1
|
Hazra A, Samanta SK. Main-Chain Cationic Polyelectrolytes: Design, Synthesis, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2417-2438. [PMID: 38253020 DOI: 10.1021/acs.langmuir.3c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Polyelectrolytes have attracted a lot of attention spanning across disciplines, including polymer chemistry, materials chemistry, chemical biology, chemical engineering, as well as device physics, as a result of their widespread applications in sensing, biomedicine, food industry, wastewater treatment, optoelectronic devices, and renewable energy. In this review, we focus on the crucial synthetic strategies of structurally different classes of main-chain cationic polyelectrolytes. As a result of the presence of charged moieties in the main polymeric backbone, their solubility and photophysical properties can be easily tuned. Main-chain cationic polyelectrolytes provide various unique characteristics, including solubility in aqueous and organic solvents, easy processability, ease of film formation, ionic interaction, main-chain-directed charge transport, high conductivity, and aggregation. These properties make the main-chain polyelectrolyte a potential candidate for numerous applications ranging from chemo- and biosensing, antibacterial activity, optoelectronics, electrocatalysis, water splitting, ion conduction, to dye-sensitized solar cells.
Collapse
Affiliation(s)
- Amrita Hazra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Suman Kalyan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Li X, Chai L, Ren J, Jin L, Wang H, Li Y, Ma S. Efficient collection of perrhenate anions from water using poly(pyridinium salts) via pyrylium mediated transformation. Polym Chem 2022. [DOI: 10.1039/d1py01232k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Poly(pyridinium salts) composed of cationic pyridinium groups with benzene-rich motifs demonstrated high efficiency and selectivity in the capture of ReO4− from SO42− containing water.
Collapse
Affiliation(s)
- Xiaorui Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan, 410083, China
| | - Junyu Ren
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Linfeng Jin
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan, 410083, China
- Water Pollution Control Technology Key Lab of Hunan Province, Changsha, Hunan, 410004, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| |
Collapse
|
3
|
Bhowmik PK, Jo TS, Koh JJ, Park J, Biswas B, Principe RCG, Han H, Wacha AF, Knaapila M. Poly(Pyridinium Salt)s Containing 2,7-Diamino-9,9'-Dioctylfluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties. Molecules 2021; 26:molecules26061560. [PMID: 33809075 PMCID: PMC7998704 DOI: 10.3390/molecules26061560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/04/2022] Open
Abstract
A series of poly(pyridinium salt)s-fluorene main-chain ionic polymers with various organic counterions were synthesized by using ring-transmutation polymerization and metathesis reactions. Their chemical structures were characterized by Fourier Transform Infrared (FTIR), proton (1H), and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers. These polymers showed a number-average molecular weight (Mns) between 96.5 and 107.8 kg/mol and polydispersity index (PDI) in the range of 1.12–1.88. They exhibited fully-grown lyotropic phases in polar protic and aprotic solvents at different critical concentrations. Small-angle X-ray scattering for one polymer example indicates lyotropic structure formation for 60–80% solvent fraction. A lyotropic smectic phase contains 10 nm polymer platelets connected by tie molecules. The structure also incorporates a square packing motif within platelets. Thermal properties of polymers were affected by the size of counterions as determined by differential scanning calorimetry and thermogravimetric analysis measurements. Their ultraviolet-visible (UV-Vis) absorption spectra in different organic solvents were essentially identical, indicating that the closely spaced π-π* transitions occurred in their conjugated polymer structures. In contrast, the emission spectra of polymers exhibited a positive solvatochromism on changing the polarity of solvents. They emitted green lights in both polar and nonpolar organic solvents and showed blue light in the film-states, but their λem peaks were dependent on the size of the counterions. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0–90%), and their λem peaks were blue shifted.
Collapse
Affiliation(s)
- Pradip K. Bhowmik
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway Box 454003, Las Vegas, NV 89154-4003, USA; (T.S.J.); (J.J.K.); (J.P.); (B.B.); (R.C.G.P.); (H.H.)
- Correspondence: ; Tel.: +1-702-895-0885 or +1-702-895-4072
| | - Tae S. Jo
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway Box 454003, Las Vegas, NV 89154-4003, USA; (T.S.J.); (J.J.K.); (J.P.); (B.B.); (R.C.G.P.); (H.H.)
| | - Jung J. Koh
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway Box 454003, Las Vegas, NV 89154-4003, USA; (T.S.J.); (J.J.K.); (J.P.); (B.B.); (R.C.G.P.); (H.H.)
| | - Jongwon Park
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway Box 454003, Las Vegas, NV 89154-4003, USA; (T.S.J.); (J.J.K.); (J.P.); (B.B.); (R.C.G.P.); (H.H.)
