1
|
Guo Y, Hou T, Wang J, Yan Y, Li W, Ren Y, Yan S. Phase Change Materials Meet Microfluidic Encapsulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304580. [PMID: 37963852 PMCID: PMC11462306 DOI: 10.1002/advs.202304580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/03/2023] [Indexed: 11/16/2023]
Abstract
Improving the utilization of thermal energy is crucial in the world nowadays due to the high levels of energy consumption. One way to achieve this is to use phase change materials (PCMs) as thermal energy storage media, which can be used to regulate temperature or provide heating/cooling in various applications. However, PCMs have limitations like low thermal conductivity, leakage, and corrosion. To overcome these challenges, PCMs are encapsulated into microencapsulated phase change materials (MEPCMs) capsules/fibers. This encapsulation prevents PCMs from leakage and corrosion issues, and the microcapsules/fibers act as conduits for heat transfer, enabling efficient exchange between the PCM and its surroundings. Microfluidics-based MEPCMs have attracted intensive attention over the past decade due to the exquisite control over flow conditions and size of microcapsules. This review paper aims to provide an overview of the state-of-art progress in microfluidics-based encapsulation of PCMs. The principle and method of preparing MEPCM capsules/fibers using microfluidic technology are elaborated, followed by the analysis of their thermal and microstructure characteristics. Meanwhile, the applications of MEPCM in the fields of building energy conservation, textiles, military aviation, solar energy utilization, and bioengineering are summarized. Finally, the perspectives on MEPCM capsules/fibers are discussed.
Collapse
Affiliation(s)
- Yanhong Guo
- Institute for Advanced StudyShenzhen UniversityShenzhen518060China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingboZhejiang315104China
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingboZhejiang315104China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteUniversity of Nottingham Ningbo ChinaNingboZhejiang315104China
| | - Tuo Hou
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingboZhejiang315104China
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingboZhejiang315104China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteUniversity of Nottingham Ningbo ChinaNingboZhejiang315104China
| | - Jing Wang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteUniversity of Nottingham Ningbo ChinaNingboZhejiang315104China
- Department of Electrical and Electronic EngineeringUniversity of Nottingham Ningbo ChinaNingboZhejiang315104China
| | - Yuying Yan
- Faculty of EngineeringUniversity of NottinghamNottinghamNG7 2RDUK
| | - Weihua Li
- School of MechanicalMaterialsMechatronic and Biomedical EngineeringUniversity of WollongongWollongong2522Australia
| | - Yong Ren
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingboZhejiang315104China
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingboZhejiang315104China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteUniversity of Nottingham Ningbo ChinaNingboZhejiang315104China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingboZhejiang315104China
| | - Sheng Yan
- Institute for Advanced StudyShenzhen UniversityShenzhen518060China
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
2
|
Mika T, Kalnins M, Spalvins K. The use of droplet-based microfluidic technologies for accelerated selection of Yarrowia lipolytica and Phaffia rhodozyma yeast mutants. Biol Methods Protoc 2024; 9:bpae049. [PMID: 39114747 PMCID: PMC11303513 DOI: 10.1093/biomethods/bpae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Microorganisms are widely used for the industrial production of various valuable products, such as pharmaceuticals, food and beverages, biofuels, enzymes, amino acids, vaccines, etc. Research is constantly carried out to improve their properties, mainly to increase their productivity and efficiency and reduce the cost of the processes. The selection of microorganisms with improved qualities takes a lot of time and resources (both human and material); therefore, this process itself needs optimization. In the last two decades, microfluidics technology appeared in bioengineering, which allows for manipulating small particles (from tens of microns to nanometre scale) in the flow of liquid in microchannels. The technology is based on small-volume objects (microdroplets from nano to femtolitres), which are manipulated using a microchip. The chip is made of an optically transparent inert to liquid medium material and contains a series of channels of small size (<1 mm) of certain geometry. Based on the physical and chemical properties of microparticles (like size, weight, optical density, dielectric constant, etc.), they are separated using microsensors. The idea of accelerated selection of microorganisms is the application of microfluidic technologies to separate mutants with improved qualities after mutagenesis. This article discusses the possible application and practical implementation of microfluidic separation of mutants, including yeasts like Yarrowia lipolytica and Phaffia rhodozyma after chemical mutagenesis will be discussed.
