1
|
Syafira RS, Devi MJ, Gaffar S, Irkham, Kurnia I, Arnafia W, Einaga Y, Syakir N, Noviyanti AR, Hartati YW. Hydroxyapatite-Gold Modified Screen-Printed Carbon Electrode for Selective SARS-CoV-2 Antibody Immunosensor. ACS APPLIED BIO MATERIALS 2024; 7:950-960. [PMID: 38303668 DOI: 10.1021/acsabm.3c00953] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or coronavirus disease 2019 (COVID-19), is still spreading worldwide; therefore, the need for rapid and accurate detection methods remains relevant to maintain the spread of this infectious disease. Electrochemical immunosensors are an alternative method for the rapid detection of the SARS-CoV-2 virus. Herein, we report the development of a screen-printed carbon electrode immunosensor using a hydroxyapatite-gold nanocomposite (SPCE/HA-Au) directly spray-coated with the immobilization receptor binding domain (RBD) Spike to increase the conductivity and surface electrode area. The HA-Au composite synthesis was optimized using the Box-Behnken method, and the resulting composite was characterized by UV-vis spectrophotometry, TEM-EDX, and XRD analysis. The specific interaction of RBD Spike with immunoglobulin G (IgG) antibodies was evaluated by differential pulse voltammetry and electrochemical impedance spectroscopy methods in a [Fe(CN)6]4-/3- solution redox system. The IgG was detected with a detection limit of 0.0561 pg mL-1, and the immunosensor had selectivity and stability of 103-122% and was stable until week 7 with the influence of storage conditions. Also, the immunosensor was tested using real samples from human serum, where the results were confirmed using the chemiluminescent microparticle immunoassay (CMIA) method and showed satisfactory results. Therefore, the developed electrochemical immunosensor can rapidly and accurately detect SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Ratu Shifa Syafira
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Melania Janisha Devi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irwan Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Wyanda Arnafia
- Department of Animal Infectious Diseases and Veterinary Public Health, IPB University, Jl. Raya Dramaga, Bogor, West Java 16680, Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Norman Syakir
- Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
2
|
Thanigai Arul K, Ramana Ramya J, Narayana Kalkura S. Impact of Dopants on the Electrical and Optical Properties of Hydroxyapatite. Biomaterials 2020. [DOI: 10.5772/intechopen.93092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This chapter deals with the effect of alternating electrical current on hydroxyapatite [HAp, Ca10(PO4)6(OH)2] and doped HAp along with their optical response and the processes involved. The dielectric constant, permittivity and ac conductivity were analyzed to have an insight into the surface charge polarization phenomenon. Further, the magnitude and the polarity of the surface charges, microstructure, and phases also play significant role in the cell proliferation and growth on the implants. Besides, the mechanism behind the electrical properties and the healing of bone fracture are discussed. The influence of various dopants on the optical properties of HAp viz., absorbance, transmission, band gaps and defects energy levels are analyzed along with the photoluminescence and excitation independent emission. In the future outlook, the analysis of effect of doping is summarized and its impact on the next generation biomaterials are elucidated.
