1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
3
|
Holden L, Burke CS, Cullinane D, Keyes TE. Strategies to promote permeation and vectorization, and reduce cytotoxicity of metal complex luminophores for bioimaging and intracellular sensing. RSC Chem Biol 2021; 2:1021-1049. [PMID: 34458823 PMCID: PMC8341117 DOI: 10.1039/d1cb00049g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Transition metal luminophores are emerging as important tools for intracellular imaging and sensing. Their putative suitability for such applications has long been recognised but poor membrane permeability and cytotoxicity were significant barriers that impeded early progress. In recent years, numerous effective routes to overcoming these issues have been reported, inspired in part, by advances and insights from the pharmaceutical and drug delivery domains. In particular, the conjugation of biomolecules but also other less natural synthetic species, from a repertoire of functional motifs have granted membrane permeability and cellular targeting. Such motifs can also reduce cytotoxicity of transition metal complexes and offer a valuable avenue to circumvent such problems leading to promising metal complex candidates for application in bioimaging, sensing and diagnostics. The advances in metal complex probes permeability/targeting are timely, as, in parallel, over the past two decades significant technological advances in luminescence imaging have occurred. In particular, super-resolution imaging is enormously powerful but makes substantial demands of its imaging contrast agents and metal complex luminophores frequently possess the photophysical characteristics to meet these demands. Here, we review some of the key vectors that have been conjugated to transition metal complex luminophores to promote their use in intra-cellular imaging applications. We evaluate some of the most effective strategies in terms of membrane permeability, intracellular targeting and what impact these approaches have on toxicity and phototoxicity which are important considerations in a luminescent contrast or sensing agent.
Collapse
Affiliation(s)
- Lorcan Holden
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Christopher S Burke
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - David Cullinane
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Tia E Keyes
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| |
Collapse
|
4
|
Ma DL, Wu C, Liu H, Wu KJ, Leung CH. Luminescence approaches for the rapid detection of disease-related receptor proteins using transition metal-based probes. J Mater Chem B 2021; 8:3249-3260. [PMID: 31647090 DOI: 10.1039/c9tb01889a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein biomarkers, particularly abnormally expressed receptor proteins, have been proved to be one of the crucial biomarkers for the rapid assessment, diagnosis, prognosis and prediction of specific human diseases. Transition metal based strategies in particular possess delightful strengths in the in-field and real-time visualization of receptor proteins owing to their unique photophysical properties. In this review, we highlight recent advances in the development of detection methods for receptor protein biomarkers using transition metal based approaches, particularly those employing transition metal complexes. We first discuss the strengths and weaknesses of various strategies used for protein biomarker monitoring in live cells. We then describe the principles of the various sensing platforms and their application for receptor protein detection. Finally, we discuss the challenges and future inspirations in this specific field.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China.
| | | | | | | | | |
Collapse
|
5
|
Małecka M, Machura B, Świtlicka A, Kotowicz S, Szafraniec-Gorol G, Siwy M, Szalkowski M, Maćkowski S, Schab-Balcerzak E. Towards better understanding of photophysical properties of rhenium(I) tricarbonyl complexes with terpy-like ligands. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118124. [PMID: 32062513 DOI: 10.1016/j.saa.2020.118124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Series of Re(I) carbonyls complexes were designed and synthesized to explore the impact of the triimine skeleton and number of methoxy groups attached to aryl substituents on their optoelectronic and thermal properties. The chemical structures of the prepared complexes were confirmed by 1H and 13C NMR spectroscopy, HR-MS, elemental anlsysis, and X-ray measurements. DSC measuremtns showed that they melted in the range of 198-325 °C. Some of them form stable molecular glasses with high glass transition temperatures (158-173 °C). Experimentally obtained optical properties were supported by DFT calculations. The UV-Vis spectra display a series of overlapping absorption bands in the range 200-350 nm, and much weaker broad band in the visible spectral region, due to intraligand and charge transfer transitions, respectively. All synthesized complexes were emissive in solution and in solid state as powder. Moreover, when applied in diodes, some of them exhibited ability for emission of light under external voltage with maximum of electroluminescence band located at 591-630 nm.
