1
|
Rong Y, Jensen SI, Lindorff-Larsen K, Nielsen AT. Folding of heterologous proteins in bacterial cell factories: Cellular mechanisms and engineering strategies. Biotechnol Adv 2023; 63:108079. [PMID: 36528238 DOI: 10.1016/j.biotechadv.2022.108079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The expression of correctly folded and functional heterologous proteins is important in many biotechnological production processes, whether it is enzymes, biopharmaceuticals or biosynthetic pathways for production of sustainable chemicals. For industrial applications, bacterial platform organisms, such as E. coli, are still broadly used due to the availability of tools and proven suitability at industrial scale. However, expression of heterologous proteins in these organisms can result in protein aggregation and low amounts of functional protein. This review provides an overview of the cellular mechanisms that can influence protein folding and expression, such as co-translational folding and assembly, chaperone binding, as well as protein quality control, across different model organisms. The knowledge of these mechanisms is then linked to different experimental methods that have been applied in order to improve functional heterologous protein folding, such as codon optimization, fusion tagging, chaperone co-production, as well as strain and protein engineering strategies.
Collapse
Affiliation(s)
- Yixin Rong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Sheila Ingemann Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Chaudhuri D, Banerjee S, Chakraborty S, Chowdhury D, Haldar S. Direct Observation of the Mechanical Role of Bacterial Chaperones in Protein Folding. Biomacromolecules 2022; 23:2951-2967. [PMID: 35678300 DOI: 10.1021/acs.biomac.2c00451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein folding under force is an integral source of generating mechanical energy in various cellular processes, ranging from protein translation to degradation. Although chaperones are well known to interact with proteins under mechanical force, how they respond to force and control cellular energetics remains unknown. To address this question, we introduce a real-time magnetic tweezer technology herein to mimic the physiological force environment on client proteins, keeping the chaperones unperturbed. We studied two structurally distinct client proteins--protein L and talin with seven different chaperones─independently and in combination and proposed a novel mechanical activity of chaperones. We found that chaperones behave differently, while these client proteins are under force, than their previously known functions. For instance, tunnel-associated chaperones (DsbA and trigger factor), otherwise working as holdase without force, assist folding under force. This process generates an additional mechanical energy up to ∼147 zJ to facilitate translation or translocation. However, well-known cytoplasmic foldase chaperones (PDI, thioredoxin, or DnaKJE) do not possess the mechanical folding ability under force. Notably, the transferring chaperones (DnaK, DnaJ, and SecB) act as holdase and slow down the folding process, both in the presence and absence of force, to prevent misfolding of the client proteins. This provides an emerging insight of mechanical roles of chaperones: they can generate or consume energy by shifting the energy landscape of the client proteins toward a folded or an unfolded state, suggesting an evolutionary mechanism to minimize energy consumption in various biological processes.
Collapse
Affiliation(s)
- Deep Chaudhuri
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Debojyoti Chowdhury
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| |
Collapse
|
3
|
Budowa i znaczenie II systemu sekrecji białek w ekologii i patogenezie Legionella pneumophila. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Pałeczki Legionella pneumophila pasożytują w komórkach odległych filogenetycznie gospodarzy, w środowisku wodnym w pierwotniakach, a w organizmie człowieka w makrofagach alweolarnych. Zdolność tych bakterii do wewnątrzkomórkowego namnażania się w komórkach fagocytujących, wyspecjalizowanych do niszczenia mikroorganizmów, ma podstawowe znaczenie dla rozwoju nietypowego zapalenia płuc zwanego chorobą legionistów. Umiejscowione na kilku różnych loci chromosomu bakteryjnego geny II systemu sekrecji L. pneumophila kodują co najmniej 25 białek, w tym enzymy o aktywności lipolitycznej, proteolitycznej, rybonukleazy oraz białka unikalne bakterii Legionella. W środowisku naturalnym T2SS L. pneumophila odgrywa decydującą rolę w ekologii tych drobnoustrojów determinując ich zdolność do przeżycia zarówno w postaci planktonicznej, jak i w strukturach biofilmu w słodkowodnych zbiornikach o niskiej temperaturze. Białka T2SS umożliwiają L. pneumophila zakażenie różnych gatunków pierwotniaków, a substraty tego systemu określają zakres pierwotniaczego gospodarza. Namnażanie się bakterii w różnorodnych pierwotniakach przyczynia się do ich rozsiewania oraz transmisji do antropogenicznych źródeł. Białka wydzielane za pomocą II systemu sekrecji determinują również zdolność L. pneumophila do zakażania mysich makrofagów alweolarnych i szpiku kostnego, ludzkich makrofagów linii U937 i THP-1 oraz komórek nabłonkowych pęcherzyków płucnych. Enzymy wydzielane za pomocą tego systemu, takie jak: proteazy, aminopeptydazy czy fosfolipazy umożliwiają pozyskanie substancji pokarmowych oraz powodują destrukcję tkanki płucnej myszy. W organizmie człowieka białka T2SS przyczyniają się do osłabienia wrodzonej odpowiedzi immunologicznej na zakażenie L. pneumophila przez hamowanie indukcji prozapalnych cytokin (IL-6, TNF-α, IL-1 oraz IL-8).
Collapse
|
4
|
Macošek J, Mas G, Hiller S. Redefining Molecular Chaperones as Chaotropes. Front Mol Biosci 2021; 8:683132. [PMID: 34195228 PMCID: PMC8237284 DOI: 10.3389/fmolb.2021.683132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 01/27/2023] Open
Abstract
Molecular chaperones are the key instruments of bacterial protein homeostasis. Chaperones not only facilitate folding of client proteins, but also transport them, prevent their aggregation, dissolve aggregates and resolve misfolded states. Despite this seemingly large variety, single chaperones can perform several of these functions even on multiple different clients, thus suggesting a single biophysical mechanism underlying. Numerous recently elucidated structures of bacterial chaperone–client complexes show that dynamic interactions between chaperones and their client proteins stabilize conformationally flexible non-native client states, which results in client protein denaturation. Based on these findings, we propose chaotropicity as a suitable biophysical concept to rationalize the generic activity of chaperones. We discuss the consequences of applying this concept in the context of ATP-dependent and -independent chaperones and their functional regulation.
Collapse
|
5
|
Bordes P, Genevaux P. Control of Toxin-Antitoxin Systems by Proteases in Mycobacterium Tuberculosis. Front Mol Biosci 2021; 8:691399. [PMID: 34079824 PMCID: PMC8165232 DOI: 10.3389/fmolb.2021.691399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements composed of a noxious toxin and a counteracting cognate antitoxin. Although they are widespread in bacterial chromosomes and in mobile genetic elements, their cellular functions and activation mechanisms remain largely unknown. It has been proposed that toxin activation or expression of the TA operon could rely on the degradation of generally less stable antitoxins by cellular proteases. The resulting active toxin would then target essential cellular processes and inhibit bacterial growth. Although interplay between proteases and TA systems has been observed, evidences for such activation cycle are very limited. Herein, we present an overview of the current knowledge on TA recognition by proteases with a main focus on the major human pathogen Mycobacterium tuberculosis, which harbours multiple TA systems (over 80), the essential AAA + stress proteases, ClpC1P1P2 and ClpXP1P2, and the Pup-proteasome system.