Collapse
Affiliation(s)
- Taras Mika
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Martins Kalnins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Kriss Spalvins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| |
Collapse
|
3
|
Wang K, Huang K, Wang L, Lin X, Tan M, Su W. Microfluidic Strategies for Encapsulation, Protection, and Controlled Delivery of Probiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15092-15105. [PMID: 38920087 DOI: 10.1021/acs.jafc.4c02973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Probiotics are indispensable for maintaining the structure of gut microbiota and promoting human health, yet their survivability is frequently compromised by environmental stressors such as temperature fluctuations, pH variations, and mechanical agitation. In response to these challenges, microfluidic technology emerges as a promising avenue. This comprehensive review delves into the utilization of microfluidic technology for the encapsulation and delivery of probiotics within the gastrointestinal tract, with a focus on mitigating obstacles associated with probiotic viability. Initially, it elucidates the design and application of microfluidic devices, providing a precise platform for probiotic encapsulation. Moreover, it scrutinizes the utilization of carriers fabricated through microfluidic devices, including emulsions, microspheres, gels, and nanofibers, with the intent of bolstering probiotic stability. Subsequently, the review assesses the efficacy of encapsulation methodologies through in vitro gastrointestinal simulations and in vivo experimentation, underscoring the potential of microfluidic technology in amplifying probiotic delivery efficiency and health outcomes. In sum, microfluidic technology represents a pioneering approach to probiotic stabilization, offering avenues to cater to consumer preferences for a diverse array of functional food options.
Collapse
Affiliation(s)
- Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Kexin Huang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangsong Lin
- School of Medical Imageology, Wannan Medical College, Wuhu 241002, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| |
Collapse
|
4
|
Whulanza Y, Nathani RC, Adimillenva K, Irwansyah R, Wahyu Nurhayati R, Utomo MS, Abdullah AH. Effect of Flow Rate Modulation on Alginate Emulsification in Multistage Microfluidics. MICROMACHINES 2023; 14:1828. [PMID: 37893265 PMCID: PMC10609249 DOI: 10.3390/mi14101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023]
Abstract
The encapsulation of stem cells into alginate microspheres is an important aspect of tissue engineering or bioprinting which ensures cell growth and development. We previously demonstrated the encapsulation of stem cells using the hanging drop method. However, this conventional process takes a relatively long time and only produces a small-volume droplet. Here, an experimental approach for alginate emulsification in multistage microfluidics is reported. By using the microfluidic method, the emulsification of alginate in oil can be manipulated by tuning the flow rate for both phases. Two-step droplet emulsification is conducted in a series of polycarbonate and polydimethylsiloxane microfluidic chips. Multistage emulsification of alginate for stem cell encapsulation has been successfully reported in this study under certain flow rates. Fundamental non-dimensional numbers such as Reynolds and capillary are used to evaluate the effect of flow rate on the emulsification process. Reynolds numbers of around 0.5-2.5 for alginate/water and 0.05-0.2 for oil phases were generated in the current study. The capillary number had a maximum value of 0.018 to ensure the formation of plug flow. By using the multistage emulsification system, the flow rates of each process can be tuned independently, offering a wider range of droplet sizes that can be produced. A final droplet size of 500-1000 µm can be produced using flow rates of 0.1-0.5 mL/h and 0.7-2.4 mL/h for the first stage and second stage, respectively.
Collapse
Affiliation(s)
- Yudan Whulanza
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
- Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Rithwik Chandur Nathani
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Klaugusta Adimillenva
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Ridho Irwansyah
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Retno Wahyu Nurhayati
- Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
- Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | | | - Abdul Halim Abdullah
- Biomechanical & Clinical Engineering Research Group, School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
5
|
Wang J, Hahn S, Amstad E, Vogel N. Tailored Double Emulsions Made Simple. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107338. [PMID: 34706112 DOI: 10.1002/adma.202107338] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Double emulsions, such as water-in-oil-in-water droplets, are important material platforms for conducting fundamental research and for technological applications. To date, well-defined double-emulsion droplets consisting of a single water core and a thin oil shell can be exclusively formed with sophisticated microfluidic devices. The fabrication, preparation, and operation of such devices is challenging, which reduces the availability of tailored double emulsions to a limited community of experts. Here, a simple method is introduced to produce single-core double emulsions with high yield in large quantities, using a vortex mixer. Utilizing the density difference between the dispersed droplet and the continuous phase, this two-step emulsification method can achieve very small core droplet diameters below 10 μm and ultrathin shells with thicknesses below 1 μm. A detailed picture of the formation mechanism is provided and it is demonstrated that the process can be extended to produce multishell and multicore emulsions. Finally, its application is demonstrated to produce structurally colored colloidal supraparticles with unprecedented uniformity and yield. The method allows the creation of tailored double emulsions with minimal time, cost, effort, and expertise, and may widen its application to nonspecialized scientific communities.
