1
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
2
|
Hosseinzadeh B, Ahmadi M. Coordination geometry in metallo-supramolecular polymer networks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Bao J, Li X, Wang J, Cong Y, Zhou J, Zhang X, Chen W. Crystallization, morphology and mechanical property enhancement of block copolymer-based metallosupramolecular polymers by incorporating metal coordinating ligand into poly(L-lactic acid) block. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
|
5
|
Mondal A, Ahmmed E, Ball B, Chattopadhyay P. Rational Design of a New AIE‐Coupled ESIPT‐Based Multi‐chromic State Depended Organo‐luminophore With
Turn‐on
Emissive Response to Zn(II) in Aqueous and Solid‐state**. ChemistrySelect 2022. [DOI: 10.1002/slct.202103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asit Mondal
- Department of Chemistry The University of Burdwan, Golapbag Burdwan 713104 India
| | - Ejaj Ahmmed
- Department of Chemistry The University of Burdwan, Golapbag Burdwan 713104 India
| | - Biswajit Ball
- Department of Chemistry Visva-Bharati University Santiniketan 731235 India
| | | |
Collapse
|
6
|
|
7
|
Metal-Organic Framework-Based Stimuli-Responsive Polymers. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5040101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic framework (MOF) based stimuli-responsive polymers (coordination polymers) exhibit reversible phase-transition behavior and demonstrate attractive properties that are capable of altering physical and/or chemical properties upon exposure to external stimuli, including pH, temperature, ions, etc., in a dynamic fashion. Thus, their conformational change can be imitated by the adsorption/desorption of target analytes (guest molecules), temperature or pressure changes, and electromagnetic field manipulation. MOF-based stimuli responsive polymers have received great attention due to their advanced optical properties and variety of applications. Herein, we summarized some recent progress on MOF-based stimuli-responsive polymers (SRPs) classified by physical and chemical responsiveness, including temperature, pressure, electricity, pH, metal ions, gases, alcohol and multi-targets.
Collapse
|
8
|
Mohamadhoseini M, Mohamadnia Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Ahmadi M, Seiffert S. Coordination Geometry Preference Regulates the Structure and Dynamics of Metallo-Supramolecular Polymer Networks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02524] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mostafa Ahmadi
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
10
|
Hayashi M, Kimura T, Oba Y, Takasu A. One‐Pot Synthesis of Dual Supramolecular Associative PMMA‐Based Copolymers and the Precise Thermal Property Tuning. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mikihiro Hayashi
- Department of Life Science and Applied Chemistry Graduated School of Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan
| | - Takahiro Kimura
- Department of Life Science and Applied Chemistry Graduated School of Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan
| | - Yuta Oba
- Department of Life Science and Applied Chemistry Graduated School of Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan
| | - Akinori Takasu
- Department of Life Science and Applied Chemistry Graduated School of Engineering Nagoya Institute of Technology Gokiso‐cho, Showa‐ku Nagoya Aichi 466‐8555 Japan
| |
Collapse
|
11
|
Yepremyan A, Osamudiamen A, Brook MA, Feinle A. Dynamically tuning transient silicone polymer networks with hydrogen bonding. Chem Commun (Camb) 2020; 56:13555-13558. [PMID: 33048066 DOI: 10.1039/d0cc05478j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supramolecular polymers are composed of non-covalently connected chains and characterized by high chain dynamics. The viscoelastic behavior of supramolecular telechelic sugar-siloxanes - ranging from solids to viscous fluids able to form transient polymer networks - is readily tuned by the fraction of internal HO groups that can intermolecularly form hydrogen bonds.
