1
|
Sabzini M, Pourmadadi M, Yazdian F, Khadiv-Parsi P, Rashedi H. Development of chitosan/halloysite/graphitic‑carbon nitride nanovehicle for targeted delivery of quercetin to enhance its limitation in cancer therapy: An in vitro cytotoxicity against MCF-7 cells. Int J Biol Macromol 2023; 226:159-171. [PMID: 36435458 DOI: 10.1016/j.ijbiomac.2022.11.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
Although quercetin (QC) has valuable advantages, its low water solubility and poor permeability have limited its utilization as an anticancer drug. In this study, hydrogel nanocomposite of chitosan (CS), halloysite (HNT), and graphitic‑carbon nitride (g-C3N4) was prepared and loaded by QC using a water in oil in water emulsification process to attain QC sustained-release. Using g-C3N4 in the HNT/CS hydrogel solution enhanced the entrapment effectiveness (EE %) by up to 86 %. The interactions between QC and nanoparticles caused the nanocomposite pH-responsive behavior that assists in minimizing the side effect of the anticancer agent by controlling the burst release of QC at neutral conditions. According to DLS analysis, the size of the QC-loaded nanovehicle was 454.65 nm, showing that nanoparticles are highly monodispersed, which also was approved by FE-SEM. Additionally, Zeta potential value for the fabricated drug-loaded nanocarrier is +55.23 mV displaying that nanoparticles have good stability. The hydrogel nanocomposite structure's completeness was shown by FTIR pattern, and quercetin was included into the designed delivery system based on XRD data. Besides, the drug release profile indicated that a targeted sustained-release and pH-sensitive release of anticancer drug with the 96-hour extended-release were noticed. In order to comprehend the process of QC release at pH 5.4 and 7.4, four kinetic models were employed to find the best-suited model according to the acquired release data. Finally, the MTT experiment revealed considerable cytotoxicity against breast cancer cells, MCF-7 cell line was experimented in vitro, for the CS/HNT/g-C3N4 targeted delivery system in comparison to QC as a free drug. According to the above description, the CS/HNT/g-C3N4 delivery platform is a unique pH-sensitive drug delivery system for anticancer purposes that improves loading as well as sustained-release of quercetin.
Collapse
Affiliation(s)
- Mahdi Sabzini
- Department of Biotechnology Engineering, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology Engineering, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Parissa Khadiv-Parsi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology Engineering, School of Chemical Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Cesar MB, Poli H, Piazza RD, Marques RFC, Herculano RD, Grøndahl L. Dispersion of hydroxyapatite nanoparticles in natural rubber latex and poly lactic acid based matrices. J Appl Polym Sci 2022. [DOI: 10.1002/app.52165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mariana Biondi Cesar
- Bioprocess and Biotechnology Engineering Department, School of Pharmaceutical Sciences São Paulo State University (UNESP) São Paulo Brazil
- School of Chemistry and Molecular Biosciences University of Queensland St. Lucia Queensland Australia
| | - Hamish Poli
- School of Chemistry and Molecular Biosciences University of Queensland St. Lucia Queensland Australia
| | - Rodolfo Debone Piazza
- Laboratory of Magnetic Materials and Colloids, Department of Physical Chemistry Institute of Chemistry, São Paulo State University, (UNESP) São Paulo Brazil
| | - Rodrigo Fernando Costa Marques
- Laboratory of Magnetic Materials and Colloids, Department of Physical Chemistry Institute of Chemistry, São Paulo State University, (UNESP) São Paulo Brazil
| | - Rondinelli Donizetti Herculano
- Bioprocess and Biotechnology Engineering Department, School of Pharmaceutical Sciences São Paulo State University (UNESP) São Paulo Brazil
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
3
|
Sun TW, Zhu YJ, Chen F. Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair. RSC Adv 2018; 8:26218-26229. [PMID: 35541968 PMCID: PMC9082774 DOI: 10.1039/c8ra03972k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/11/2018] [Indexed: 11/21/2022] Open