Collapse
Affiliation(s)
- Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
6
|
Genome-wide screens reveal Escherichia coli genes required for growth of T1-like phage LL5 and V5-like phage LL12. Sci Rep 2020; 10:8058. [PMID: 32415154 PMCID: PMC7229145 DOI: 10.1038/s41598-020-64981-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
The host factor requirements of phages and mechanisms of mutational phage insensitivity must be characterized for rational design of phage cocktails. To characterize host dependencies of two novel Escherichia coli phages, the T1-like siphophage LL5 and the V5-like myophage LL12, forward genetic screens were conducted against the Keio collection, a library of single non-essential gene deletions in E. coli str. BW25113. These screens and subsequent experiments identified genes required by phages LL5 and LL12. E. coli mutants deficient in heptose II and the phosphoryl substituent of heptose I of the inner core lipopolysaccharide (LPS) were unable to propagate phage LL5, as were mutants deficient in the outer membrane protein TolC. Mutants lacking glucose I of the LPS outer core failed to propagate LL12. Two additional genes encoding cytoplasmic chaperones, PpiB and SecB, were found to be required for efficient propagation of phage LL5, but not LL12. This screening approach may be useful for identifying host factors dependencies of phages, which would provide valuable information for their potential use as therapeutics and for phage engineering.
Collapse
|
7
|
Del Val C, Bondar AN. Diversity and sequence motifs of the bacterial SecA protein motor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183319. [PMID: 32335021 DOI: 10.1016/j.bbamem.2020.183319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/17/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022]
Abstract
SecA is an essential component of the Sec protein secretion pathway in bacteria. Secretory proteins targeted to the Sec pathway by their N-terminal signal peptide bind to SecA, which couples binding and hydrolysis of adenosine triphosphate with movement of the secretory protein across the membrane-embedded SecYEG protein translocon. The phylogenetic diversity of bacteria raises the important question as to whether the region of SecA where the pre-protein binds has conserved sequence features that might impact the reaction mechanism of SecA. To address this question we established a large data set of SecA protein sequences and implemented a protocol to cluster and analyze these sequences according to features of two of the SecA functional domains, the protein binding domain and the nucleotide-binding domain 1. We identify remarkable sequence diversity of the protein binding domain, but also conserved motifs with potential role in protein binding. The N-terminus of SecA has sequence motifs that could help anchor SecA to the membrane. The overall sequence length and net estimated charge of SecA sequences depend on the organism.
Collapse
Affiliation(s)
- Coral Del Val
- University of Granada, Departmrent of Computer Science and Artificial Intelligence, E-18071 Granada, Spain; University of Granada, Andalusian Research Institute in Data Science and Computational Intelligence, E-18071 Granada, Spain.
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, D-14195 Berlin, Germany.
| |
Collapse
|
8
|
De Geyter J, Portaliou AG, Srinivasu B, Krishnamurthy S, Economou A, Karamanou S. Trigger factor is a bona fide secretory pathway chaperone that interacts with SecB and the translocase. EMBO Rep 2020; 21:e49054. [PMID: 32307852 DOI: 10.15252/embr.201949054] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Bacterial secretory preproteins are translocated across the inner membrane post-translationally by the SecYEG-SecA translocase. Mature domain features and signal peptides maintain preproteins in kinetically trapped, largely soluble, folding intermediates. Some aggregation-prone preproteins require chaperones, like trigger factor (TF) and SecB, for solubility and/or targeting. TF antagonizes the contribution of SecB to secretion by an unknown molecular mechanism. We reconstituted this interaction in vitro and studied targeting and secretion of the model preprotein pro-OmpA. TF and SecB display distinct, unsuspected roles in secretion. Tightly associating TF:pro-OmpA targets the translocase at SecA, but TF prevents pro-OmpA secretion. In solution, SecB binds TF:pro-OmpA with high affinity. At the membrane, when bound to the SecA C-tail, SecB increases TF and TF:pro-OmpA affinities for the translocase and allows pro-OmpA to resume translocation. Our data reveal that TF, a main cytoplasmic folding pathway chaperone, is also a bona fide post-translational secretory chaperone that directly interacts with both SecB and the translocase to mediate regulated protein secretion. Thus, TF links the cytoplasmic folding and secretion chaperone networks.
Collapse
Affiliation(s)
- Jozefien De Geyter
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Athina G Portaliou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Bindu Srinivasu
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Srinath Krishnamurthy
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Abstract
The past several decades have witnessed tremendous growth in the protein targeting, transport and translocation field. Major advances were made during this time period. Now the molecular details of the targeting factors, receptors and the membrane channels that were envisioned in Blobel's Signal Hypothesis in the 1970s have been revealed by powerful structural methods. It is evident that there is a myriad of cytosolic and membrane associated systems that accurately sort and target newly synthesized proteins to their correct membrane translocases for membrane insertion or protein translocation. Here we will describe the common principles for protein transport in prokaryotes and eukaryotes.
Collapse
|
10
|
Natarajan J, Singh N, Rapaport D. Assembly and targeting of secretins in the bacterial outer membrane. Int J Med Microbiol 2019; 309:151322. [PMID: 31262642 DOI: 10.1016/j.ijmm.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 11/20/2022] Open
Abstract
In Gram-negative bacteria, secretion of toxins ensure the survival of the bacterium. Such toxins are secreted by sophisticated multiprotein systems. The most conserved part in some of these secretion systems are components, called secretins, which form the outer membrane ring in these systems. Recent structural studies shed some light on the oligomeric organization of secretins. However, the mechanisms by which these proteins are targeted to the outer membrane and assemble there into ring structures are still not fully understood. This review discusses the various species-specific targeting and assembly pathways that are taken by secretins in order to form their functional oligomers.
Collapse
Affiliation(s)
- Janani Natarajan
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| | - Nidhi Singh
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str.6, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|
11
|
van Winden VJC, Houben ENG, Braunstein M. Protein Export into and across the Atypical Diderm Cell Envelope of Mycobacteria. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0043-2018. [PMID: 31400094 PMCID: PMC10957183 DOI: 10.1128/microbiolspec.gpp3-0043-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mycobacteria, including the infamous pathogen Mycobacterium tuberculosis, are high-GC Gram-positive bacteria with a distinctive cell envelope. Although there is a typical inner membrane, the mycobacterial cell envelope is unusual in having its peptidoglycan layer connected to a polymer of arabinogalactan, which in turn is covalently attached to long-chain mycolic acids that help form a highly impermeable mycobacterial outer membrane. This complex double-membrane, or diderm, cell envelope imparts mycobacteria with unique requirements for protein export into and across the cell envelope for secretion into the extracellular environment. In this article, we review the four protein export pathways known to exist in mycobacteria: two conserved systems that exist in all types of bacteria (the Sec and Tat pathways) and two specialized systems that exist in mycobacteria, corynebacteria, and a subset of low-GC Gram-positive bacteria (the SecA2 and type VII secretion pathways). We describe the progress made over the past 15 years in understanding each of these mycobacterial export pathways, and we highlight the need for research to understand the specific steps of protein export across the mycobacterial outer membrane.