Collapse
Affiliation(s)
- Junwei Wang
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Simon Hahn
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Esther Amstad
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
6
|
Amirifar L, Besanjideh M, Nasiri R, Shamloo A, Nasrollahi F, de Barros NR, Davoodi E, Erdem A, Mahmoodi M, Hosseini V, Montazerian H, Jahangiry J, Darabi MA, Haghniaz R, Dokmeci MR, Annabi N, Ahadian S, Khademhosseini A. Droplet-based microfluidics in biomedical applications. Biofabrication 2021; 14. [PMID: 34781274 DOI: 10.1088/1758-5090/ac39a9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Droplet-based microfluidic systems have been employed to manipulate discrete fluid volumes with immiscible phases. Creating the fluid droplets at microscale has led to a paradigm shift in mixing, sorting, encapsulation, sensing, and designing high throughput devices for biomedical applications. Droplet microfluidics has opened many opportunities in microparticle synthesis, molecular detection, diagnostics, drug delivery, and cell biology. In the present review, we first introduce standard methods for droplet generation (i.e., passive and active methods) and discuss the latest examples of emulsification and particle synthesis approaches enabled by microfluidic platforms. Then, the applications of droplet-based microfluidics in different biomedical applications are detailed. Finally, a general overview of the latest trends along with the perspectives and future potentials in the field are provided.
Collapse
Affiliation(s)
- Leyla Amirifar
- Mechanical Engineering, Sharif University of Technology, Tehran, Iran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Mohsen Besanjideh
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Rohollah Nasiri
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | | | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Elham Davoodi
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | - Ahmet Erdem
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | | | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Hossein Montazerian
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | - Jamileh Jahangiry
- University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Nasim Annabi
- Chemical Engineering, UCLA, Los Angeles, Los Angeles, California, 90095, UNITED STATES
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| |
Collapse
|
7
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021; 60:24368-24387. [PMID: 33539653 PMCID: PMC8596820 DOI: 10.1002/anie.202016154] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Jaicy Vallapurackal
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
8
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Jaicy Vallapurackal
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| |
Collapse
|
9
|
Saleheen A, Acharyya D, Prosser RA, Baker CA. A microfluidic bubble perfusion device for brain slice culture. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1364-1373. [PMID: 33644791 DOI: 10.1039/d0ay02291h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ex vivo brain slice cultures are utilized as analytical models for studying neurophysiology. Common approaches to maintaining slice cultures include roller tube and membrane interface techniques. The rise of organ-on-chip technologies has demonstrated the value of microfluidic perfusion culture systems for sampling and analysis of complex biology under well-controlled in vitro or ex vivo conditions. A number of approaches to microfluidic brain slice culture have been developed, however these typically involve complex design, fabrication, or operational parameters in order to meet the high oxygen demands of brain slices. Here, we present proof-of-principle for a novel approach to microfluidic brain slice culture. In this system, which we term a microfluidic bubble perfusion device, principles of droplet microfluidics were employed to generate droplets of perfusion media dispersed between bubbles of carbogen gas, and brain tissue slices were perfused with the resulting monodispersed droplets and bubbles. The challenge of tissue immobilization in the flow system was addressed using a two-part cytocompatible carbohydrate-based tissue adhesive. Best practices are discussed for perfusion chamber designs that maintain segmented flow throughout the course of perfusion. Control of droplet and bubble volumes was possible across the range of ca. 4-15 μL, bubble generation frequency was well controlled in the range ca. 1-7 bubbles per min, and bubble duty cycle was well controlled across the range ca. 20-80%. Murine hypothalamic tissue slices containing the suprachiasmatic nuclei were successfully maintained for durations of 8-10 hours, with tissue remaining viable for the duration of perfusion as assessed by Ca2+ imaging and propidium iodide (PI) staining.
