocarbide clusterfullerenes (HCCFs), oxide clusterfullerenes (OCFs), sulfide clusterfullerenes (SCFs), and carbonitride clusterfullerenes (CNCFs). We first present the classification of clusterfullerenes and list all the clusterfullerenes reported to date. For each type of clusterfullerenes, we review in detail their synthesis, separation, intriguing molecular structures and properties. For NCFs, as the first and most important clusterfullerenes, we point out the significance of their discovery and focus on their new synthesis and separation methods as well as the new advances. Finally the potential applications of clusterfullerenes are addressed. We conclude that clusterfullerenes appear to be the fastest growing family of endohedral fullerenes up to now, and emphasize the importance of exploring new structures and chemical functionalizations of clusterfullerenes.
Collapse
Affiliation(s)
- Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China.
| | | | | | | | | |
Collapse
|