Collapse
Affiliation(s)
- Magdalena Małecka
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40006 Katowice, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40006 Katowice, Poland.
| | - Anna Świtlicka
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40006 Katowice, Poland
| | - Sonia Kotowicz
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40006 Katowice, Poland
| | | | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
| | - Marcin Szalkowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40006 Katowice, Poland; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland.
| |
Collapse
|
6
|
How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles. Sci Rep 2016; 6:22033. [PMID: 26903405 PMCID: PMC4763241 DOI: 10.1038/srep22033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/04/2016] [Indexed: 12/21/2022] Open
Abstract
In contrast to the already known effect that macromolecular crowding usually promotes biological reactions, solutions of PEG 6k at high concentrations stop the cleavage of DNA by HindIII enzyme, due to the formation of DNA nanoparticles. We characterized the DNA nanoparticles and probed the prerequisites for their formation using multiple techniques such as fluorescence correlation spectroscopy, dynamic light scattering, fluorescence analytical ultracentrifugation etc. In >25% PEG 6k solution, macromolecular crowding promotes the formation of DNA nanoparticles with dimensions of several hundreds of nanometers. The formation of DNA nanoparticles is a fast and reversible process. Both plasmid DNA (2686 bp) and double-stranded/single-stranded DNA fragment (66bp/nt) can form nanoparticles. We attribute the enhanced nanoparticle formation to the depletion effect of macromolecular crowding. This study presents our idea to enhance the formation of DNA nanoparticles by macromolecular crowding, providing the first step towards a final solution to efficient gene therapy.
Collapse
|
7
|
Qiu K, Yu B, Huang H, Zhang P, Huang J, Zou S, Chen Y, Ji L, Chao H. A dendritic nano-sized hexanuclear ruthenium(II) complex as a one- and two-photon luminescent tracking non-viral gene vector. Sci Rep 2015; 5:10707. [PMID: 26185052 PMCID: PMC4505312 DOI: 10.1038/srep10707] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/22/2015] [Indexed: 11/16/2022] Open
Abstract
Fluorescent tracking gene delivery could provide us with a better understanding of the critical steps in the transfection process. However, for in vivo tracking applications, a small diameter (<10 nm) is one of the rigorous requirements for tracking vectors. Herein, we have demonstrated a new paradigm for two-photon tracking gene delivery based on a dendritic nano-sized hexanuclear ruthenium(II) polypyridyl complex. Because this metallodendrimer has a multivalent periphery, the complex, which is 6.1 nm, showed high stability and excellent dispersibility and could stepwise condense DNA in vitro. With the outstanding photochemical properties of Ru(II) polypyridyl, this complex could track gene delivery in vivo using one- and two-photon imaging.
Collapse
Affiliation(s)
- Kangqiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Bole Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Huaiyi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Pingyu Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Juanjuan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Shanshan Zou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
8
|
Maggioni D, Galli M, D'Alfonso L, Inverso D, Dozzi MV, Sironi L, Iannacone M, Collini M, Ferruti P, Ranucci E, D'Alfonso G. A luminescent poly(amidoamine)-iridium complex as a new singlet-oxygen sensitizer for photodynamic therapy. Inorg Chem 2015; 54:544-53. [PMID: 25554822 DOI: 10.1021/ic502378z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A polymer complex (1P) was synthesized by binding bis(cyclometalated) Ir(ppy)2(+) fragments (ppy = 2-phenylpyridyl) to phenanthroline (phen) pendants of a poly(amidoamine) copolymer (PhenISA, in which the phen pendants involved ∼6% of the repeating units). The corresponding molecular complex [Ir(ppy)2(bap)](+) (1M, bap = 4-(butyl-4-amino)-1,10-phenanthroline) was also prepared for comparison. In water solution 1P gives nanoaggregates with a hydrodynamic diameter of 30 nm in which the lipophilic metal centers are presumed to be segregated within polymer tasks to reduce their interaction with water. Such confinement, combined with the dilution of triplet emitters along the polymer chains, led to 1P having a photoluminescence quantum yield greater than that of 1M (0.061 vs 0.034, respectively, in an aerated water solution) with a longer lifetime of the (3)MLCT excited states and a blue-shifted emission (595 nm vs 604 nm, respectively). NMR data supported segregation of the metal centers. Photoreaction of O2 with 1,5-dihydroxynaphthalene showed that 1P is able to sensitize (1)O2 generation but with half the quantum yield of 1M. Cellular uptake experiments showed that both 1M and 1P are efficient cell staining agents endowed with two-photon excitation (TPE) imaging capability. TPE microscopy at 840 nm indicated that both complexes penetrate the cellular membrane of HeLa cells, localizing in the perinuclear region. Cellular photodynamic therapy tests showed that both 1M and 1P are able to induce cell apoptosis upon exposure to Xe lamp irradiation. The fraction of apoptotic cells for 1M was higher than that for 1P (74 and 38%, respectively) 6 h after being irradiated for 5 min, but cells incubated with 1P showed much lower levels of necrosis as well as lower toxicity in the absence of irradiation. More generally, the results indicate that cell damage induced by 1M was avoided by binding the iridium sensitizers to the poly(amidoamine).