Collapse
Affiliation(s)
- Akop Yepremyan
- McMaster University, Department of Chemistry and Chemical Biology, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | | | | | | |
Collapse
|
12
|
Tough Double Metal-ion Cross-linked Elastomers with Temperature-adaptable Self-healing and Luminescence Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2517-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Neumann LN, Gunkel I, Barron A, Oveisi E, Petzold A, Thurn-Albrecht T, Schrettl S, Weder C. Structure–Property Relationships of Microphase-Separated Metallosupramolecular Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00876] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Laura N. Neumann
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Ilja Gunkel
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Amber Barron
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy (CIME), Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SB-CIME, Bâtiment MXC-135, Station 12, CH-1015 Lausanne, Switzerland
| | - Albrecht Petzold
- Naturwissenschaftliche Fakultät II - Chemie und Physik, Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120 Halle (Saale), Germany
| | - Thomas Thurn-Albrecht
- Naturwissenschaftliche Fakultät II - Chemie und Physik, Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120 Halle (Saale), Germany
| | - Stephen Schrettl
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
14
|
Zhang W, Hu L, Zhang H, Pan C, Tang J. Stable Non-Covalent Co(Salphen)-Based Polymeric Catalyst for Highly Efficient and Selective Oxidation of 2,3,6-Trimethylphenol. Polymers (Basel) 2020; 12:E1076. [PMID: 32397200 PMCID: PMC7285139 DOI: 10.3390/polym12051076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 11/17/2022] Open
Abstract
Developing highly efficient catalyst systems for phenol-quinone transformation is of great significance in the chemical/biological industries. Herein, we reported a novel heterogenous catalytic system based on Co(Salphen) supramolecular polymers (CSP), which delivered an excellent catalytic performance in the oxidation of 2,3,6-trimethylphenol (TMP) under mild conditions. The CSP were constructed through a simple self-assembled process between BiCo(Salphen) complex and 4,4-dipyridine. By applying BiCo-BiPy1:1 CSP as the catalyst, 2,3,5-trimethyl-1,4-benzoquinone (TMBQ) could be obtained with an excellent conversion (>99%) and selectivity over 99% under mild reaction conditions (30 °C, 0.1 MPa). In addition, it can be recycled at least five times without substantial decline in catalytic activities (conversion and selectivity), suggesting its excellent stability and recyclability. This work may provide guidance on designing and building valuable catalysts for environmentally friendly and cost-effective oxidation reactions.
Collapse
Affiliation(s)
| | | | | | - Chunyue Pan
- College of Chemistry and Chemical Engineering, Central South University, 932 South Lushan Road, Changsha 410083, China; (W.Z.); (L.H.); (H.Z.)
| | - Juntao Tang
- College of Chemistry and Chemical Engineering, Central South University, 932 South Lushan Road, Changsha 410083, China; (W.Z.); (L.H.); (H.Z.)
| |
Collapse
|
15
|
Kuanr N, Tomkovic T, Gilmour DJ, Perry MR, Hsiang SJ, van Ruymbeke E, Hatzikiriakos SG, Schafer LL. Dynamic Cross-Linking of Catalytically Synthesized Poly(Aminonorbornenes). Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nirmalendu Kuanr
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Tanja Tomkovic
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Damon J. Gilmour
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mitchell R. Perry
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Shou-Jen Hsiang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Evelyne van Ruymbeke
- Bio and Soft Division (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, Croix du Sud 1 & Place L. Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
| | - Savvas G. Hatzikiriakos
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Laurel L. Schafer
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
16
|
Wei Z, Thanneeru S, Margaret Rodriguez E, Weng G, He J. Adaptable Eu-containing polymeric films with dynamic control of mechanical properties in response to moisture. SOFT MATTER 2020; 16:2276-2284. [PMID: 32040125 DOI: 10.1039/c9sm02440a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-healing polymers often have a trade-off between healing efficiency and mechanical stiffness. Stiff polymers that sacrifice their chain mobility are slow to repair upon mechanical failure. We herein report adaptable polymer films with dynamically moisture-controlled mechanical and optical properties, therefore having tunable self-healing efficiency. The design of the polymer film is based on the coordination of europium (Eu) with dipicolylamine (DPA)-containing random copolymers of poly(n-butyl acrylate-co-2-hydroxy-3-dipicolylamino methacrylate) (P(nBA-co-GMADPA)). The Eu-DPA complexation results in the formation of mechanically robust polymer films. The coordination of Eu-DPA has proven to be moisture-switchable given the preferential coordination of lanthanide metals to O over N, using nuclear magnetic resonance and fluorescence spectroscopy. Water competing with DPA to bind Eu3+ ions can weaken the cross-linking networks formed by Eu-DPA coordination, leading to the increase of chain mobility. The in situ dynamic mechanical analysis and ex situ rheological studies confirm that the viscofluid and the elastic solid states of Eu-polymers are switchable by moisture. Water speeds up the self-healing of the polymer film by roughly 100 times; while it can be removed after healing to recover the original mechanical stiffness of polymers.