Collapse
Affiliation(s)
- Vincent J C van Winden
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines, and Systems, Vrije Universiteit, Amsterdam, The Netherlands
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
12
|
Komarudin AG, Driessen AJM. SecA-Mediated Protein Translocation through the SecYEG Channel. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0028-2019. [PMID: 31373268 PMCID: PMC10957188 DOI: 10.1128/microbiolspec.psib-0028-2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
In bacteria, the Sec translocase mediates the translocation of proteins into and across the cytoplasmic membrane. It consists of a protein conducting channel SecYEG, the ATP-dependent motor SecA, and the accessory SecDF complex. Here we discuss the function and structure of the Sec translocase.
Collapse
Affiliation(s)
- Amalina Ghaisani Komarudin
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
13
|
Li J, Han Q, Zhang T, Du J, Sun Q, Pang Y. Expression of soluble native protein in Escherichia coli using a cold-shock SUMO tag-fused expression vector. ACTA ACUST UNITED AC 2018; 19:e00261. [PMID: 30009138 PMCID: PMC6042314 DOI: 10.1016/j.btre.2018.e00261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 02/01/2023]
Abstract
Construction of a simple and efficient cloning vector namely, pWMU-19T based on seamless cloning method. The novel pCold-SUMOa vector is suitable for expression of soluble native heterologous proteins. The pCold-SUMOa expression vector can dramatically enhance the stability and activity of target proteins.
At present, approximately 30% of eukaryotic proteins can be expressed in a soluble form in Escherichia coli. In this study, a pCold-SUMOa plasmid was constructed in order to express heterologous proteins fused with SUMO by a cold-shock expression vector. The human cysteine desulfurase NFS1 and a chimeric cysteine desulfurase namely, EH-IscS were successfully expressed in E. coli. The proteins were particularly difficult to be produced functionally, due to their readily sequestered nature. The recombinant cysteine desulfurases that were generated by pCold-SUMOa exhibited higher activity, solubility and stability compared with the well-known plasmid pCold I. In contrast to the pCold TF plasmid, the SUMO tag conferred no biological activity with regard to the conformation of the cysteine desulfurases. Furthermore, the SUMO protease 1 can efficiently recognize the tertiary structure of SUMO and cleave it. The data indicate that the pCold-SUMOa vector is a promising tool for native eukaryotic protein production.
Collapse
Affiliation(s)
- Jianghui Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Enzyme Engineering and Medical Diagnosis, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qinxia Han
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Enzyme Engineering and Medical Diagnosis, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tao Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Enzyme Engineering and Medical Diagnosis, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Du
- People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Qianqian Sun
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Enzyme Engineering and Medical Diagnosis, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yilin Pang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Enzyme Engineering and Medical Diagnosis, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
14
|
Kleiner-Grote GRM, Risse JM, Friehs K. Secretion of recombinant proteins from E. coli. Eng Life Sci 2018; 18:532-550. [PMID: 32624934 DOI: 10.1002/elsc.201700200] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
The microorganism Escherichia coli is commonly used for recombinant protein production. Despite several advantageous characteristics like fast growth and high protein yields, its inability to easily secrete recombinant proteins into the extracellular medium remains a drawback for industrial production processes. To overcome this limitation, a multitude of approaches to enhance the extracellular yield and the secretion efficiency of recombinant proteins have been developed in recent years. Here, a comprehensive overview of secretion mechanisms for recombinant proteins from E. coli is given and divided into three main sections. First, the structure of the E. coli cell envelope and the known natural secretion systems are described. Second, the use and optimization of different one- or two-step secretion systems for recombinant protein production, as well as further permeabilization methods are discussed. Finally, the often-overlooked role of cell lysis in secretion studies and its analysis are addressed. So far, effective approaches for increasing the extracellular protein concentration to more than 10 g/L and almost 100% secretion efficiency exist, however, the large range of optimization methods and their combinations suggests that the potential for secretory protein production from E. coli has not yet been fully realized.
Collapse
Affiliation(s)
| | - Joe M Risse
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| | - Karl Friehs
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| |
Collapse
|
15
|
Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb Cell Fact 2018; 17:52. [PMID: 29598818 PMCID: PMC5875014 DOI: 10.1186/s12934-018-0901-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
The secretion of biotechnologically or pharmaceutically relevant recombinant proteins into the culture supernatant of a bacterial expression host greatly facilitates their downstream processing and significantly reduces the production costs. The first step during the secretion of a desired target protein into the growth medium is its transport across the cytoplasmic membrane. In bacteria, two major export pathways, the general secretion or Sec pathway and the twin-arginine translocation or Tat pathway, exist for the transport of proteins across the plasma membrane. The routing into one of these alternative protein export systems requires the fusion of a Sec- or Tat-specific signal peptide to the amino-terminal end of the desired target protein. Since signal peptides, besides being required for the targeting to and membrane translocation by the respective protein translocases, also have additional influences on the biosynthesis, the folding kinetics, and the stability of the respective target proteins, it is not possible so far to predict in advance which signal peptide will perform best in the context of a given target protein and a given bacterial expression host. As outlined in this review, the most promising way to find the optimal signal peptide for a desired protein is to screen the largest possible diversity of signal peptides, either generated by signal peptide variation using large signal peptide libraries or, alternatively, by optimization of a given signal peptide using site-directed or random mutagenesis strategies.
Collapse
Affiliation(s)
- Roland Freudl
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
16
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
17
|
Freudl R. Beyond amino acids: Use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteins. J Biotechnol 2017; 258:101-109. [DOI: 10.1016/j.jbiotec.2017.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022]
|
18
|
Jiang Y, Kalodimos CG. NMR Studies of Large Proteins. J Mol Biol 2017; 429:2667-2676. [PMID: 28728982 DOI: 10.1016/j.jmb.2017.07.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023]
Abstract
Recent breakthroughs in isotope-labeling and pulse sequence techniques have enabled the NMR characterization of large protein systems with molecular masses of hundreds of kilodaltons. NMR studies of a great variety of large proteins have provided unique insights into the binding, dynamic, and allosteric mechanisms. Here we present a brief summary of these developments by highlighting few cases that exemplify the uniqueness of NMR in providing atomic resolution information into key dynamic processes and structures of protein complexes with high degree of flexibility.