Collapse
Affiliation(s)
- Amirus Saleheen
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
10
|
Gasperini L, Marques AP, Reis RL. Microfluidics for Processing of Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:15-25. [PMID: 32285362 DOI: 10.1007/978-3-030-36588-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microfluidics techniques can be used to process a wide range of biomaterials, from synthetic to natural origin ones. This chapter describes microfluidic processing of biomaterials, mainly polymeric materials of natural origin, focusing on water-soluble polymers that form non-flowing phases after crosslinking. Some polysaccharides and proteins, including agarose, alginate, chitosan, gellan gum, hyaluronic acid, collagen, gelatin, and silk fibroin are emphasized deu to their relevance in the field. The critical characteristics of these materials are discussed, giving particular consideration to those that directly impact its processability using microfluidics. Furthermore, some microfluidic-based processing techniques are presented, describing their suitability to process materials with different sol-gel transition mechanisms.
Collapse
Affiliation(s)
- Luca Gasperini
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
11
|
Doufène K, Tourné-Péteilh C, Etienne P, Aubert-Pouëssel A. Microfluidic Systems for Droplet Generation in Aqueous Continuous Phases: A Focus Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12597-12612. [PMID: 31461287 DOI: 10.1021/acs.langmuir.9b02179] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microfluidics is one of the most fascinating fields that researchers have been trying to apply in a large number of scientific disciplines over the past two decades. Among them, the discipline of food and pharmaceutical formulation encountered several obstacles when combining microfluidics with aqueous media. Indeed, the physical properties of liquids at micrometric volumes being particular, the droplet generation within microfluidic devices is a big challenge to be met. This focus review is intended to be an initiation for those who would like to generate microdroplets in microfluidic systems involving aqueous continuous phases. It provides a state-of-the-art look at such systems while focusing on the microfluidic devices used, their applications to form a wide variety of emulsions and particles, and the key role held by the interface between the device channels and the emulsion. This review also leads to reflections on new materials that can be used in microfluidic systems with aqueous continuous phases.
Collapse
Affiliation(s)
- Koceïla Doufène
- Institut Charles Gerhardt Montpellier (ICGM) , Univ Montpellier , CNRS, ENSCM, Montpellier , France
| | - Corine Tourné-Péteilh
- Institut Charles Gerhardt Montpellier (ICGM) , Univ Montpellier , CNRS, ENSCM, Montpellier , France
| | - Pascal Etienne
- Laboratoire Charles Coulomb (L2C) , Univ Montpellier , CNRS, Montpellier , France
| | - Anne Aubert-Pouëssel
- Institut Charles Gerhardt Montpellier (ICGM) , Univ Montpellier , CNRS, ENSCM, Montpellier , France
| |
Collapse
|
12
|
Calvino C, Weder C. Microcapsule-Containing Self-Reporting Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802489. [PMID: 30265445 DOI: 10.1002/smll.201802489] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Self-reporting polymers, which can indicate damage or exposure to excessive stress with a clearly perceptible optical signal, are potentially useful for several technological applications, including stress-sensitive sensors that enable in situ monitoring of mechanical events and structural health monitoring systems. A versatile and simple concept to realize this function is the exploitation of microcapsules that are filled with solutions of dyes that are released and chemically or physically activated when the protective shell is damaged. Such microcapsules can readily be incorporated into polymers and the composites thus made can be processed into films, coatings, or other objects. Mechanochromic effects can be realized with different types of dyes and activation schemes. In this concept article, a selection of recent key studies is presented to provide an overview of the state of the field. Different architectures and operating principles and their advantages and drawbacks are reviewed. The parameters that influence the design of microcapsule-based mechanochromic systems are considered and unexplored chromophore systems that might be useful to design future self-reporting polymers are discussed. Finally, specific aspects of capsule design, fabrication, and integration into polymers are presented. Throughout the article, challenges and opportunities of the concept are highlighted and possible future directions are discussed.
Collapse
Affiliation(s)
- Céline Calvino
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| |
Collapse
|
13
|
Trantidou T, Friddin MS, Salehi-Reyhani A, Ces O, Elani Y. Droplet microfluidics for the construction of compartmentalised model membranes. LAB ON A CHIP 2018; 18:2488-2509. [PMID: 30066008 DOI: 10.1039/c8lc00028j] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The design of membrane-based constructs with multiple compartments is of increasing importance given their potential applications as microreactors, as artificial cells in synthetic-biology, as simplified cell models, and as drug delivery vehicles. The emergence of droplet microfluidics as a tool for their construction has allowed rapid scale-up in generation throughput, scale-down of size, and control over gross membrane architecture. This is true on several levels: size, level of compartmentalisation and connectivity of compartments can all be programmed to various degrees. This tutorial review explains and explores the reasons behind this. We discuss microfluidic strategies for the generation of a family of compartmentalised systems that have lipid membranes as the basic structural motifs, where droplets are either the fundamental building blocks, or are precursors to the membrane-bound compartments. We examine the key properties associated with these systems (including stability, yield, encapsulation efficiency), discuss relevant device fabrication technologies, and outline the technical challenges. In doing so, we critically review the state-of-play in this rapidly advancing field.