Abstract
The synthetic bone grafts that mimic the composition and structure of human natural bone exhibit great potential for application in bone defect repair. In this study, a biomimetic porous nanocomposite consisting of ultralong hydroxyapatite nanowires (UHANWs) and collagen (Col) with 66.7 wt% UHANWs has been prepared by the freeze drying process and subsequent chemical crosslinking. Compared with the pure collagen as a control sample, the biomimetic UHANWs/Col porous nanocomposite exhibits significantly improved mechanical properties. More significantly, the rehydrated UHANWs/Col nanocomposite exhibits an excellent elastic behavior. Moreover, the biomimetic UHANWs/Col porous nanocomposite has a good degradable performance with a sustained release of Ca and P elements, and can promote the adhesion and spreading of mesenchymal stem cells. The in vivo evaluation reveals that the biomimetic UHANWs/Col porous nanocomposite can significantly enhance bone regeneration compared with the pure collagen sample. After 12 weeks implantation, the woven bone and lamellar bone are formed throughout the entire UHANWs/Col porous nanocomposite, and connect directly with the host bone to construct a relatively normal bone marrow cavity, leading to successful osteointegration and bone reconstruction. The as-prepared biomimetic UHANWs/Col porous nanocomposite is promising for applications in various fields such as bone defect repair.
Collapse
Affiliation(s)
- Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China +86-21-52413122 +86-21-52412616
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China +86-21-52413122 +86-21-52412616
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China +86-21-52413122 +86-21-52412616
| |
Collapse
|
4
|
Sun TW, Yu WL, Zhu YJ, Chen F, Zhang YG, Jiang YY, He YH. Porous Nanocomposite Comprising Ultralong Hydroxyapatite Nanowires Decorated with Zinc-Containing Nanoparticles and Chitosan: Synthesis and Application in Bone Defect Repair. Chemistry 2018; 24:8809-8821. [DOI: 10.1002/chem.201800425] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Wei-Lin Yu
- Department of Orthopedics; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
| | - Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Ying-Ying Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Yao-Hua He
- Department of Orthopedics; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai 200233 P. R. China
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital; School of Biomedical Engineering; Shanghai 200233 P. R. China
| |
Collapse
|
5
|
Valorization of Bone Waste of Saudi Arabia by Synthesizing Hydroxyapatite. Appl Biochem Biotechnol 2018; 186:779-788. [DOI: 10.1007/s12010-018-2768-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022]
|
6
|
Abstract
This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess to improve the regeneration of bone. Afterward, several techniques to engineer bone membranes by using "bulk"-like methods are discussed, where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach is discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible, the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties, or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.
Collapse
Affiliation(s)
- Sofia G Caridade
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - João F Mano
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| |
Collapse
|
7
|
Sun TW, Zhu YJ, Chen F. Highly Flexible Multifunctional Biopaper Comprising Chitosan Reinforced by Ultralong Hydroxyapatite Nanowires. Chemistry 2017; 23:3850-3862. [DOI: 10.1002/chem.201605165] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
8
|
A facile, efficient, and sustainable chitosan/CaHAp catalyst and one-pot synthesis of novel 2,6-diamino-pyran-3,5-dicarbonitriles. Mol Divers 2016; 21:247-255. [DOI: 10.1007/s11030-016-9708-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
|
9
|
Moura D, Mano JF, Paiva MC, Alves NM. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:626-643. [PMID: 27877909 PMCID: PMC5102025 DOI: 10.1080/14686996.2016.1229104] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 05/17/2023]
Abstract
Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications.