Collapse
Affiliation(s)
- Yajun Jiang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Charalampos G Kalodimos
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
19
|
Rosenzweig R, Sekhar A, Nagesh J, Kay LE. Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone-substrate ensembles. eLife 2017; 6. [PMID: 28708484 PMCID: PMC5511010 DOI: 10.7554/elife.28030] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/28/2017] [Indexed: 01/05/2023] Open
Abstract
The Hsp70 chaperone system is integrated into a myriad of biochemical processes that are critical for cellular proteostasis. Although detailed pictures of Hsp70 bound with peptides have emerged, correspondingly detailed structural information on complexes with folding-competent substrates remains lacking. Here we report a methyl-TROSY based solution NMR study showing that the Escherichia coli version of Hsp70, DnaK, binds to as many as four distinct sites on a small 53-residue client protein, hTRF1. A fraction of hTRF1 chains are also bound to two DnaK molecules simultaneously, resulting in a mixture of DnaK-substrate sub-ensembles that are structurally heterogeneous. The interactions of Hsp70 with a client protein at different sites results in a fuzzy chaperone-substrate ensemble and suggests a mechanism for Hsp70 function whereby the structural heterogeneity of released substrate molecules enables them to circumvent kinetic traps in their conformational free energy landscape and fold efficiently to the native state. DOI:http://dx.doi.org/10.7554/eLife.28030.001
Collapse
Affiliation(s)
- Rina Rosenzweig
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ashok Sekhar
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada
| | - Jayashree Nagesh
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada.,Hospital for Sick Children, Program in Molecular Structure and Function, Toronto, Canada
| |
Collapse
|
20
|
Huang C, Kalodimos CG. Structures of Large Protein Complexes Determined by Nuclear Magnetic Resonance Spectroscopy. Annu Rev Biophys 2017; 46:317-336. [DOI: 10.1146/annurev-biophys-070816-033701] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chengdong Huang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Charalampos G. Kalodimos
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
21
|
Nishiyama KI, Tokuda H. Novel translocation intermediate allows re-evaluation of roles of ATP, proton motive force and SecG at the late stage of preprotein translocation. Genes Cells 2016; 21:1353-1364. [PMID: 27813233 DOI: 10.1111/gtc.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/05/2016] [Indexed: 11/30/2022]
Abstract
Presecretory proteins such as pOmpA are translocated across the inner membrane of Escherichia coli by Sec translocase powered by ATP and proton motive force (PMF). Translocation activity has been determined by protease protection assaying in vitro. We identified a new translocation intermediate at a late stage, which was protected by proteinase K (PK), but became PK sensitive upon urea extraction. At a late stage of pOmpA translocation driven by PMF in the presence of a nonhydrolyzable ATP analogue, the PK-protected materials arose, but were pulled back upon urea extraction, indicating that completion of translocation requires ATP hydrolysis. When inverted membrane vesicles prepared from secG-null strain (ΔSecG IMV) were used in the absence of PMF, the translocation intermediate was accumulated. When the ATP concentration was low in the absence of PMF, the translocation intermediate was also accumulated. Imposition of PMF in the presence of a low ATP concentration caused recovery of pOmpA translocation and resistance to urea extraction for SecG+ IMV, but not for ΔSecG IMV. Thus, analysis of the late translocation intermediate showed that two of three constituents, physiological concentration of ATP, PMF and SecG, are required for the catalytic cycle of preprotein translocation, that is, completion and subsequent initiation of translocation.
Collapse
Affiliation(s)
- Ken-Ichi Nishiyama
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan.,Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Hajime Tokuda
- Faculty of Nutritional Sciences, The University of Morioka, Takizawa, 020-0694, Japan
| |
Collapse
|
22
|
Burmann BM, Holdbrook DA, Callon M, Bond PJ, Hiller S. Revisiting the interaction between the chaperone Skp and lipopolysaccharide. Biophys J 2016; 108:1516-1526. [PMID: 25809264 DOI: 10.1016/j.bpj.2015.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/22/2014] [Accepted: 01/28/2015] [Indexed: 10/23/2022] Open
Abstract
The bacterial outer membrane comprises two main classes of components, lipids and membrane proteins. These nonsoluble compounds are conveyed across the aqueous periplasm along specific molecular transport routes: the lipid lipopolysaccharide (LPS) is shuttled by the Lpt system, whereas outer membrane proteins (Omps) are transported by chaperones, including the periplasmic Skp. In this study, we revisit the specificity of the chaperone-lipid interaction of Skp and LPS. High-resolution NMR spectroscopy measurements indicate that LPS interacts with Skp nonspecifically, accompanied by destabilization of the Skp trimer and similar to denaturation by the nonnatural detergent lauryldimethylamine-N-oxide (LDAO). Bioinformatic analysis of amino acid conservation, structural analysis of LPS-binding proteins, and MD simulations further confirm the absence of a specific LPS binding site on Skp, making a biological relevance of the interaction unlikely. Instead, our analysis reveals a highly conserved salt-bridge network, which likely has a role for Skp function.
Collapse
Affiliation(s)
| | | | | | - Peter J Bond
- Bioinformatics Institute (A(∗)STAR), Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | | |
Collapse
|
23
|
Yan S, Wu G. Evolutionary evidence on suitability of SecD as a target for development of antibacterial agents against Staphylococcus aureus. Ecol Evol 2016; 6:1393-410. [PMID: 27087922 PMCID: PMC4775529 DOI: 10.1002/ece3.1951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus causes many infections and its drug resistance is a worrying challenge for medical care. The SecD subunit of Sec secretion system in methicillin‐resistant S. aureus is an attractive target because SecD dysfunction leads to the death of bacteria and SecD as a target is more efficient than SecA and SecF. Evolution could have made SecD to become insensitive to antibacterial agents although the drugs directly against SecD have yet to develop. So far, no detailed information on SecD evolution has been available, thus 2686 SecD sequences with full taxonomic information from kingdom to species were analyzed. First, the variance of pairwise p‐distance was evaluated for each taxonomic group. Second, the variance was further partitioned into intergroup and intragroup variances for quantification of horizontal and vertical gene transfer. Third, phylogenetic tree was built to trace the evolutionary pathway. The results showed that overall evolution of SecDs appears to have undergone horizontal and vertical gene transfer. Only 0.5% horizontal transfers were found between any two SecDs in S. aureus, 6.8% and 8.8% horizontal transfers were found between any two Staphylococcus SecDs from different and the same species, and only one SecD from S. aureus was located far away from its sister cluster. Thus, statistic and evolutionary analyses demonstrate that the SecDs from staphylococcus species have a small chance of mutating, and provide taxonomic evidence to use the SecD as a potential target for new generation of antibacterial agents against S. aureus.
Collapse
Affiliation(s)
- Shaomin Yan
- Guangxi Bioscience and Biotechnology Research Center Guangxi Academy of Sciences 98 Daling Road Nanning Guangxi 530007 China
| | - Guang Wu
- Guangxi Bioscience and Biotechnology Research Center Guangxi Academy of Sciences 98 Daling Road Nanning Guangxi 530007 China
| |
Collapse
|
24
|
Kubori T, Nagai H. The Type IVB secretion system: an enigmatic chimera. Curr Opin Microbiol 2016; 29:22-9. [DOI: 10.1016/j.mib.2015.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
|
25
|
Milenkovic S, Bondar AN. Mechanism of conformational coupling in SecA: Key role of hydrogen-bonding networks and water interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:374-85. [PMID: 26607006 DOI: 10.1016/j.bbamem.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 11/16/2022]
Abstract
SecA uses the energy yielded by the binding and hydrolysis of adenosine triphosphate (ATP) to push secretory pre-proteins across the plasma membrane in bacteria. Hydrolysis of ATP occurs at the nucleotide-binding site, which contains the conserved carboxylate groups of the DEAD-box helicases. Although crystal structures provide valuable snapshots of SecA along its reaction cycle, the mechanism that ensures conformational coupling between the nucleotide-binding site and the other domains of SecA remains unclear. The observation that SecA contains numerous hydrogen-bonding groups raises important questions about the role of hydrogen-bonding networks and hydrogen-bond dynamics in long-distance conformational couplings. To address these questions, we explored the molecular dynamics of SecA from three different organisms, with and without bound nucleotide, in water. By computing two-dimensional hydrogen-bonding maps we identify networks of hydrogen bonds that connect the nucleotide-binding site to remote regions of the protein, and sites in the protein that respond to specific perturbations. We find that the nucleotide-binding site of ADP-bound SecA has a preferred geometry whereby the first two carboxylates of the DEAD motif bridge via hydrogen-bonding water. Simulations of a mutant with perturbed ATP hydrolysis highlight the water-bridged geometry as a key structural element of the reaction path.