Collapse
Affiliation(s)
- Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano , Via Golgi 19, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Qiu K, Yu B, Huang H, Zhang P, Ji L, Chao H. Tetranuclear ruthenium(ii) complexes with oligo-oxyethylene linkers as one- and two-photon luminescent tracking non-viral gene vectors. Dalton Trans 2015; 44:7058-65. [DOI: 10.1039/c5dt00117j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Four tetranuclear ruthenium(ii) complexes Ru1–Ru4 based on oligo-oxyethylene and polybenzimidazole have been developed as one- and two-photon luminescent tracking non-viral gene vectors.
Collapse
Affiliation(s)
- Kangqiang Qiu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Bole Yu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Huaiyi Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Pingyu Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liangnian Ji
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Hui Chao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
10
|
Chen C, Xiang X, Liu Y, Zhou G, Ji X, He Z. Dual-color determination of protein via terminal protection of small-molecule-linked DNA and the enzymolysis of exonuclease III. Biosens Bioelectron 2014; 58:205-8. [PMID: 24637170 DOI: 10.1016/j.bios.2014.02.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/18/2022]
Abstract
We have developed a new dual-color fluorescent biosensor for protein detection based on terminal protection of small-molecule-linked DNA and the enzymolysis of exonuclease III (Exo III). The determination of streptavidin (SA) was realized via fluorescence signals of the green color from quantum dots (QDs) and the red from [Ru(phen)2(dppx)](2+). In the absence of SA, biotin-DNA was degradated by the Exo III, thus making the [Ru(phen)2(dppx)](2+) employed as a fluorescence quencher to the QDs. With the addition of SA, dual-color response appeared because of the specific binding between SA and biotin so that the biotin-dsDNA was protected and combined with [Ru(phen)2(dppx)](2+), leading to the QDs recovery and the generating of [Ru(phen)2(dppx)](2+) fluorescence. This sensor exhibited high sensitivity with a low detection limit (2.11ng/mL) and firstly introduced dual-color QDs-ruthenium complex dyads to protein assay.
Collapse
Affiliation(s)
- Chaohui Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xia Xiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yufei Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Guohua Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
11
|
Xin XL, Chen M, Ai YB, Yang FL, Li XL, Li F. Aggregation-Induced Emissive Copper(I) Complexes for Living Cell Imaging. Inorg Chem 2014; 53:2922-31. [DOI: 10.1021/ic402685u] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xue-Lian Xin
- School of Chemistry and Chemical Engineering & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Min Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yu-bo Ai
- School of Chemistry and Chemical Engineering & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Feng-lei Yang
- School of Chemistry and Chemical Engineering & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiu-Ling Li
- School of Chemistry and Chemical Engineering & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Fuyou Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
12
|
Wilms VS, Frey H. Aminofunctional polyethers: smart materials for applications in solution and on surfaces. POLYM INT 2013. [DOI: 10.1002/pi.4496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valerie S. Wilms
- Johannes-Gutenberg-University Mainz, Department of Organic Chemistry; Duesbergweg 10-14, 55099 Mainz, and Graduate School ‘Materials Science in Mainz’; Staudingerweg 9 55128 Mainz Germany
| | - Holger Frey
- Johannes-Gutenberg-University Mainz, Department of Organic Chemistry; Duesbergweg 10-14, 55099 Mainz, and Graduate School ‘Materials Science in Mainz’; Staudingerweg 9 55128 Mainz Germany
| |
Collapse
|
13
|
Yu B, Chen Y, Ouyang C, Huang H, Ji L, Chao H. A luminescent tetranuclear ruthenium(ii) complex as a tracking non-viral gene vector. Chem Commun (Camb) 2013; 49:810-2. [DOI: 10.1039/c2cc37896e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Maggioni D, Fenili F, D’Alfonso L, Donghi D, Panigati M, Zanoni I, Marzi R, Manfredi A, Ferruti P, D’Alfonso G, Ranucci E. Luminescent Rhenium and Ruthenium Complexes of an Amphoteric Poly(amidoamine) Functionalized with 1,10-Phenanthroline. Inorg Chem 2012; 51:12776-88. [DOI: 10.1021/ic301616b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniela Maggioni
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Fabio Fenili
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Laura D’Alfonso
- Dipartimento di
Fisica, Università di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Daniela Donghi
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Monica Panigati
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Firenze, Italy
| | - Ivan Zanoni
- Dipartimento di Biotecnologie
e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Roberta Marzi
- Dipartimento di Biotecnologie
e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Amedea Manfredi
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Paolo Ferruti
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Firenze, Italy
| | - Giuseppe D’Alfonso
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121 Firenze, Italy
| | - Elisabetta Ranucci
- Dipartimento di
Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
15
|