| | - Bidyut Biswas
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway Box 454003, Las Vegas, NV 89154-4003, USA; (T.S.J.); (J.J.K.); (J.P.); (B.B.); (R.C.G.P.); (H.H.)
| | - Ronald Carlo G. Principe
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway Box 454003, Las Vegas, NV 89154-4003, USA; (T.S.J.); (J.J.K.); (J.P.); (B.B.); (R.C.G.P.); (H.H.)
| | - Haesook Han
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway Box 454003, Las Vegas, NV 89154-4003, USA; (T.S.J.); (J.J.K.); (J.P.); (B.B.); (R.C.G.P.); (H.H.)
| | - András F. Wacha
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar Tudósok körútja 2, 1117 Budapest, Hungary;
| | - Matti Knaapila
- Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
4
|
Zadmard R, Hokmabadi F, Jalali MR, Akbarzadeh A. Recent progress to construct calixarene-based polymers using covalent bonds: synthesis and applications. RSC Adv 2020; 10:32690-32722. [PMID: 35516464 PMCID: PMC9056661 DOI: 10.1039/d0ra05707j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
The combination of supramolecular chemistry and polymer sciences creates a great possibility to afford calixarene-based polymers offering unique features and applications. The enhancement of calixarene's versatility in this manner has made chemists better able to achieve different objectives in host-guest chemistry. The calixarene-based polymers can be divided into covalent polymers and supramolecular polymers regarding the interactions. Although there are several studies available on the calixarene-based supramolecular polymers, there is a paucity of studies on the calixarene-based covalent polymers. In this paper, the most recent developments and applications of the calixarene-based covalent polymers in the last two decades have been reviewed. We have particularly focused on the polymers, including those where the calixarene molecules have been used as macromonomers and polymerize through covalent bonds. Moreover, covalent polymers or solid supports functionalized with calixarenes are highlighted as well.
Collapse
Affiliation(s)
- Reza Zadmard
- Chemistry and Chemical Engineering Research Center of Iran Iran
| | | | | | - Ali Akbarzadeh
- Chemistry and Chemical Engineering Research Center of Iran Iran
| |
Collapse
|
5
|
Liu C, Zhang Q, An N, Wang J, Zhao L, Lu Y. A new water-soluble polythiophene derivative as a probe for real-time monitoring adenosine 5'-triphosphatase activity in lysosome of living cells. Talanta 2018; 182:396-404. [PMID: 29501170 DOI: 10.1016/j.talanta.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/16/2018] [Accepted: 02/04/2018] [Indexed: 12/27/2022]
Abstract
Detection of the adenosine 5'-triphosphatase (ATPase) activity in lysosome of living cells is of great importance for clinical diagnosis of many related diseases, including cancer. In this work, a new water-soluble polythiophene derivative named ZnPT bearing both quaternary ammonium salt groups and dipicolylamine-Zn2+ (DPA-Zn2+) complexes in its side chain, was designed and synthesized for this propose. The probe mainly localized to lysosome with good biocompatibility and membrane penetration. The real-time, continuous, direct, and label-free assays were achieved through a fluorescence "turn-on" mode by taking advantages of the reaction specificity of ATPase with ATP and the high binding selectivity of ZnPT toward ATP substrate over its hydrolysis product (ADP). This well designed strategy should provide a facile and effective way for investigating ATPase-relevant biological processes.
Collapse
Affiliation(s)
- Cui Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Qiang Zhang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Nianqi An
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Linlin Zhao
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
6
|
Ma H, Zhang WZ, Luo J, Liu JM, Xiang GY. Synthesis of a linearly linked triscalixarene consisting of calix[4]arene units with combined axial chirality and inherent chirality. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Samanta SK, Scherf U. Cationic Main-Chain Polyelectrolytes with Pyridinium-Basedp-Phenylenevinylene Units and Their Aggregation-Induced Gelation. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Suman Kalyan Samanta
- Macromolecular Chemistry Group and Institute for Polymer Technology; Wuppertal University; Gauss-Strasse 20 42119 Wuppertal Germany
| | - Ullrich Scherf
- Macromolecular Chemistry Group and Institute for Polymer Technology; Wuppertal University; Gauss-Strasse 20 42119 Wuppertal Germany
| |
Collapse
|
8
|
A new conjugated poly(pyridinium salt) derived from phenanthridine diamine: its synthesis, optical properties and interaction with calf thymus DNA. Polym J 2015. [DOI: 10.1038/pj.2015.62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Poly(pyridinium salt)s with organic counterions derived from 3,3′-dimethylnaphthidine: thermal, liquid crystalline, and optical properties. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-014-0651-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Chang Y, Jin L, Duan J, Zhang Q, Wang J, Lu Y. New conjugated poly(pyridinium salt) derivative: AIE characteristics, the interaction with DNA and selective fluorescence enhancement induced by dsDNA. RSC Adv 2015. [DOI: 10.1039/c5ra22653h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fluorescence turn-on DNA sensor with excellent sensitivity and selectivity is developed based on a new conjugated poly(pyridinium salt) with AIE characteristics. The probe is also successfully utilized to follow the DNA cleavage process by DNase I.