Collapse
Affiliation(s)
- Duarte Moura
- 3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s, Associate PT Government Laboratory, Braga, Guimarães, Portugal
- Institute for Polymers and Composites/I3 N, Department of Polymer Engineering, University of Minho, Guimarães, Portugal
| | - João F. Mano
- 3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s, Associate PT Government Laboratory, Braga, Guimarães, Portugal
| | - Maria C. Paiva
- Institute for Polymers and Composites/I3 N, Department of Polymer Engineering, University of Minho, Guimarães, Portugal
| | - Natália M. Alves
- 3B’s Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s, Associate PT Government Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
10
|
Preparation and characterization of chitosan based injectable hydrogels enhanced by chitin nano-whiskers. J Mech Behav Biomed Mater 2016; 65:466-477. [PMID: 27665082 DOI: 10.1016/j.jmbbm.2016.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022]
Abstract
The objective of current study was to prepare an injectable hydrogel with great mechanical properties and biological compatibility, which could be more suitable to be applied as tissue engineering scaffold. Chitin nano-whiskers (CNWs) were introduced into chitosan/β-glycerophosphate disodium salt (CS/GP) injectable hydrogel. The effects of CNWs contents and gelation temperatures on gelation speed and mechanical properties of the composite hydrogels were characterized and discussed. The maximum values of tensile strength and elongation at break were both more than 4 times larger than that of neat CS/GP hydrogel. The gelation time of injectable hydrogel with 5% CNWs content (formed at 37°C) was 25 seconds, which was much shorter than that (6038 seconds) of the neat CS/GP hydrogel. In combination with results of Fourier transform infrared spectroscopy (FT-IR), it was proved that CNWs functioned as a cross-linker through hydrogen bond interaction in the gel formation process, which might be the main reason for mechanical enhancement. Meanwhile, gels formed with higher CNWs content and gelation temperature had lower equilibrium swelling ratio and drug release rate. Cytotoxicity of hydrogel in vitro was studied by MTT method with a result of indicating a good biocompatibility of CNWs enhanced hydrogel.
Collapse
|
11
|
Prajatelistia E, Lim C, Oh DX, Jun SH, Hwang DS. Chitosan and hydroxyapatite composite cross-linked by dopamine has improved anisotropic hydroxyapatite growth and wet mechanical properties. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ekavianty Prajatelistia
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang Korea
| | - Chanoong Lim
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang Korea
| | - Dongyeop X. Oh
- POSTECH Ocean Science and Technology Institute; Pohang University of Science and Technology; Pohang Korea
| | - Sang Ho Jun
- Division of Oral and Maxillofacial Surgery; Department of Dentistry; Korea University Anam Hospital; Seoul Korea
| | - Dong Soo Hwang
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang Korea
- POSTECH Ocean Science and Technology Institute; Pohang University of Science and Technology; Pohang Korea
- Integrative Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang Korea
- School of Environmental Science and Engineering; Pohang University of Science and Technology; Pohang Korea
| |
Collapse
|
12
|
Thyriyalakshmi P, Radha KV. Synthesis of dimethyl carbonate (DMC) based biodegradable nitrogen mustard ionic carbonate (NMIC) nanoparticles. RSC Adv 2015. [DOI: 10.1039/c4ra13290d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitrogen mustard ionic carbonate with stable carbonate moiety was synthesized and cross-linked with the biopolymer chitosan. Subsequently, nanoparticles of cross linked chitosan were prepared for wound healing application.