Collapse
Affiliation(s)
- Stefan Milenkovic
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
26
|
Ulrich T, Oberhettinger P, Autenrieth IB, Rapaport D. Yeast Mitochondria as a Model System to Study the Biogenesis of Bacterial β-Barrel Proteins. Methods Mol Biol 2015; 1329:17-31. [PMID: 26427673 DOI: 10.1007/978-1-4939-2871-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Beta-barrel proteins are found in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The evolutionary conservation in the biogenesis of these proteins allows mitochondria to assemble bacterial β-barrel proteins in their functional form. In this chapter, we describe exemplarily how the capacity of yeast mitochondria to process the trimeric autotransporter YadA can be used to study the role of bacterial periplasmic chaperones in this process.
Collapse
Affiliation(s)
- Thomas Ulrich
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, Tübingen, 72076, Germany
| | - Philipp Oberhettinger
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, 72076, Germany
| | - Ingo B Autenrieth
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, 72076, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, Tübingen, 72076, Germany.
| |
Collapse
|
27
|
In Vitro Interaction of the Housekeeping SecA1 with the Accessory SecA2 Protein of Mycobacterium tuberculosis. PLoS One 2015; 10:e0128788. [PMID: 26047312 PMCID: PMC4457860 DOI: 10.1371/journal.pone.0128788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
The majority of proteins that are secreted across the bacterial cytoplasmic membrane leave the cell via the Sec pathway, which in its minimal form consists of the dimeric ATP-driven motor protein SecA that associates with the protein-conducting membrane pore SecYEG. Some Gram-positive bacteria contain two homologues of SecA, termed SecA1 and SecA2. SecA1 is the essential housekeeping protein, whereas SecA2 is not essential but is involved in the translocation of a subset of proteins, including various virulence factors. Some SecA2 containing bacteria also harbor a homologous SecY2 protein that may form a separate translocase. Interestingly, mycobacteria contain only one SecY protein and thus both SecA1 and SecA2 are required to interact with SecYEG, either individually or together as a heterodimer. In order to address whether SecA1 and SecA2 cooperate during secretion of SecA2 dependent proteins, we examined the oligomeric state of SecA1 and SecA2 of Mycobacterium tuberculosis and their interactions with SecA2 and the cognate SecA1, respectively. We conclude that both SecA1 and SecA2 individually form homodimers in solution but when both proteins are present simultaneously, they form dissociable heterodimers.
Collapse
|
28
|
Su L, Yu L, Xu C, Wu J. Extracellular expression of Thermobifida fusca cutinase with pelB signal peptide depends on more than type II secretion pathway in Escherichia coli. J Biotechnol 2015; 204:47-52. [PMID: 25863154 DOI: 10.1016/j.jbiotec.2015.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
Our previous studies demonstrated that Thermobifida fusca cutinase is released into culture medium when expressed without a signal peptide in Escherichia coli, and this extracellular expression results from an enhanced membrane permeability caused by cutinase's phospholipid hydrolase activity. The present study investigated whether this phenomenon would also occur during the expression of cutinase fused to pelB signal peptide (pelB-cutinase). Secretion of fusion proteins of this type is generally believed to occur via type II secretion pathway. The results showed that when pelB-cutinase was expressed in a secB knockout strain, which has a defective type II secretion pathway, there was still a large amount of cutinase in the culture medium. Additional experiments confirmed that the periplasmic and cytoplasmic fractions of the expressing cells had hydrolytic activity toward phosphatidyl ethanolamine, and the recombinant cells showed correspondingly improved membrane permeability. All these phenomena were also observed in the parent E. coli strain. Moreover, the secretion efficiency of the inactive cutinase mutant was found to be significantly lower than that of pelB-cutinase in the parent E. coli. Based on these results, the phospholipid hydrolase activity of pelB-cutinase must play a larger role in its extracellular production than does type II secretion pathway.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lin'gang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Chenhua Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
29
|
Yan S, Wu G. Large-scale evolutionary analyses on SecB subunits of bacterial sec system. PLoS One 2015; 10:e0120417. [PMID: 25775430 PMCID: PMC4361572 DOI: 10.1371/journal.pone.0120417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
Protein secretion systems are extremely important in bacteria because they are involved in many fundamental cellular processes. Of the various secretion systems, the Sec system is composed of seven different subunits in bacteria, and subunit SecB brings secreted preproteins to subunit SecA, which with SecYEG and SecDF forms a complex for the translocation of secreted preproteins through the inner membrane. Because of the wide existence of Sec system across bacteria, eukaryota, and archaea, each subunit of the Sec system has a complicated evolutionary relationship. Until very recently, 5,162 SecB sequences have been documented in UniProtKB, however no phylogenetic study has been conducted on a large sampling of SecBs from bacterial Sec secretion system, and no statistical study has been conducted on such size of SecBs in order to exhaustively investigate their variances of pairwise p-distance along taxonomic lineage from kingdom to phylum, to class, to order, to family, to genus and to organism. To fill in these knowledge gaps, 3,813 bacterial SecB sequences with full taxonomic lineage from kingdom to organism covering 4 phyla, 11 classes, 41 orders, 82 families, 269 genera, and 3,744 organisms were studied. Phylogenetic analysis revealed how the SecBs evolved without compromising their function with examples of 3-D structure comparison of two SecBs from Proteobacteria, and possible factors that affected the SecB evolution were considered. The average pairwise p-distances showed that the variance varied greatly in each taxonomic group. Finally, the variance was further partitioned into inter- and intra-clan variances, which could correspond to vertical and horizontal gene transfers, with relevance for Achromobacter, Brevundimonas, Ochrobactrum, and Pseudoxanthomonas.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Guang Wu
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
- * E-mail:
| |
Collapse
|
30
|
Lewis NE, Brady LJ. Breaking the bacterial protein targeting and translocation model: oral organisms as a case in point. Mol Oral Microbiol 2014; 30:186-97. [PMID: 25400073 DOI: 10.1111/omi.12088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 12/19/2022]
Abstract
Insights into the membrane biogenesis of oral and throat bacteria have highlighted key differences in protein localization by the general secretion pathway compared with the well-studied Escherichia coli model system. These intriguing novelties have advanced our understanding of both how these microorganisms have adapted to survive and cause disease in the oral cavity, and the field of protein translocation as a whole. This review focuses on findings that highlight where oral bacteria differ from the E. coli paradigm, why these differences are biologically important, and what questions remain about the differences in pathway function. The majority of insight into protein translocation in microbes of the oral cavity has come from streptococcal species, which will be the main topic of this review. However, other bacteria will be discussed when relevant. An overview of the E. coli model of protein targeting and translocation is provided for comparison.