Ho CL, Wong KL, Kong HK, Ho YM, Chan CTL, Kwok WM, Leung KSY, Tam HL, Lam MHW, Ren XF, Ren AM, Feng JK, Wong WY. A strong two-photon induced phosphorescent Golgi-specific in vitro marker based on a heteroleptic iridium complex. Chem Commun (Camb) 2012; 48:2525-7. [DOI: 10.1039/c2cc16993b] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Gao C, Zhang H, Wu M, Liu Y, Wu Y, Yang X, Feng X. Polyethyleneimine functionalized polymer microsphere: a novel delivery vector for cells. Polym Chem 2012. [DOI: 10.1039/c2py20012k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Xiang X, Chen L, Zhuang Q, Ji X, He Z. Real-time luminescence-based colorimetric determination of double-strand DNA in droplet on demand. Biosens Bioelectron 2011; 32:43-9. [PMID: 22196878 DOI: 10.1016/j.bios.2011.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 10/17/2011] [Accepted: 11/08/2011] [Indexed: 12/16/2022]
Abstract
We have developed a new luminescence-based colorimetric droplet platform for the determination of double-stranded DNAs (dsDNA). This colorimetric sensor was realized via choosing a fluorescent ensemble probe comprising water-soluble N-acetylcysteine-capped CdTe quantum dots (QDs) and Ru(bpy)(2)(dppx)(2+) (Ru). To provide a convenient and low cost droplet platform for colorimetry, the microvalve technique was adapted to adjust droplet size precisely, achieve the desired fusion of multiple droplets and trap droplets on demand, as well as implement concentration gradients of DNA on a single chip. In the colorimetric sensor, Ru served as both an effective quencher for QDs and a reporter for dsDNA. With increasing concentration of dsDNA, a gradually enhanced color response was observed because of the competition of dsDNA with QDs for Ru. Under the optimum conditions, this biosensing system exhibited not only good sensitivity and specificity for calf thymus DNA with the detection limit of 1.0 pg, but also coincident performances in diluted human serum with the detection limit of 0.9 pg. The droplet biosensor provides a highly efficient, rapid and visual method for dsDNA analysis. The colorimetric droplet platform could be useful as a simple research tool for the study of limited and precious regents such as protein and virus samples, etc.
Collapse
Affiliation(s)
- Xia Xiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | |
Collapse
|
18
|
Balasingham RG, Coogan MP, Thorp-Greenwood FL. Complexes in context: attempting to control the cellular uptake and localisation of rhenium fac-tricarbonyl polypyridyl complexes. Dalton Trans 2011; 40:11663-74. [PMID: 21897946 DOI: 10.1039/c1dt11219h] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transition metal lumophores are now well established as agents for cell imaging, but we are still not able to predict generally and with confidence their cellular localisation, or, for that matter, their uptake efficiencies. While many such complexes have been shown to illuminate cells, genuine applications in biomedical research will only be developed when their uptake and localisation are better understood. This perspective is not a comprehensive review of luminescence, but is an overview of attempts to control uptake and localisation, focussing on a personal account of this group's development of imaging agents based on the Re(CO)(3) bipyridine core, and our attempts to understand and control their cellular behaviour.
Collapse
|
19
|
|
20
|
Núñez-Montenegro A, Carballo R, Hermida-Ramón JM, Vázquez-López EM. Synthesis, characterization, reactivity and computational studies of new rhenium(I) complexes with thiosemicarbazone ligands derived from 4-(methylthio)benzaldehyde. Polyhedron 2011. [DOI: 10.1016/j.poly.2011.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
|
22
|
Liu Y, Wu Y, Feng D, Ye Q, Yang X, Liu X, Gao C, Wu M, Chen D, Zhang Y, Li L, Feng. X. Optical tracking and biocompatibility assessment of nanoparticles from triblock copolymer encapsulating-dye complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm13897a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Liu G, Swierczewska M, Lee S, Chen X. FUNCTIONAL NANOPARTICLES FOR MOLECULAR IMAGING GUIDED GENE DELIVERY. NANO TODAY 2010; 5:524-539. [PMID: 22473061 PMCID: PMC3004232 DOI: 10.1016/j.nantod.2010.10.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gene therapy has great potential to bring tremendous changes in treatment of various diseases and disorders. However, one of the impediments to successful gene therapy is the inefficient delivery of genes to target tissues and the inability to monitor delivery of genes and therapeutic responses at the targeted site. The emergence of molecular imaging strategies has been pivotal in optimizing gene therapy; since it can allow us to evaluate the effectiveness of gene delivery noninvasively and spatiotemporally. Due to the unique physiochemical properties of nanomaterials, numerous functional nanoparticles show promise in accomplishing gene delivery with the necessary feature of visualizing the delivery. In this review, recent developments of nanoparticles for molecular imaging guided gene delivery are summarized.
Collapse
Affiliation(s)
- Gang Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892 USA
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, North Sichuan Medical College, Nanchong 637007 China
| | - Magdalena Swierczewska
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892 USA
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Stony Brook, NY 11794 USA
| | - Seulki Lee
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892 USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892 USA
| |
Collapse
|