Collapse
Affiliation(s)
- Zichao Wei
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Srinivas Thanneeru
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| | | | - Gengsheng Weng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA. and School of Material Science and Chemical Engineering, Ningbo Key Laboratory of Specialty Polymers, Ningbo University, Ningbo 315211, China.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA. and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
17
|
Glass transition analysis of model metallosupramolecular polyesters bearing pendant pyridine ligands with a controlled ligand–ligand distance. Polym J 2020. [DOI: 10.1038/s41428-020-0304-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Rowan SJ, Weder C. Combining Chemistry, Materials Science, Inspiration from Nature, and Serendipity to Develop Stimuli‐Responsive Polymeric Materials. Isr J Chem 2019. [DOI: 10.1002/ijch.201900098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Stuart J. Rowan
- Pritzker School of Molecular Engineering University of Chicago 5640 S. Ellis Ave. Chicago, IL 60637 United States
- Department of Chemistry University of Chicago Chicago, IL 60637 United States
| | - Christoph Weder
- Adolphe Merkle Institute University of Fribourg Chemin des Verdiers 4 CH-1700 Fribourg Switzerland
| |
Collapse
|
19
|
Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Tang L, Liao S, Qu J. Metallohydrogel with Tunable Fluorescence, High Stretchability, Shape-Memory, and Self-Healing Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26346-26354. [PMID: 31251026 DOI: 10.1021/acsami.9b06177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aiming at the problem that the reported smart optical metallohydrogels were limited with poor mechanical properties, we reported here a novel smart optical metallohydrogel (Al-hydrogel) with excellent elongation, shape-memory ability, self-healing property, and controllable fluorescence intensity. The Al-hydrogel was obtained by the HHPMA-Al3+ and carboxylate-Al3+ coordination after one-pot micellar copolymerization of acrylic acid (AAc), acrylamide (AAm), and hydrophobic arylhydrazone-based ligand (HHPMA). This hydrogel was able to extend up to 5000% of its original length without fracture. Its emission intensity was tunable by OH-/H+ or Zn2+/AAc and increased by 500% with 0.1 M OH- or Zn2+. Its tunable fluorescence enabled us to repeatedly pattern it. A reversible system consisting of Fe3+/H+, was implemented to control the shape of the Al-hydrogel, endowing the Al-hydrogel with shape-memory ability. This highly stretchable and multifunctional Al-hydrogel has potential applications in information transmission, wearable devices, and flexible sensors.
Collapse
Affiliation(s)
- Liuyan Tang
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Shanshan Liao
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
21
|
Yin ZY, Hu JH, Fu QQ, Gui K, Yao Y. A novel long-alkyl-chained acylhydrazone-based supramolecular polymer gel for the ultrasensitive detection and separation of multianalytes. SOFT MATTER 2019; 15:4187-4191. [PMID: 31065658 DOI: 10.1039/c9sm00624a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
By rationally introducing multi-self-assembly driving forces and coordination binding sites into the same molecule, a designed functional gelator, G, was synthesized. Next, a novel supramolecular polymer material, OGV (1% DMSO), was constructed and used for the ultrasensitive detection and separation of multianalytes in gel states. Interestingly, OGV showed a fluorescent ultrasensitive response for the Hg2+ and Fe3+ ions in water. Moreover, by introducing these metal ions into the OGV, stable metal ion-coordinated supramolecular metallogels (HgG and FeG) were formed, which could sense CN- and H2PO4- in water with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Zhi-Yuan Yin
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | |
Collapse
|
22
|
Korde JM, Kandasubramanian B. Fundamentals and Effects of Biomimicking Stimuli-Responsive Polymers for Engineering Functions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00683] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jay M. Korde
- Biocomposite Laboratory, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India
| | - Balasubramanian Kandasubramanian
- Biocomposite Laboratory, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India
| |
Collapse
|
23
|
Neumann LN, Calvino C, Simon YC, Schrettl S, Weder C. Solid-state sensors based on Eu 3+-containing supramolecular polymers with luminescence colour switching capability. Dalton Trans 2018; 47:14184-14188. [PMID: 29995055 DOI: 10.1039/c8dt01580e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polymers that exhibit changes of their luminescence colour in response to external stimuli are attractive candidates for sensing systems. We herein report the preparation of europium-based metallosupramolecular polymers, which can be processed into films and coatings that display readily detectable luminescence colour changes in response to various types of analytes.