Collapse
|
3
|
Rojas-Montoya ID, Fosado-Esquivel P, Henao-Holguín LV, Esperanza-Villegas AE, Bernad-Bernad M, Gracia-Mora J. Adsorption/desorption studies of norfloxacin on brushite nanoparticles from reverse microemulsions. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00138-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
C Teixeira MA, Piccirillo C, Tobaldi DM, Pullar RC, Labrincha JA, Ferreira MO, L Castro PM, E Pintado MM. Effect of preparation and processing conditions on UV absorbing properties of hydroxyapatite-Fe 2O 3 sunscreen. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:141-149. [PMID: 27987691 DOI: 10.1016/j.msec.2016.09.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/11/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
The development of innovative, safe and non-photocatalytic sunscreens is urgently needed, as it is essential to have sunscreen filters offering appropriate UV protection without damaging the environment and/or generating free radicals when in contact with the skin. Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) when substituted with iron has UV protection properties and is not photocatalytic; HAp was used to make a sunscreen filter by treating cod fish bones in an iron-containing solution, and then calcining them at 700°C. Here we present a systematic and advanced study on this material, to obtain a sunscreen with improved UV absorbing properties. Bones were treated with three different iron salts - Fe(II) chloride, Fe(II) lactate and Fe(III) nitrate - under various pH conditions. Results showed that Fe(II) chloride in basic pH led to the most effective iron inclusion. High energy ball milling or ultrasound were investigated to increase surface area and corresponding UV absorption; high energy ball milling treatment led to the best optical properties. The optimum powders were used to formulate UV protection creams, which showed Sun Protection Factor (SPF) values significantly superior to the control cream (up to 4.1). Moreover the critical wavelength (λcrit) was >370nm (388-389nm) and UVA/UVB ratios were very close to 1. With these properties these sunscreens can be classified as broad UV protectors. Results also showed that combining these powders with other sunscreens (i.e. titanium dioxide), a synergic effect between the different components was also observed. This investigation showed that HAp-based sunscreens of marine origin are a valid alternative to commercial products, safe for the health of the customers and, being non-photocatalytic, do not pose a threat to the environment.
Collapse
Affiliation(s)
- M A C Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal
| | - C Piccirillo
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal.
| | - D M Tobaldi
- Department of Engineering of Materials and Ceramics/CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - R C Pullar
- Department of Engineering of Materials and Ceramics/CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - J A Labrincha
- Department of Engineering of Materials and Ceramics/CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - M O Ferreira
- Inovapotek, Pharmaceutical Research and Development, Porto, Portugal
| | - P M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal
| | - M M E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal
| |
Collapse
|
5
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): occurrence and properties. Prog Biomater 2015; 5:9-70. [PMID: 27471662 PMCID: PMC4943586 DOI: 10.1007/s40204-015-0045-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of CaPO4. Similarly, dental caries and osteoporosis might be considered as in vivo dissolution of CaPO4. In addition, natural CaPO4 are the major source of phosphorus, which is used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
6
|
Fecheyr-Lippens DC, Igic B, D'Alba L, Hanley D, Verdes A, Holford M, Waterhouse GIN, Grim T, Hauber ME, Shawkey MD. The cuticle modulates ultraviolet reflectance of avian eggshells. Biol Open 2015; 4:753-9. [PMID: 25964661 PMCID: PMC4571098 DOI: 10.1242/bio.012211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 12/03/2022] Open
Abstract
Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.
Collapse
Affiliation(s)
| | - Branislav Igic
- Department of Biology, University of Akron, Akron, OH 44325, USA
| | - Liliana D'Alba
- Department of Biology, University of Akron, Akron, OH 44325, USA
| | - Daniel Hanley
- Department of Zoology and Laboratory of Ornithology, Palacký University, Olomouc 771 46, Czech Republic
| | - Aida Verdes
- Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, NY 10021, USA
| | - Mande Holford
- Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, NY 10021, USA
| | | | - Tomas Grim
- Department of Zoology and Laboratory of Ornithology, Palacký University, Olomouc 771 46, Czech Republic
| | - Mark E Hauber
- Department of Psychology, Hunter College and the Graduate Center, City University of New York, New York, NY 10065, USA
| | | |
Collapse
|
7
|
Ferreira dos Santos C, Gomes PS, Almeida MM, Willinger MG, Franke RP, Fernandes MH, Costa ME. Gold-dotted hydroxyapatite nanoparticles as multifunctional platforms for medical applications. RSC Adv 2015. [DOI: 10.1039/c5ra11978b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydroxyapatite nanoparticles decorated with gold dots, synthesized by a citrate mediated chemical method, enhance the osteogenic differentiation of HMSC.