Collapse
Affiliation(s)
- N E Lewis
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
31
|
Abstract
The vast majority of outer membrane (OM) proteins in Gram-negative bacteria belongs to the class of membrane-embedded β-barrel proteins. Besides Gram-negative bacteria, the presence of β-barrel proteins is restricted to the OM of the eukaryotic organelles mitochondria and chloroplasts that were derived from prokaryotic ancestors. The assembly of these proteins into the corresponding OM is in each case facilitated by a dedicated protein complex that contains a highly conserved central β-barrel protein termed BamA/YaeT/Omp85 in Gram-negative bacteria and Tob55/Sam50 in mitochondria. However, little is known about the exact mechanism by which these complexes mediate the integration of β-barrel precursors into the lipid bilayer. Interestingly, previous studies showed that during evolution, these complexes retained the ability to functionally assemble β-barrel proteins from different origins. In this review we summarize the current knowledge on the biogenesis pathway of β-barrel proteins in Gram-negative bacteria, mitochondria and chloroplasts and focus on the commonalities and divergences that evolved between the different β-barrel assembly machineries.
Collapse
Affiliation(s)
- Thomas Ulrich
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
32
|
Sala A, Bordes P, Genevaux P. Multitasking SecB chaperones in bacteria. Front Microbiol 2014; 5:666. [PMID: 25538690 PMCID: PMC4257090 DOI: 10.3389/fmicb.2014.00666] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/17/2014] [Indexed: 12/17/2022] Open
Abstract
Protein export in bacteria is facilitated by the canonical SecB chaperone, which binds to unfolded precursor proteins, maintains them in a translocation competent state and specifically cooperates with the translocase motor SecA to ensure their proper targeting to the Sec translocon at the cytoplasmic membrane. Besides its key contribution to the Sec pathway, SecB chaperone tasking is critical for the secretion of the Sec-independent heme-binding protein HasA and actively contributes to the cellular network of chaperones that control general proteostasis in Escherichia coli, as judged by the significant interplay found between SecB and the trigger factor, DnaK and GroEL chaperones. Although SecB is mainly a proteobacterial chaperone associated with the presence of an outer membrane and outer membrane proteins, secB-like genes are also found in Gram-positive bacteria as well as in certain phages and plasmids, thus suggesting alternative functions. In addition, a SecB-like protein is also present in the major human pathogen Mycobacterium tuberculosis where it specifically controls a stress-responsive toxin–antitoxin system. This review focuses on such very diverse chaperone functions of SecB, both in E. coli and in other unrelated bacteria.
Collapse
Affiliation(s)
- Ambre Sala
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
33
|
Gouridis G, Karamanou S, Sardis MF, Schärer MA, Capitani G, Economou A. Quaternary dynamics of the SecA motor drive translocase catalysis. Mol Cell 2014; 52:655-66. [PMID: 24332176 DOI: 10.1016/j.molcel.2013.10.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/15/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022]
Abstract
Most secretory preproteins exit bacterial cells through the protein translocase, comprising the SecYEG channel and the dimeric peripheral ATPase motor SecA. Energetic coupling to work remains elusive. We now demonstrate that translocation is driven by unusually dynamic quaternary changes in SecA. The dimer occupies several successive states with distinct protomer arrangements. SecA docks on SecYEG as a dimer and becomes functionally asymmetric. Docking occurs via only one protomer. The second protomer allosterically regulates downstream steps. Binding of one preprotein signal peptide to the SecYEG-docked SecA protomer elongates the SecA dimer and triggers the translocase holoenzyme to obtain a lower activation energy conformation. ATP hydrolysis monomerizes the triggered SecA dimer, causing mature chain trapping and processive translocation. This is a unique example of one protein exploiting quaternary dynamics to become a substrate receptor, a "loading clamp," and a "processive motor." This mechanism has widespread implications on protein translocases, chaperones, and motors.
Collapse
Affiliation(s)
- Giorgos Gouridis
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Rega Institute, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Marios Frantzeskos Sardis
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Department of Biology, University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece
| | | | - Guido Capitani
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology (FORTH), University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Department of Biology, University of Crete, P.O. Box 1385, Iraklio, Crete 71110, Greece; Rega Institute, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
34
|
|
35
|
Conformation and dynamics of the periplasmic membrane-protein–chaperone complexes OmpX–Skp and tOmpA–Skp. Nat Struct Mol Biol 2013; 20:1265-72. [DOI: 10.1038/nsmb.2677] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/15/2013] [Indexed: 01/01/2023]
|
36
|
Abstract
The Sec pathway for export of proteins across the cytoplasmic membrane to the bacterial periplasm and outer membrane was the first secretion pathway to be discovered in bacteria. A combination of bacterial genetics, development of an in vitro membrane vesicle system and the concurrent elaboration of the signal hypothesis from studies on eukaryotes led to the identification and characterization of two pathways leading to protein export through the SecYEG cytoplasmic membrane translocon. The Sec pathway is also required for assembly of proteins into the cytoplasmic membrane. Since the membrane translocon for Sec pathways is conserved across the three domains of life, the history of research progress in eukaryotes and bacteria was facilitated by the close interaction between those studying both classes of organisms.
Collapse
Affiliation(s)
- Jon Beckwith
- Department of Microbiology and Immunobiology, Harvard Medical School, HIM Building, Room 1047,77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Freudl R. Leaving home ain't easy: protein export systems in Gram-positive bacteria. Res Microbiol 2013; 164:664-74. [PMID: 23541477 DOI: 10.1016/j.resmic.2013.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
Transport of proteins into or across biological membranes is catalyzed by membrane-bound transport machineries. In Gram-positive bacteria, the vast majority of proteins are exported out of the cytosol by the conserved general secretion (Sec) system or, alternatively, by the twin-arginine translocation (Tat) system, that closely resemble their well-studied counterparts in Gram-negative bacteria. Besides these common major export routes, additional unique protein export systems (such as accessory Sec2 systems and/or type VII/WXG100 secretion systems) exist in some Gram-positive bacteria that are specifically involved in the secretion of limited subsets of proteins.