Collapse
Affiliation(s)
- L N Neumann
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| | | | | | | | | |
Collapse
|
24
|
Border SE, Pavlović RZ, Zhiquan L, Gunther MJ, Wang H, Cui H, Badjić JD. Light‐Triggered Transformation of Molecular Baskets into Organic Nanoparticles. Chemistry 2018; 25:273-279. [PMID: 30133001 DOI: 10.1002/chem.201803693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/17/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Sarah E. Border
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Radoslav Z. Pavlović
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Lei Zhiquan
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Michael J. Gunther
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Han Wang
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins University, Maryland Hall 221 3400 North Charles Street 21218 Baltimore Maryland USA
| | - Honggang Cui
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins University, Maryland Hall 221 3400 North Charles Street 21218 Baltimore Maryland USA
| | - Jovica D. Badjić
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| |
Collapse
|
25
|
Wittmer A, Wellen R, Saalwächter K, Koschek K. Moisture-mediated self-healing kinetics and molecular dynamics in modified polyurethane urea polymers. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Huang KH, Tu TH, Wang SC, Chan YT, Hsu CC. Micelles Protect Intact Metallo-supramolecular Block Copolymer Complexes from Solution to Gas Phase during Electrospray Ionization. Anal Chem 2018; 90:7691-7699. [DOI: 10.1021/acs.analchem.8b01576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kai-Hung Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shi-Cheng Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
27
|
Sukul PK, Malik S. Co(II) Induced Aggregation of Chiral Perylene Derivatives and Macroscopic Formation of Supramolecular Networks. CHEM LETT 2018. [DOI: 10.1246/cl.171192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pradip Kumar Sukul
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna-800005, Bihar, India
| | - Sudip Malik
- Polymer Science Unit, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Rd., Jadavpur, Kolkata-700032, India
| |
Collapse
|
28
|
Weng G, Thanneeru S, He J. Dynamic Coordination of Eu-Iminodiacetate to Control Fluorochromic Response of Polymer Hydrogels to Multistimuli. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29334152 DOI: 10.1002/adma.201706526] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/29/2017] [Indexed: 05/07/2023]
Abstract
New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light-emitting materials. A new design of Eu-containing polymer hydrogels showing fast self-healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu-iminodiacetate (IDA) coordination in a hydrophilic poly(N,N-dimethylacrylamide) matrix. Dynamic metal-ligand coordination allows reversible formation and disruption of hydrogel networks under various stimuli which makes hydrogels self-healable and injectable. Such hydrogels show interesting switchable ON/OFF luminescence along with the sol-gel transition through the reversible formation and dissociation of Eu-IDA complexes upon various stimuli. It is demonstrated that Eu-containing hydrogels display fast and reversible mechanochromic response as well in hydrogels having interpenetrating polymer network. Those multistimuli responsive fluorochromic hydrogels illustrate a new pathway to make smart optical materials, particularly for biological sensors where multistimuli response is required.