Collapse
Affiliation(s)
- T Trantidou
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
14
|
Liu W, Warden A, Sun J, Shen G, Ding X. Simultaneous detection of multiple HPV DNA via bottom-well microfluidic chip within an infra-red PCR platform. BIOMICROFLUIDICS 2018; 12:024109. [PMID: 29576839 PMCID: PMC5851781 DOI: 10.1063/1.5023652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/06/2018] [Indexed: 05/26/2023]
Abstract
Portable Polymerase Chain Reaction (PCR) devices combined with microfluidic chips or lateral flow stripes have shown great potential in the field of point-of-need testing (PoNT) as they only require a small volume of patient sample and are capable of presenting results in a short time. However, the detection for multiple targets in this field leaves much to be desired. Herein, we introduce a novel PCR platform by integrating a bottom-well microfluidic chip with an infra-red (IR) excited temperature control method and fluorescence co-detection of three PCR products. Microfluidic chips are utilized to partition different samples into individual bottom-wells. The oil phase in the main channel contains multi-walled carbon nanotubes which were used as a heat transfer medium that absorbs energy from the IR-light-emitting diode (LED) and transfers heat to the water phase below. Cyclical rapid heating and cooling necessary for PCR are achieved by alternative power switching of the IR-LED and Universal Serial Bus (USB) mini-fan with a pulse width modulation scheme. This design of the IR-LED PCR platform is economic, compact, and fully portable, making it a promising application in the field of PoNT. The bottom-well microfluidic chip and IR-LED PCR platform were combined to fulfill a three-stage thermal cycling PCR for 40 cycles within 90 min for Human Papilloma Virus (HPV) detection. The PCR fluorescent signal was successfully captured at the end of each cycle. The technique introduced here has broad applications in nucleic acid amplification and PoNT devices.
Collapse
Affiliation(s)
| | | | | | | | - Xianting Ding
- Author to whom correspondence should be addressed: . Tel.: +86-21-62932274
| |
Collapse
|
15
|
Lorenz T, Bojko S, Bunjes H, Dietzel A. An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles. LAB ON A CHIP 2018; 18:627-638. [PMID: 29345261 DOI: 10.1039/c7lc01313b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanosizing increases the specific surface of drug particles, leading to faster dissolution inside the organism and improving the bioavailability of poorly water-soluble drugs. A novel approach for the preparation of drug nanoparticles in water using chemically inert microfluidic emulsification devices is presented in this paper. A lithographic fabrication sequence was established, allowing fabrication of intersecting and coaxial channels of different depths in glass as is required for 3D flow-focusing. Fenofibrate was used as a model for active pharmaceutical ingredients with very low water solubility in the experiments. It was dissolved in ethyl acetate and emulsified in water, as allowed by the 3D flow-focusing geometry. In the thread formation regime, the drug solution turned into monodisperse droplets of sizes down to below 1 μm. Fast supersaturation occurs individually in each droplet, as the disperse phase solvent progressively diffuses into the surrounding water. Liquid antisolvent precipitation results in highly monodisperse and amorphous nanoparticles of sizes down to 128 nm which can be precisely controlled by the continuous and disperse phase pressure. By comparing optically measured droplet sizes with particle sizes by dynamic light scattering, we could confirm that exactly one particle forms in every droplet. Furthermore, a downstream on-chip concentration allowed withdrawal of major volumes of only the continuous phase fluid which enabled an increase of particle concentration by up to 250 times.
Collapse
Affiliation(s)
- T Lorenz
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany.
| | | | | | | |
Collapse
|
16
|
Huang Y, Kim SH, Arriaga LR. Emulsion templated vesicles with symmetric or asymmetric membranes. Adv Colloid Interface Sci 2017; 247:413-425. [PMID: 28802479 DOI: 10.1016/j.cis.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Emulsion droplets with well-controlled topologies are used as templates for forming vesicles with either symmetric or asymmetric membranes. This review summarizes the available technology to produce these templates, the strategies and critical parameters involved in the transformation of emulsion droplets into vesicles, and the properties of the generated vesicles, with a special focus on the composition and material distribution of the vesicle membrane. Here, we also address limitations in the field and point to future fundamental and applied research in the area.