Collapse
Affiliation(s)
- P. Thyriyalakshmi
- Bio-Products Laboratory, Department of Chemical Engineering
- A.C. Tech
- Anna University
- Chennai-25
- India
| | - K. V. Radha
- Bio-Products Laboratory, Department of Chemical Engineering
- A.C. Tech
- Anna University
- Chennai-25
- India
| |
Collapse
|
13
|
Patel NG, Kumar A, Jayawardana VN, Woodworth CD, Yuya PA. Fabrication, nanomechanical characterization, and cytocompatibility of gold-reinforced chitosan bio-nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:336-44. [PMID: 25280713 DOI: 10.1016/j.msec.2014.08.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/25/2014] [Accepted: 08/16/2014] [Indexed: 12/01/2022]
Abstract
Chitosan, a naturally derived polymer represents one of the most technologically important classes of active materials with applications in a variety of industrial and biomedical fields. Gold nanoparticles (~32 nm) were synthesized via a citrate reduction method from chloroauric acid and incorporated in Chitosan matrix. Bio-nanocomposite films with varying concentrations of gold nanoparticles were prepared through solution casting process. Uniform distribution of gold nanoparticles was achieved throughout the chitosan matrix and was confirmed with SEM. Synthesis outcomes and prepared nanocomposites were characterized using SEM, TEM, EDX, SAED, UV-vis, XRD, DLS, and Zeta potential for their physical, morphological and structural properties. Nanoscale properties of materials under the influence of temperature were characterized through nanoindentation techniques. From quasi-static nanoindentation, it was observed that hardness and reduced modulus of the nanocomposites were increased significantly in direct proportion to the gold nanoparticle concentration. Gold nanoparticle concentration also showed positive impact on storage modulus and thermal stability of the material. The obtained films were confirmed to be biocompatible by their ability to support growth of human cells in vitro. In summary, the results show enhanced mechanical properties with increasing gold nanoparticle concentration, and provide better understanding of the structure-property relationships of such biocompatible materials for potential biomedical applications.
Collapse
Affiliation(s)
- Nimitt G Patel
- Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, 13699, USA; Materials Science and Engineering PhD Program, Clarkson University, Potsdam, NY, 13699, USA
| | - Ajeet Kumar
- Center for Advanced Materials Processing, Clarkson University, Potsdam, NY, 13699, USA
| | | | | | - Philip A Yuya
- Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, 13699, USA.
| |
Collapse
|
14
|
Zhou XY, Jiang YR, Li CC, Xie XY. Synthesis of poly(ethylene glycol)-functionalized hydroxyapatite organic colloid intended for nanocomposites. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Luo Y, Teng Z, Wang X, Wang Q. Development of carboxymethyl chitosan hydrogel beads in alcohol-aqueous binary solvent for nutrient delivery applications. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2012.11.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Li Z, Su Y, Xie B, Wang H, Wen T, He C, Shen H, Wu D, Wang D. A tough hydrogel–hydroxyapatite bone-like composite fabricated in situ by the electrophoresis approach. J Mater Chem B 2013; 1:1755-1764. [DOI: 10.1039/c3tb00246b] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Liu M, Zhang Y, Wu C, Xiong S, Zhou C. Chitosan/halloysite nanotubes bionanocomposites: Structure, mechanical properties and biocompatibility. Int J Biol Macromol 2012; 51:566-75. [DOI: 10.1016/j.ijbiomac.2012.06.022] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 11/25/2022]
|
18
|
Pradal C, Kithva P, Martin D, Trau M, Grøndahl L. Improvement of the wet tensile properties of nanostructured hydroxyapatite and chitosan biocomposite films through hydrophobic modification. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03080e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 2010; 47:1-4. [PMID: 20361991 DOI: 10.1016/j.ijbiomac.2010.03.015] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/21/2010] [Accepted: 03/24/2010] [Indexed: 11/21/2022]
Abstract
Bone tissue engineering is an alternative strategy to generate bone utilizing a combination of biomaterials and cells. Biomaterials that mimic the structure and composition of bone tissues at nanoscale are important for the development of bone tissue engineering applications. Natural or biopolymer-based composites containing chitin, chitosan, or collagen have advantages such as biocompatibility, biodegradability that are essential for bone tissue engineering. The inclusion of nanoparticles of hydroxyapatite (one of the most widely used bioceramic materials) into the biopolymer matrix improves the mechanical properties and incorporates the nanotopographic features that mimic the nanostructure of bone. This review summarizes the recent work on the development of biocomposites containing natural polymers with hydroxyapatite particles suitable for use in bone defects/bone regeneration.
Collapse
|