Collapse
Affiliation(s)
- Gengsheng Weng
- School of Materials Science and Chemical Engineering, Ningbo Key Laboratory of Specialty Polymers, Ningbo University, Ningbo, 315211, China
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Srinivas Thanneeru
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
29
|
Attwood M, Turner SS. Back to back 2,6-bis(pyrazol-1-yl)pyridine and 2,2′:6′,2″-terpyridine ligands: Untapped potential for spin crossover research and beyond. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Herbert KM, Schrettl S, Rowan SJ, Weder C. 50th Anniversary Perspective: Solid-State Multistimuli, Multiresponsive Polymeric Materials. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01607] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Stephen Schrettl
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Stuart J. Rowan
- Institute
for Molecular Engineering, Argonne National Laboratory, 9700 S Cass
Ave., Lemont, Illinois 60439, United States
| | - Christoph Weder
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
31
|
|
32
|
Chen JF, Liu X, Ma JF, Han BB, Ding JD, Lin Q, Yao H, Zhang YM, Wei TB. A pillar[5]arene-based multiple-stimuli responsive metal-organic gel was constructed for facile removal of mercury ions. SOFT MATTER 2017; 13:5214-5218. [PMID: 28677714 DOI: 10.1039/c7sm01118k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A thioacetohydrazide functionalized pillar[5]arene was synthesized, which could further assemble into a linear supramolecular metal-organic polymer upon adding Zn2+. Furthermore, the obtained linear supramolecular metal-organic polymer could self-assemble to form a fluorescent supramolecular metal-organic gel at high concentration. When TBAOH was added to the viscous solution at high temperature, the obtained solution could not form a supramolecular metal-organic gel upon cooling. More importantly, when Hg2+ ions are added to the metal-organic gel, the strong blue fluorescence is clearly quenched, and this metal-organic gel (xerogel) could effectively remove Hg2+ from water. Simultaneously, a thin film based on the metal-organic gel was prepared, which was confirmed to be a convenient test kit for detecting Hg2+.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rao YL, Feig V, Gu X, Nathan Wang GJ, Bao Z. The effects of counter anions on the dynamic mechanical response in polymer networks crosslinked by metal-ligand coordination. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28675] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ying-Li Rao
- Department of Chemical Engineering; Stanford University; Stanford California 94305
| | - Vivian Feig
- Department of Materials Science and Engineering; Stanford University; Stanford California 94305
| | - Xiaodan Gu
- Department of Chemical Engineering; Stanford University; Stanford California 94305
| | - Ging-Ji Nathan Wang
- Department of Chemical Engineering; Stanford University; Stanford California 94305
| | - Zhenan Bao
- Department of Chemical Engineering; Stanford University; Stanford California 94305
| |
Collapse
|
34
|
He YJ, Tu TH, Su MK, Yang CW, Kong KV, Chan YT. Facile Construction of Metallo-supramolecular Poly(3-hexylthiophene)-block-Poly(ethylene oxide) Diblock Copolymers via Complementary Coordination and Their Self-Assembled Nanostructures. J Am Chem Soc 2017; 139:4218-4224. [DOI: 10.1021/jacs.7b01010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yun-Jui He
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Kun Su
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Wei Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
35
|
Hladysh S, Václavková D, Vrbata D, Bondarev D, Havlíček D, Svoboda J, Zedník J, Vohlídal J. Synthesis and characterization of metallo-supramolecular polymers from thiophene-based unimers bearing pybox ligands. RSC Adv 2017. [DOI: 10.1039/c6ra26665g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A series of novel metallo-supramolecular polymers was prepared, based on 2,6-bis(2-oxazolinyl)pyridine chelating groups bridged with thiophene, bithiophene and thienothiophene as a linker, beginning from commercially available (chelidamic) acid.
Collapse
Affiliation(s)
- Sviatoslav Hladysh
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University in Prague
- CZ-12840 Prague 2
- Czech Republic
| | - Daniela Václavková
- Tomas Bata University in Zlín
- Faculty of Technology
- Department of Polymer Engineering
- CZ-762 72 Zlín
- Czech Republic
| | - David Vrbata
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University in Prague
- CZ-12840 Prague 2
- Czech Republic
| | - Dmitrij Bondarev
- Tomas Bata University in Zlín
- Faculty of Technology
- Department of Polymer Engineering
- CZ-762 72 Zlín
- Czech Republic
| | - David Havlíček
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University in Prague
- CZ-12840 Prague 2
- Czech Republic
| | - Jan Svoboda
- Institute of Macromolecular Chemistry AS CR
- Prague 6
- Czech Republic
| | - Jiří Zedník
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University in Prague
- CZ-12840 Prague 2
- Czech Republic
| | - Jiří Vohlídal
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University in Prague
- CZ-12840 Prague 2
- Czech Republic
| |
Collapse
|
36
|
Yang D, Li Z, He L, Deng Y, Wang Y. Solvent free mechanochemical synthesis of Eu3+ complex and its luminescent sensing of trace water and temperature. RSC Adv 2017. [DOI: 10.1039/c6ra28099d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A solid state Eu(iii) complex was synthesized by a mechanochemical method and used for luminescent sensing of trace water and temperature.