Collapse
|
17
|
Trantidou T, Friddin M, Elani Y, Brooks NJ, Law RV, Seddon JM, Ces O. Engineering Compartmentalized Biomimetic Micro- and Nanocontainers. ACS NANO 2017; 11:6549-6565. [PMID: 28658575 DOI: 10.1021/acsnano.7b03245] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Compartmentalization of biological content and function is a key architectural feature in biology, where membrane bound micro- and nanocompartments are used for performing a host of highly specialized and tightly regulated biological functions. The benefit of compartmentalization as a design principle is behind its ubiquity in cells and has led to it being a central engineering theme in construction of artificial cell-like systems. In this review, we discuss the attractions of designing compartmentalized membrane-bound constructs and review a range of biomimetic membrane architectures that span length scales, focusing on lipid-based structures but also addressing polymer-based and hybrid approaches. These include nested vesicles, multicompartment vesicles, large-scale vesicle networks, as well as droplet interface bilayers, and double-emulsion multiphase systems (multisomes). We outline key examples of how such structures have been functionalized with biological and synthetic machinery, for example, to manufacture and deliver drugs and metabolic compounds, to replicate intracellular signaling cascades, and to demonstrate collective behaviors as minimal tissue constructs. Particular emphasis is placed on the applications of these architectures and the state-of-the-art microfluidic engineering required to fabricate, functionalize, and precisely assemble them. Finally, we outline the future directions of these technologies and highlight how they could be applied to engineer the next generation of cell models, therapeutic agents, and microreactors, together with the diverse applications in the emerging field of bottom-up synthetic biology.
Collapse
Affiliation(s)
- Tatiana Trantidou
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mark Friddin
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Yuval Elani
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Robert V Law
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - John M Seddon
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Oscar Ces
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
18
|
|
19
|
Eggersdorfer ML, Zheng W, Nawar S, Mercandetti C, Ofner A, Leibacher I, Koehler S, Weitz DA. Tandem emulsification for high-throughput production of double emulsions. LAB ON A CHIP 2017; 17:936-942. [PMID: 28197593 DOI: 10.1039/c6lc01553k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Core-shell double emulsions produced using microfluidic methods with controlled structural parameters exhibit great potential in a wide range of applications, but the low production rate of microfluidic methods hinders the exploitation of the capabilities of microfluidics to produce double emulsions with well-defined features. A major obstacle towards the scaled-up production of core-shell double emulsions is the difficulty of achieving robust spatially controlled wettability in integrated microfluidic devices. Here, we use tandem emulsification, a two-step process with microfluidic devices, to scale up the production. With this method, single emulsions are generated in a first device and are re-injected directly into a second device to form uniform double emulsions. We demonstrate the application of tandem emulsification for scalable core-shell emulsion production with both integrated flow focusing and millipede devices and obtain emulsions of which over 90% are single-core monodisperse double emulsion drops. With both mechanisms, the shell thickness can be controlled, so that shells as thin as 3 μm are obtained for emulsions 50 μm in radius.
Collapse
Affiliation(s)
- M L Eggersdorfer
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - W Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - S Nawar
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - C Mercandetti
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - A Ofner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - I Leibacher
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - S Koehler
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - D A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
20
|
Bodin-Thomazo N, Malloggi F, Guenoun P. Marker patterning: a spatially resolved method for tuning the wettability of PDMS. RSC Adv 2017. [DOI: 10.1039/c7ra05654k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article presents a marker patterning method where a permanent ink is used as a masking layer. During plasma oxidation, the PDMS surfaces are protected leading to a simple and easy wettability patterning.