Collapse
Affiliation(s)
- Roland Freudl
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
38
|
Sala A, Calderon V, Bordes P, Genevaux P. TAC from Mycobacterium tuberculosis: a paradigm for stress-responsive toxin-antitoxin systems controlled by SecB-like chaperones. Cell Stress Chaperones 2013; 18:129-35. [PMID: 23264229 PMCID: PMC3581621 DOI: 10.1007/s12192-012-0396-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 01/27/2023] Open
Abstract
Bacterial type II toxin-antitoxins (TAs) are two-component systems that modulate growth in response to specific stress conditions, thus promoting adaptation and persistence. The major human pathogen Mycobacterium tuberculosis potentially encodes 75 TAs and it has been proposed that persistence induced by active toxins might be relevant for its pathogenesis. In this work, we focus on the newly discovered toxin-antitoxin-chaperone (TAC) system of M. tuberculosis, an atypical stress-responsive TA system tightly controlled by a molecular chaperone that shows similarity to the canonical SecB chaperone involved in Sec-dependent protein export in Gram-negative bacteria. We performed a large-scale genome screening to reconstruct the evolutionary history of TAC systems and found that TAC is not restricted to mycobacteria and seems to have disseminated in diverse taxonomic groups by horizontal gene transfer. Our results suggest that TAC chaperones are evolutionary related to the solitary chaperone SecB and have diverged to become specialized toward their cognate antitoxins.
Collapse
Affiliation(s)
- Ambre Sala
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
| | - Virginie Calderon
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
- Laboratoire de Microbiologie et Génétique Moléculaires, IBCG, CNRS, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 09, France
| |
Collapse
|
39
|
Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 2013; 449:25-37. [PMID: 23216251 DOI: 10.1042/bj20121227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than one-third of cellular proteomes traffic into and across membranes. Bacteria have invented several sophisticated secretion systems that guide various proteins to extracytoplasmic locations and in some cases inject them directly into hosts. Of these, the Sec system is ubiquitous, essential and by far the best understood. Secretory polypeptides are sorted from cytoplasmic ones initially due to characteristic signal peptides. Then they are targeted to the plasma membrane by chaperones/pilots. The translocase, a dynamic nanomachine, lies at the centre of this process and acts as a protein-conducting channel with a unique property; allowing both forward transfer of secretory proteins but also lateral release into the lipid bilayer with high fidelity and efficiency. This process, tightly orchestrated at the expense of energy, ensures fundamental cell processes such as membrane biogenesis, cell division, motility, nutrient uptake and environmental sensing. In the present review, we examine this fascinating process, summarizing current knowledge on the structure, function and mechanics of the Sec pathway.
Collapse
|
40
|
Zhou Q, Sun S, Tai P, Sui SF. Structural characterization of the complex of SecB and metallothionein-labeled proOmpA by cryo-electron microscopy. PLoS One 2012; 7:e47015. [PMID: 23056562 PMCID: PMC3464278 DOI: 10.1371/journal.pone.0047015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
ProOmpA is a preprotein that is translocated across the plasma membrane by the general secretory pathway in Escherichia coli. The molecular chaperon SecB in Sec pathway can recognize and bind proOmpA for its translocation. However, the structure of the SecB/proOmpA complex remains unknown. Here, we constructed an uncleavable proOmpA fused with metallothionein at its C-terminus and labeled it with metals in vitro for the study of cryo-electron microscopy. Using single particle cryo-electron microscopy, we reconstructed 3D structure of the stable SecB/proOmpA complex. The structure shows that the major portion of preprotein locates on one side of SecB tetramer, resulting in an asymmetric binding pattern. This work also provides a possible approach to the structure determination of small protein complexes by cryo-electron microscopy.
Collapse
Affiliation(s)
- Qiang Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Phang Tai
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Sen-Fang Sui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
41
|
Abstract
The conserved general secretion (Sec) pathway carries out most protein export in bacteria and is powered by the essential ATPase SecA. Interestingly, mycobacteria and some Gram-positive bacteria possess two SecA proteins: SecA1 and SecA2. In these species, SecA1 is responsible for exporting most proteins, whereas SecA2 exports only a subset of substrates and is implicated in virulence. However, despite the impressive body of knowledge about the canonical SecA1, less is known concerning SecA2 function. Here, we review our current understanding of the different types of SecA2 systems and outline future directions for their study.
Collapse
Affiliation(s)
- Meghan E Feltcher
- Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-27290, USA
| | | |
Collapse
|
42
|
Wu W, Huang J, Duan B, Traficante DC, Hong H, Risech M, Lory S, Priebe GP. Th17-stimulating protein vaccines confer protection against Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 2012; 186:420-7. [PMID: 22723292 DOI: 10.1164/rccm.201202-0182oc] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RATIONALE New vaccine approaches are needed for Pseudomonas aeruginosa, which continues to be a major cause of serious pulmonary infections. Although Th17 cells can protect against gram-negative pathogens at mucosal surfaces, including the lung, the bacterial proteins recognized by Th17 cells are largely unknown and could be potential new vaccine candidates. OBJECTIVES We describe a strategy to identify Th17-stimulating protein antigens of Pseudomonas aeruginosa to assess their efficacy as vaccines against pneumonia. METHODS Using a library of in vitro transcribed and translated P. aeruginosa proteins, we screened for Th17-stimulating antigens by coculturing the library proteins with splenocytes from mice immunized with a live-attenuated P. aeruginosa vaccine that is protective via Th17-based immunity. We measured antibody and Th17 responses after intranasal immunization of mice with the purified proteins mixed with the Th17 adjuvant curdlan, and we tested the protective efficacy of vaccination in a murine model of acute pneumonia. MEASUREMENTS AND MAIN RESULTS The proteins PopB, FpvA, FptA, OprL, and PilQ elicited strong IL-17 secretion in the screen, and purified versions of PopB, FpvA, and OprL stimulated high IL-17 production from immune splenocytes. Immunization with PopB, which is a highly conserved component of the type III secretion system and a known virulence factor, elicited Th17 responses and also enhanced clearance of P. aeruginosa from the lung and spleen after challenge. PopB-immunized mice were protected from lethal pneumonia in an antibody-independent, IL-17-dependent manner. CONCLUSIONS Screening for Th17-stimulating protein antigens identified PopB as a novel and promising vaccine candidate for P. aeruginosa.
Collapse
Affiliation(s)
- Weihui Wu
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tripp J, Hahn A, Koenig P, Flinner N, Bublak D, Brouwer EM, Ertel F, Mirus O, Sinning I, Tews I, Schleiff E. Structure and conservation of the periplasmic targeting factor Tic22 protein from plants and cyanobacteria. J Biol Chem 2012; 287:24164-73. [PMID: 22593581 DOI: 10.1074/jbc.m112.341644] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitochondria and chloroplasts are of endosymbiotic origin. Their integration into cells entailed the development of protein translocons, partially by recycling bacterial proteins. We demonstrate the evolutionary conservation of the translocon component Tic22 between cyanobacteria and chloroplasts. Tic22 in Anabaena sp. PCC 7120 is essential. The protein is localized in the thylakoids and in the periplasm and can be functionally replaced by a plant orthologue. Tic22 physically interacts with the outer envelope biogenesis factor Omp85 in vitro and in vivo, the latter exemplified by immunoprecipitation after chemical cross-linking. The physical interaction together with the phenotype of a tic22 mutant comparable with the one of the omp85 mutant indicates a concerted function of both proteins. The three-dimensional structure allows the definition of conserved hydrophobic pockets comparable with those of ClpS or BamB. The results presented suggest a function of Tic22 in outer membrane biogenesis.