Collapse
Affiliation(s)
- Daqing Yang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Zhiqiang Li
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Liang He
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Yucheng Deng
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Yige Wang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| |
Collapse
|
37
|
Shangguan Y, Yang J, Zheng Q. Rheology of nitrile rubber with hybrid crosslinked network composed of covalent bonding and hydrogen bonding. RSC Adv 2017. [DOI: 10.1039/c7ra01106g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A hybrid crosslinked network composed of covalent bonding and non-covalent bonding was constructed in nitrile rubber (NBR) by using a compound crosslinking agents dicumyl peroxide (DCP) and N,N-methylenebis acrylamide (MBA).
Collapse
Affiliation(s)
- Yonggang Shangguan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jie Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
38
|
Zhang L, Chen L, Rowan SJ. Trapping Dynamic Disulfide Bonds in the Hard Segments of Thermoplastic Polyurethane Elastomers. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600320] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Longhe Zhang
- Department of Macromolecular Science and Engineering Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA
| | - Lifeng Chen
- Department of Macromolecular Science and Engineering Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA
| | - Stuart J. Rowan
- Department of Macromolecular Science and Engineering Case Western Reserve University 2100 Adelbert Road Cleveland OH 44106 USA
- Institute for Molecular Engineering University of Chicago 5640 S. Ellis Ave. Chicago IL 60637 USA
| |
Collapse
|
39
|
Griebel JJ, Glass RS, Char K, Pyun J. Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.04.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Winter A, Schubert US. Synthesis and characterization of metallo-supramolecular polymers. Chem Soc Rev 2016; 45:5311-57. [PMID: 27218823 DOI: 10.1039/c6cs00182c] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The incorporation of metal centers into the backbone of polymers has led to the development of a broad range of organometallic and coordination compounds featuring properties that are relevant for potential applications in diverse areas of research, ranging from energy storage/conversion to bioactive or self-healing materials. In this review, the basic concepts and synthetic strategies leading to these types of materials as well as the scope of available characterization techniques will be summarized and discussed.
Collapse
Affiliation(s)
- Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | | |
Collapse
|
41
|
Li F, Xie C, Cheng Z, Xia H. Ultrasound responsive block copolymer micelle of poly(ethylene glycol)-poly(propylene glycol) obtained through click reaction. ULTRASONICS SONOCHEMISTRY 2016; 30:9-17. [PMID: 26703197 DOI: 10.1016/j.ultsonch.2015.11.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
The well-defined amphiphilic poly(ethylene glycol)-block-poly(propylene glycol) copolymer containing 1, 2, 3-triazole moiety and multiple ester bonds (PEG-click-PPG) was prepared by click reaction strategy. The PEG-click-PPG copolymer can self-assemble into spherical micelles in aqueous solution. It is found that high intensity focused ultrasound (HIFU) can open the copolymer PEG-click-PPG micelles and trigger the release of the payload in the micelle. The multiple ester bonds introduced in the junction point of the copolymer chain through click reactions were cleaved under HIFU, and leads to the disruption of the copolymer micelle and fast release of loaded cargo. The click reaction provides a convenient way to construct ultrasound responsive copolymer micelles with weak bonds.