Collapse
Affiliation(s)
| | | | - P. Guenoun
- LIONS
- NIMBE
- CEA
- CNRS
- Université Paris-Saclay
| |
Collapse
|
21
|
Lee TY, Choi TM, Shim TS, Frijns RAM, Kim SH. Microfluidic production of multiple emulsions and functional microcapsules. LAB ON A CHIP 2016; 16:3415-40. [PMID: 27470590 DOI: 10.1039/c6lc00809g] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent advances in microfluidics have enabled the controlled production of multiple-emulsion drops with onion-like topology. The multiple-emulsion drops possess an intrinsic core-shell geometry, which makes them useful as templates to create microcapsules with a solid membrane. High flexibility in the selection of materials and hierarchical order, achieved by microfluidic technologies, has provided versatility in the membrane properties and microcapsule functions. The microcapsules are now designed not just for storage and release of encapsulants but for sensing microenvironments, developing structural colours, and many other uses. This article reviews the current state of the art in the microfluidic-based production of multiple-emulsion drops and functional microcapsules. The three main sections of this paper discuss distinct microfluidic techniques developed for the generation of multiple emulsions, four representative methods used for solid membrane formation, and various applications of functional microcapsules. Finally, we outline the current limitations and future perspectives of microfluidics and microcapsules.
Collapse
Affiliation(s)
- Tae Yong Lee
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, South Korea.
| | | | | | | | | |
Collapse
|
22
|
Arriaga LR, Amstad E, Weitz DA. Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells. LAB ON A CHIP 2015; 15:3335-3340. [PMID: 26152396 DOI: 10.1039/c5lc00631g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a versatile and robust device for the continuous production of double emulsion drops with very thin shell thicknesses, of about 5% of the radius: for emulsions 50 μm in radius the shells can be as thin as a few micrometers. Importantly, the viscosity of the oil shell can be varied from that of water up to 70 times that of water without compromising device operation. Furthermore, this device can be easily scaled-up as it is made through soft lithography; this may enable the production of industrial quantities of double emulsion drops with ultra-thin shells, which may serve as templates to form capsules with homogeneous shell thicknesses, useful beyond scientific applications.
Collapse
Affiliation(s)
- L R Arriaga
- School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
23
|
Chaurasia AS, Sajjadi S. Millimetric core–shell drops via buoyancy assisted non-confined microfluidics. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Karamdad K, Law RV, Seddon JM, Brooks NJ, Ces O. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method. LAB ON A CHIP 2015; 15:557-62. [PMID: 25413588 DOI: 10.1039/c4lc01277a] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Giant unilamellar vesicles (GUVs) have a wide range of applications in biology and synthetic biology. As a result, new approaches for constructing GUVs using microfluidic techniques are emerging but there are still significant shortcomings in the control of fundamental vesicle structural parameters such as size, lamellarity, membrane composition and internal contents. We have developed a novel microfluidic platform to generate compositionally-controlled GUVs. Water-in-oil (W/O) droplets formed in a lipid-containing oil flow are transferred across an oil-water interface, facilitating the self-assembly of a phospholipid bilayer. In addition, for the first time we have studied the mechanical properties of the resultant lipid bilayers of the microfluidic GUVs. Using fluctuation analysis we were able to calculate the values for bending rigidity of giant vesicles assembled on chip and demonstrate that these correlate strongly with those of traditional low throughput strategies such as electroformation.
Collapse
Affiliation(s)
- K Karamdad
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
25
|
Shih SCC, Gach PC, Sustarich J, Simmons BA, Adams PD, Singh S, Singh AK. A droplet-to-digital (D2D) microfluidic device for single cell assays. LAB ON A CHIP 2015; 15:225-36. [PMID: 25354549 DOI: 10.1039/c4lc00794h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have developed a new hybrid droplet-to-digital microfluidic platform (D2D) that integrates droplet-in-channel microfluidics with digital microfluidics (DMF) for performing multi-step assays. This D2D platform combines the strengths of the two formats-droplets-in-channel for facile generation of droplets containing single cells, and DMF for on-demand manipulation of droplets including control of different droplet volumes (pL-μL), creation of a dilution series of ionic liquid (IL), and parallel single cell culturing and analysis for IL toxicity screening. This D2D device also allows for automated analysis that includes a feedback-controlled system for merging and splitting of droplets to add reagents, an integrated Peltier element for parallel cell culture at optimum temperature, and an impedance sensing mechanism to control the flow rate for droplet generation and preventing droplet evaporation. Droplet-in-channel is well-suited for encapsulation of single cells as it allows the careful manipulation of flow rates of aqueous phase containing cells and oil to optimize encapsulation. Once single cell containing droplets are generated, they are transferred to a DMF chip via a capillary where they are merged with droplets containing IL and cultured at 30 °C. The DMF chip, in addition to permitting cell culture and reagent (ionic liquid/salt) addition, also allows recovery of individual droplets for off-chip analysis such as further culturing and measurement of ethanol production. The D2D chip was used to evaluate the effect of IL/salt type (four types: NaOAc, NaCl, [C2mim] [OAc], [C2mim] [Cl]) and concentration (four concentrations: 0, 37.5, 75, 150 mM) on the growth kinetics and ethanol production of yeast and as expected, increasing IL concentration led to lower biomass and ethanol production. Specifically, [C2mim] [OAc] had inhibitory effects on yeast growth at concentrations 75 and 150 mM and significantly reduced their ethanol production compared to cells grown in other ILs/salts. The growth curve trends obtained by D2D matched conventional yeast culturing in microtiter wells, validating the D2D platform. We believe that our approach represents a generic platform for multi-step biochemical assays such as drug screening, digital PCR, enzyme assays, immunoassays and cell-based assays.