Collapse
Affiliation(s)
- Catarina Ferreira dos Santos
- Department of Mechanical Engineering
- Escola Superior de Tecnologia de Setúbal
- Instituto Politécnico de Setúbal
- Setúbal
- Portugal
| | - Pedro Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration
- Faculdade de Medicina Dentária
- Universidade do Porto
- Portugal
- MedInUP – Center for Drug Discovery and Innovative Medicines
| | - Maria Margarida Almeida
- Department of Materials and Ceramics Engineering
- CICECO
- Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
| | | | - Ralf-Peter Franke
- Central Institute for Biomedical Technology
- Biomaterials Division
- University of Ulm
- Ulm
- Germany
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration
- Faculdade de Medicina Dentária
- Universidade do Porto
- Portugal
- MedInUP – Center for Drug Discovery and Innovative Medicines
| | - Maria Elisabete Costa
- Department of Materials and Ceramics Engineering
- CICECO
- Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
| |
Collapse
|
8
|
Cai Y, Chen S, Grandfield K, Engqvist H, Xia W. Fabrication of translucent nanoceramics via a simple filtration method. RSC Adv 2015. [DOI: 10.1039/c5ra17866e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Translucent nano-ceramics fabricated by a simple filtration method followed by a regular sintering process. The key factors are the morphology of nanoparticles and pressure of filtration.
Collapse
Affiliation(s)
- Yixiao Cai
- Applied Materials Science
- Department of Engineering Sciences
- Ångström Laboratory
- Uppsala University
- Uppsala
| | - Song Chen
- Applied Materials Science
- Department of Engineering Sciences
- Ångström Laboratory
- Uppsala University
- Uppsala
| | - Kathryn Grandfield
- Department of Materials Science and Engineering
- McMaster University
- Hamilton
- Canada
| | - Håkan Engqvist
- Applied Materials Science
- Department of Engineering Sciences
- Ångström Laboratory
- Uppsala University
- Uppsala
| | - Wei Xia
- Applied Materials Science
- Department of Engineering Sciences
- Ångström Laboratory
- Uppsala University
- Uppsala
| |
Collapse
|
9
|
Lin K, Wu C, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater 2014; 10:4071-102. [PMID: 24954909 DOI: 10.1016/j.actbio.2014.06.017] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 01/02/2023]
Abstract
Calcium phosphate (CaP) materials have a wide range of applications, including biomaterials, adsorbents, chemical engineering materials, catalysts and catalyst supports and mechanical reinforcements. The size and shape of CaP crystals and aggregates play critical roles in their applications. The main inorganic building blocks of human bones and teeth are nanocrystalline CaPs; recently, much progress has been made in the application of CaP nanocrystals and their composites for clinical repair of damaged bone and tooth. For example, CaPs with special micro- and nanostructures can better imitate the biomimetic features of human bone and tooth, and this offers significantly enhanced biological performances. Therefore, the design of CaP nano-/microcrystals, and the shape and hierarchical structures of CaPs, have great potential to revolutionize the field of hard tissue engineering, starting from bone/tooth repair and augmentation to controlled drug delivery devices. Previously, a number of reviews have reported the synthesis and properties of CaP materials, especially for hydroxyapatite (HAp). However, most of them mainly focused on the characterizations and physicochemical and biological properties of HAp particles. There are few reviews about the control of particle size and size distribution of CaPs, and in particular the control of nano-/microstructures on bulk CaP ceramic surfaces, which is a big challenge technically and may have great potential in tissue engineering applications. This review summarizes the current state of the art for the synthesis of CaP crystals with controlled sizes from the nano- to the macroscale, and the diverse shapes including the zero-dimensional shapes of particles and spheres, the one-dimensional shapes of rods, fibers, wires and whiskers, the two-dimensional shapes of sheets, disks, plates, belts, ribbons and flakes and the three-dimensional (3-D) shapes of porous, hollow, and biomimetic structures similar to biological bone and tooth. In addition, this review will also summarize studies on the controlled formation of nano-/microstructures on the surface of bulk ceramics, and the preparation of macroscopical bone grafts with 3-D architecture nano-/microstructured surfaces. Moreover, the possible directions of future research and development in this field, such as the detailed mechanisms behind the size and shape control in various strategies, the importance of theoretical simulation, self-assembly, biomineralization and sacrificial precursor strategies in the fabrication of biomimetic bone-like and enamel-like CaP materials are proposed.