Collapse
Affiliation(s)
- Fayong Li
- State Key Lab of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Chuan Xie
- State Key Lab of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Zhengang Cheng
- State Key Lab of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Hesheng Xia
- State Key Lab of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
42
|
Qian X, Gong W, Li X, Fang L, Kuang X, Ning G. Fluorescent Cross-Linked Supramolecular Polymer Constructed by Orthogonal Self-Assembly of Metal-Ligand Coordination and Host-Guest Interaction. Chemistry 2016; 22:6881-90. [DOI: 10.1002/chem.201600561] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Xiaomin Qian
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| | - Weitao Gong
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| | - Xiaopeng Li
- Department of Chemistry and Biochemistry; Texas State University; San Marcos Texas 78666 USA
| | - Le Fang
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| | - Xiaojun Kuang
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| | - Guiling Ning
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| |
Collapse
|
43
|
Li H, Wei W, Xiong H. An asymmetric A-B-A' metallo-supramolecular triblock copolymer linked by Ni(2+)-bis-terpyridine complexes at one junction. SOFT MATTER 2016; 12:1411-1418. [PMID: 26660271 DOI: 10.1039/c5sm02639c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A metallo-supramolecular triblock copolymer polystyrene-b-polyisoprene-[Ni(2+)]-polystyrene (SI-[Ni(2+)]-S') has been efficiently prepared using a one-pot, two-step procedure, where the blocks are held by bis-terpyridine complexes at the junction of SI-S'. This specific metallo-supramolecular chemistry is demonstrated to be a robust approach to potentially broaden the diversity of block copolymers. The location of the metal-ligand complexes has a profound influence on the phase separation of the triblock copolymer in the bulk, which results in a distinctive phase segregation between the end blocks and leads to an unexpected asymmetry of the triblock copolymer. The metal-ligand complexes are found to be preferentially located on the adjacent spherical domain and form a core-shell structure. The resulting multiphase material exhibits distinct elastomeric properties with significant toughness and creep recovery behavior. This type of triblock copolymer is anticipated to be a novel class of hybrid thermo-plastic elastomeric material with wide tunability and functionality.
Collapse
Affiliation(s)
- Haixia Li
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | | | | |
Collapse
|
44
|
Lu H, Zhang C, Xia G, Wu S, Zhang G, Yang J, Qiu L. Continuously tunable emission color based on the molecular aggregation of (2Z,2′Z)-2,2′-(1,4-phenylenae)bis(3-(4-(dodecyloxy)phenyl)acrylonitrile). RSC Adv 2016. [DOI: 10.1039/c6ra22024j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A luminescent liquid crystal self-assembles to a layer structure or a helical structure with different pitch length depending on the stacking rate; a photoluminescence spectrum blue-shift from 600 nm to 506 nm.
Collapse
Affiliation(s)
- Hongbo Lu
- Key Lab of Special Display Technology
- Ministry of Education
- National Engineering Lab of Special Display Technology
- State Key Lab of Advanced Display Technology
- Academy of Opto-Electronic Technology
| | - Chao Zhang
- Key Lab of Special Display Technology
- Ministry of Education
- National Engineering Lab of Special Display Technology
- State Key Lab of Advanced Display Technology
- Academy of Opto-Electronic Technology
| | - Guo Xia
- Key Lab of Special Display Technology
- Ministry of Education
- National Engineering Lab of Special Display Technology
- State Key Lab of Advanced Display Technology
- Academy of Opto-Electronic Technology
| | - Shaojun Wu
- Key Lab of Special Display Technology
- Ministry of Education
- National Engineering Lab of Special Display Technology
- State Key Lab of Advanced Display Technology
- Academy of Opto-Electronic Technology
| | - Guobing Zhang
- Key Lab of Special Display Technology
- Ministry of Education
- National Engineering Lab of Special Display Technology
- State Key Lab of Advanced Display Technology
- Academy of Opto-Electronic Technology
| | - Jiaxiang Yang
- College of Chemistry and Chemical Engineering
- Anhui University
- Hefei
- People's Republic of China
| | - Longzhen Qiu
- Key Lab of Special Display Technology
- Ministry of Education
- National Engineering Lab of Special Display Technology
- State Key Lab of Advanced Display Technology
- Academy of Opto-Electronic Technology
| |
Collapse
|
45
|
Chen P, Mondal JH, Zhou Y, Zhu H, Shi B. Construction of a neutral linear supramolecular polymer via orthogonal donor–acceptor interactions and pillar[5]arene-based molecular recognition. Polym Chem 2016. [DOI: 10.1039/c6py01123c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A neutral linear supramolecular polymer was efficiently constructed by donor–acceptor interactions and pillar[5]arene-based molecular recognition through hierarchical orthogonal strategies.