Collapse
Affiliation(s)
- Ying Chang
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Lu Jin
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Jingjing Duan
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Qiang Zhang
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Jing Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Yan Lu
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| |
Collapse
|
11
|
Ma X, Zhao Y. Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chem Rev 2014; 115:7794-839. [DOI: 10.1021/cr500392w] [Citation(s) in RCA: 792] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xing Ma
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yanli Zhao
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
12
|
Wang L, Li Y, Sun J, Lu Y, Sun Y, Cheng D, Li C. Conjugated poly(pyridinium salt)s as fluorescence light-up probes for heparin sensing. J Appl Polym Sci 2014. [DOI: 10.1002/app.40933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lei Wang
- Key Laboratory of Display Materials & Photoelectric Devices; Ministry of Education; School of Materials Science & Engineering; Tianjin University of Technology; Tianjin 300384 China
| | - Yandong Li
- Key Laboratory of Functional Polymer Materials; Ministry of Education; Institute of Polymer Chemistry; Nankai University; Tianjin 300191 China
| | - Jingfen Sun
- Key Laboratory of Display Materials & Photoelectric Devices; Ministry of Education; School of Materials Science & Engineering; Tianjin University of Technology; Tianjin 300384 China
| | - Yan Lu
- Key Laboratory of Display Materials & Photoelectric Devices; Ministry of Education; School of Materials Science & Engineering; Tianjin University of Technology; Tianjin 300384 China
| | - Yujiao Sun
- Key Laboratory of Display Materials & Photoelectric Devices; Ministry of Education; School of Materials Science & Engineering; Tianjin University of Technology; Tianjin 300384 China
| | - Dandan Cheng
- Key Laboratory of Display Materials & Photoelectric Devices; Ministry of Education; School of Materials Science & Engineering; Tianjin University of Technology; Tianjin 300384 China
| | - Chenxi Li
- Key Laboratory of Functional Polymer Materials; Ministry of Education; Institute of Polymer Chemistry; Nankai University; Tianjin 300191 China
| |
Collapse
|
13
|
Yan F, Wang M, Cao D, Guo S, Chen L. Preparation of thermosensitive, calix[4]arene incorporated P(NIPAM‐
co
‐HBCalix) hydrogel as a reusable adsorbent of nickel(II) ions. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fanyong Yan
- State Key Laboratory of Hollow Fiber Membrane Materials and ProcessesKey Lab of Fiber Modification & Functional Fiber of TianjinTianjin Polytechnic UniversityTianjin300387 People's Republic of China
| | - Meng Wang
- State Key Laboratory of Hollow Fiber Membrane Materials and ProcessesKey Lab of Fiber Modification & Functional Fiber of TianjinTianjin Polytechnic UniversityTianjin300387 People's Republic of China
| | - Donglei Cao
- State Key Laboratory of Hollow Fiber Membrane Materials and ProcessesKey Lab of Fiber Modification & Functional Fiber of TianjinTianjin Polytechnic UniversityTianjin300387 People's Republic of China
| | - Shanshan Guo
- State Key Laboratory of Hollow Fiber Membrane Materials and ProcessesKey Lab of Fiber Modification & Functional Fiber of TianjinTianjin Polytechnic UniversityTianjin300387 People's Republic of China
| | - Li Chen
- State Key Laboratory of Hollow Fiber Membrane Materials and ProcessesKey Lab of Fiber Modification & Functional Fiber of TianjinTianjin Polytechnic UniversityTianjin300387 People's Republic of China
| |
Collapse
|
14
|
Sun J, Lu Y, Wang L, Cheng D, Sun Y, Zeng X. Fluorescence turn-on detection of DNA based on the aggregation-induced emission of conjugated poly(pyridinium salt)s. Polym Chem 2013. [DOI: 10.1039/c3py00350g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Han F, Lu Y, Zhang Q, Sun J, Zeng X, Li C. Homogeneous and sensitive DNA detection based on polyelectrolyte complexes of cationic conjugated poly(pyridinium salt)s and DNA. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm15491a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Shao Q, Liu H, Wang TT, Zeng HP. Synthesis of new 3,3′-(1,4-phenylene)bis(1,5-diones) derivatives. J Heterocycl Chem 2011. [DOI: 10.1002/jhet.737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|