Collapse
Affiliation(s)
- Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| |
Collapse
|
10
|
Piccirillo C, Rocha C, Tobaldi DM, Pullar RC, Labrincha JA, Ferreira MO, Castro PML, Pintado MME. A hydroxyapatite-Fe 2O 3 based material of natural origin as an active sunscreen filter. J Mater Chem B 2014; 2:5999-6009. [PMID: 32261852 DOI: 10.1039/c4tb00984c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of sunscreens as protective barriers against skin damage and cancer, by absorbing harmful UVA and UVB rays, is becoming an increasingly important issue. Such products are usually based on TiO2 or ZnO, although both Fe2O3 and hydroxyapatite (Ca10(PO4)6(OH)2, HAp) doped with metal ions have been reported as being ultraviolet (UV) absorbing materials. HAp is the main component of bone; it is, therefore, highly biocompatible. In the present work, an iron-doped HAp-based material, containing both Fe ions substituted into the HAp structure and iron oxide in hematite (α-Fe2O3) form, was successfully developed from waste cod fish bones. This was achieved through a simple process of treating the bones in a Fe(ii) containing solution, followed by heating at 700 °C. The material showed good absorption in the whole UV range and did not form radicals when irradiated. The sunscreen cream formulated with this material could be used as a broad sunscreen protector (λcrit > 370 nm), showing high absorption both in the UVA and UVB ranges. Because of its absorption properties it would be classified as 5 star protection according to the Boots UVA star rating system. The cream is also photostable, and does not cause irritation or erythema formation when in contact with the human skin. These results show that a food by-product such as fish bones could be converted into a valuable product, with potential applications in health care and cosmetics. This is the first time a HAp-based sunscreen cream has been developed and validated as a proof of concept.
Collapse
Affiliation(s)
- C Piccirillo
- Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang MY, Cheng GJ. Pulsed laser coating of hydroxyapatite/titanium nanoparticles on Ti-6Al-4V substrates: multiphysics simulation and experiments. IEEE Trans Nanobioscience 2011; 10:177-86. [PMID: 21926031 DOI: 10.1109/tnb.2011.2163641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pulsed laser coating (PLC) of bioceramics/metal nanomaterials on metal substrates was investigated in this research. It is found that due to the nature of the nanosized particles and pulse laser beam, PLC processed hydroxyapatite (HAp) coatings possess strong coating/substrate interfacial bonding strength, and minimum thermal decomposition. Feasibility analysis of PLC is conducted using both simulation and experiments. In the multiphysics simulation, laser interacting with metal nanoparticles and heat conduction is simulated by coupling the electromagnetic (EM) module and heat transfer (HT) module. In experiments, HAp and titanium nanoparticle mixture are coated on Ti-6Al-4V substrate using nanosecond pulsed Nd:YAG laser with wavelength of 1064 nm. Resulting temperature is measured by calibrated infrared (IR) camera and compared with simulation results. Experimental results agree well with simulation which serves as a guidance to find appropriate processing parameters. It is found that resulting temperature increases with increasing of pulse energy linearly and decreasing of pulse duration following the power law. It is recommended that shorter pulses to be used in PLC due to its better sinterability. Microstructure and chemical characterizations confirmed that HAp was physically and chemically maintained due to pulse laser caused rapid heating and cooling processes.
Collapse
Affiliation(s)
- Martin Yi Zhang
- School of Industrial Engineering, Purdue University, West Lafayette, IN 47907-2023, USA
| | | |
Collapse
|
12
|
Holzmann D, Schöfberger W, Holzinger D, Schmidt T, Knör G. Functional nanoscale additives for ultra-durable powder-coating polymers. MONATSHEFTE FUR CHEMIE 2011. [DOI: 10.1007/s00706-011-0516-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Lin K, Zhou Y, Zhou Y, Qu H, Chen F, Zhu Y, Chang J. Biomimetic hydroxyapatite porous microspheres with co-substituted essential trace elements: Surfactant-free hydrothermal synthesis, enhanced degradation and drug release. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12514a] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|