Collapse
Affiliation(s)
- Joanna Tripp
- Department of Biosciences, Goethe University, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rigel NW, Silhavy TJ. Making a beta-barrel: assembly of outer membrane proteins in Gram-negative bacteria. Curr Opin Microbiol 2012; 15:189-93. [PMID: 22221898 DOI: 10.1016/j.mib.2011.12.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/06/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria is an essential organelle that serves as a selective permeability barrier by keeping toxic compounds out of the cell while allowing vital nutrients in. How the OM and its constituent lipid and protein components are assembled remains an area of active research. In this review, we describe our current understanding of how outer membrane proteins (OMPs) are delivered to and then assembled in the OM of the model Gram-negative organism Escherichia coli.
Collapse
Affiliation(s)
- Nathan W Rigel
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | | |
Collapse
|
45
|
Functional implementation of the posttranslational SecB-SecA protein-targeting pathway in Bacillus subtilis. Appl Environ Microbiol 2011; 78:651-9. [PMID: 22113913 DOI: 10.1128/aem.07209-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis and its close relatives are widely used in industry for the Sec-dependent secretory production of proteins. Like other Gram-positive bacteria, B. subtilis does not possess SecB, a dedicated targeting chaperone that posttranslationally delivers exported proteins to the SecA component of the translocase. In the present study, we have implemented a functional SecB-dependent protein-targeting pathway into B. subtilis by coexpressing SecB from Escherichia coli together with a SecA hybrid protein in which the carboxyl-terminal 32 amino acids of the B. subtilis SecA were replaced by the corresponding part of SecA from E. coli. In vitro pulldown experiments showed that, in contrast to B. subtilis SecA, the hybrid SecA protein gained the ability to efficiently bind to E. coli SecB, suggesting that the structural details of the extreme C-terminal region of SecA constitute a crucial SecB binding specificity determinant. Using a poorly exported mutant maltose binding protein (MalE11) and alkaline phosphatase (PhoA) as model proteins, we could demonstrate that the secretion of both proteins by B. subtilis was significantly enhanced in the presence of the artificial protein targeting pathway. Mutations in SecB that do not influence its chaperone activity but prevent its interaction with SecA abolished the secretion stimulation of both proteins, demonstrating that the implemented pathway in fact critically depends on the SecB targeting function. From a biotechnological view, our results open up a new strategy for the improvement of Gram-positive bacterial host systems for the secretory production of heterologous proteins.
Collapse
|
46
|
Traffic jam at the bacterial sec translocase: targeting the SecA nanomotor by small-molecule inhibitors. ACTA ACUST UNITED AC 2011; 18:685-98. [PMID: 21700205 DOI: 10.1016/j.chembiol.2011.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/20/2022]
Abstract
The rapid rise of drug-resistant bacteria is one of the most serious unmet medical needs facing the world. Despite this increasing problem of antibiotic resistance, the number of different antibiotics available for the treatment of serious infections is dwindling. Therefore, there is an urgent need for new antibacterial drugs, preferably with novel modes of action to potentially avoid cross-resistance with existing antibacterial agents. In recent years, increasing attention has been paid to bacterial protein secretion as a potential antibacterial target. Among the different protein secretion pathways that are present in bacterial pathogens, the general protein secretory (Sec) pathway is widely considered as an attractive target for antibacterial therapy. One of the key components of the Sec pathway is the peripheral membrane ATPase SecA, which provides the energy for the translocation of preproteins across the bacterial cytoplasmic membrane. In this review, we will provide an overview of research efforts on the discovery and development of small-molecule SecA inhibitors. Furthermore, recent advances on the structure and function of SecA and their potential impact on antibacterial drug discovery will be discussed.
Collapse
|
47
|
Dalal K, Duong F. The SecY complex: conducting the orchestra of protein translocation. Trends Cell Biol 2011; 21:506-14. [DOI: 10.1016/j.tcb.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
48
|
Affiliation(s)
- Christine L. Hagan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; ,
| |
Collapse
|
49
|
Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, Cummings MAD, Eshghi A, Cameron CE, Cruz AR, Salazar JC, Caimano MJ, Radolf JD. TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol 2011; 80:1496-515. [PMID: 21488980 PMCID: PMC3115443 DOI: 10.1111/j.1365-2958.2011.07662.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Definitive identification of Treponema pallidum rare outer membrane proteins (OMPs) has long eluded researchers. TP0326, the sole protein in T. pallidum with sequence homology to a Gram-negative OMP, belongs to the BamA family of proteins essential for OM biogenesis. Structural modelling predicted that five polypeptide transport-associated (POTRA) domains comprise the N-terminus of TP0326, while the C-terminus forms an 18-stranded amphipathic β-barrel. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning and liposome incorporation supported these topological predictions and confirmed that the β-barrel is responsible for the native protein's amphiphilicity. Expression analyses revealed that native TP0326 is expressed at low abundance, while a protease-surface accessibility assay confirmed surface exposure. Size-exclusion chromatography and blue native polyacrylamide gel electrophoresis revealed a modular Bam complex in T. pallidum larger than that of Escherichia coli. Non-orthologous ancillary factors and self-association of TP0326 via its β-barrel may both contribute to the Bam complex. T. pallidum-infected rabbits mount a vigorous antibody response to both POTRA and β-barrel portions of TP0326, whereas humans with secondary syphilis respond predominantly to POTRA. The syphilis spirochaete appears to have devised a stratagem for harnessing the Bam pathway while satisfying its need to limit surface antigenicity.
Collapse
Affiliation(s)
- Daniel C. Desrosiers
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Arvind Anand
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Amit Luthra
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Star M Dunham-Ems
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Morgan LeDoyt
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Michael A. D. Cummings
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Azad Eshghi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Adriana R. Cruz
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Juan C. Salazar
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Department of Pediatrics, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, CT 06106
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030
- Department of Pediatrics, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, CT 06106
| |
Collapse
|
50
|
Zalucki YM, Beacham IR, Jennings MP. Coupling between codon usage, translation and protein export in Escherichia coli. Biotechnol J 2011; 6:660-7. [PMID: 21567959 DOI: 10.1002/biot.201000334] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 11/07/2022]
Abstract
Proteins destined for export via the Sec-dependent pathway are synthesized with a short N-terminal signal peptide. A requirement for export is that the proteins are in a translocationally competent state. This is a loosely folded state that allows the protein to pass through the SecYEG apparatus and pass into the periplasm. In order to maintain pre-secretory proteins in an export-competent state, there are many factors that slow the folding of the pre-secretory protein in the cytoplasm. These include cytoplasmic chaperones, such as SecB, and the signal recognition particle, which bind the pre-secretory protein and direct it to the cytoplasmic membrane for export. Recently, evidence has been published that non-optimal codons in the signal sequence are important for a time-critical early event to allow the correct folding of pre-secretory proteins. This review details the recent developments in folding of the signal peptide and the pre-secretory protein.
Collapse
Affiliation(s)
- Yaramah M Zalucki
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|