Collapse
Affiliation(s)
- Panpan Chen
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | | | - Yujuan Zhou
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | | | - Bingbing Shi
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
46
|
Rambarran T, Bertrand A, Gonzaga F, Boisson F, Bernard J, Fleury E, Ganachaud F, Brook MA. Sweet supramolecular elastomers from α,ω-(β-cyclodextrin terminated) PDMS. Chem Commun (Camb) 2016; 52:6681-4. [DOI: 10.1039/c6cc02632j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CDs linked to PDMS vaturally phase separate and hydrogen bond to generate supramolecular elastomers.
Collapse
Affiliation(s)
- Talena Rambarran
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada L8S 4M1
- Univ Lyon
| | - Arthur Bertrand
- Univ Lyon
- IMP@INSA-Lyon
- CNRS UMR 5223
- F-69621 Villeurbanne cedex
- France
| | - Ferdinand Gonzaga
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada L8S 4M1
| | - Fernande Boisson
- Univ Lyon
- IMP@INSA-Lyon
- CNRS UMR 5223
- F-69621 Villeurbanne cedex
- France
| | - Julien Bernard
- Univ Lyon
- IMP@INSA-Lyon
- CNRS UMR 5223
- F-69621 Villeurbanne cedex
- France
| | - Etienne Fleury
- Univ Lyon
- IMP@INSA-Lyon
- CNRS UMR 5223
- F-69621 Villeurbanne cedex
- France
| | | | - Michael A. Brook
- Department of Chemistry and Chemical Biology
- McMaster University
- Hamilton
- Canada L8S 4M1
| |
Collapse
|
47
|
Collins J, Xiao Z, Müllner M, Connal LA. The emergence of oxime click chemistry and its utility in polymer science. Polym Chem 2016. [DOI: 10.1039/c6py00635c] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of new, highly functional and dynamic polymeric materials has risen dramatically since the introduction of click chemistry in 2001.
Collapse
Affiliation(s)
- Joe Collins
- The Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Australia
| | - Zeyun Xiao
- The Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Australia
| | - Markus Müllner
- School of Chemistry
- Key Centre for Polymers and Colloids
- The University of Sydney
- Australia
| | - Luke A. Connal
- The Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Australia
| |
Collapse
|
48
|
|
49
|
Fox CH, ter Hurrne GM, Wojtecki RJ, Jones GO, Horn HW, Meijer EW, Frank CW, Hedrick JL, García JM. Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels. Nat Commun 2015; 6:7417. [PMID: 26174864 PMCID: PMC4518264 DOI: 10.1038/ncomms8417] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/06/2015] [Indexed: 12/28/2022] Open
Abstract
Dynamic covalent materials are stable materials that possess reversible behaviour triggered by stimuli such as light, redox conditions or temperature; whereas supramolecular crosslinks depend on the equilibrium constant and relative concentrations of crosslinks as a function of temperature. The combination of these two reversible chemistries can allow access to materials with unique properties. Here, we show that this combination of dynamic covalent and supramolecular chemistry can be used to prepare organogels comprising distinct networks. Two materials containing hemiaminal crosslink junctions were synthesized; one material is comprised of dynamic covalent junctions and the other contains hydrogen-bonding bis-hemiaminal moieties. Under specific network synthesis conditions, these materials exhibited self-healing behaviour. This work reports on both the molecular-level detail of hemiaminal crosslink junction formation as well as the macroscopic behaviour of hemiaminal dynamic covalent network (HDCN) elastomeric organogels. These materials have potential applications as elastomeric components in printable materials, cargo carriers and adhesives.
Collapse
Affiliation(s)
- Courtney H. Fox
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, USA
| | - Gijs M. ter Hurrne
- Eindhoven University of Technology, Post Office Box 513, Eindhoven 5600 MB, The Netherlands
| | - Rudy J. Wojtecki
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| | - Gavin O. Jones
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| | - Hans W. Horn
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| | - E. W. Meijer
- Eindhoven University of Technology, Post Office Box 513, Eindhoven 5600 MB, The Netherlands
| | - Curtis W. Frank
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, USA
| | - James L. Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| | - Jeannette M. García
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
| |
Collapse
|
50
|
A cucurbit[8]uril recognized rigid supramolecular polymer with photo-stimulated responsiveness. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.01.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|