Collapse
Affiliation(s)
- Steve C C Shih
- Sandia National Laboratories, 7011 East Ave, Livermore, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Chaurasia AS, Josephides DN, Sajjadi S. Large ultrathin shelled drops produced via non-confined microfluidics. Chemphyschem 2014; 16:403-11. [PMID: 25382308 DOI: 10.1002/cphc.201402606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Indexed: 01/07/2023]
Abstract
We present a facile approach for producing large and monodisperse core-shell drops with ultrathin shells using a single-step process. A biphasic compound jet is introduced into a quiescent third (outer) phase that ruptures to form core-shell drops. Ultrathin shelled drops could only be produced within a certain range of surfactant concentrations and flow rates, highlighting the effect of interfacial tension in engulfing the core in a thin shell. An increase in surfactant concentrations initially resulted in drops with thinner shells. However, the drops with thinnest shells were obtained at an optimum surfactant concentration, and a further increase in the surfactant concentrations increased the shell thickness. Highly monodisperse (coefficient of variation smaller than 3 %) core-shell drops with diameter of ∼200 μm-2 mm with shell thickness as small as ∼2 μm were produced. The resulting drops were stable enough to undergo polymerisation and produce ultrathin shelled capsules.
Collapse
Affiliation(s)
- Ankur S Chaurasia
- Department of Physics, King's College London, Strand, London, WC2R 2 LS (UK)
| | | | | |
Collapse
|
27
|
Satoh T, Kodama K, Hattori K, Ichikawa S, Sugiura S, Kanamori T. Pressure-Driven Microfluidic Device for Droplet Formation with Minimized Dead Volume. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2014. [DOI: 10.1252/jcej.14we103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Taku Satoh
- Research Center for Stem Cell Engineering, National Institute of
Advanced Industrial Science and Technology (AIST)
| | - Kohei Kodama
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Koji Hattori
- Research Center for Stem Cell Engineering, National Institute of
Advanced Industrial Science and Technology (AIST)
| | - Sosaku Ichikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Shinji Sugiura
- Research Center for Stem Cell Engineering, National Institute of
Advanced Industrial Science and Technology (AIST)
| | - Toshiyuki Kanamori
- Research Center for Stem Cell Engineering, National Institute of
Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
28
|
Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv Drug Deliv Rev 2013; 65:1420-46. [PMID: 23770061 DOI: 10.1016/j.addr.2013.05.009] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/17/2013] [Accepted: 05/30/2013] [Indexed: 11/20/2022]
Abstract
Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced.
Collapse
|
29
|
Vladisavljević GT, Khalid N, Neves MA, Kuroiwa T, Nakajima M, Uemura K, Ichikawa S, Kobayashi I. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery. Adv Drug Deliv Rev 2013; 65:1626-63. [PMID: 23899864 DOI: 10.1016/j.addr.2013.07.017] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/09/2023]
Abstract
Microfluidics is an emerging and promising interdisciplinary technology which offers powerful platforms for precise production of novel functional materials (e.g., emulsion droplets, microcapsules, and nanoparticles as drug delivery vehicles- and drug molecules) as well as high-throughput analyses (e.g., bioassays, detection, and diagnostics). In particular, multiphase microfluidics is a rapidly growing technology and has beneficial applications in various fields including biomedicals, chemicals, and foods. In this review, we first describe the fundamentals and latest developments in multiphase microfluidics for producing biocompatible materials that are precisely controlled in size, shape, internal morphology and composition. We next describe some microfluidic applications that synthesize drug molecules, handle biological substances and biological units, and imitate biological organs. We also highlight and discuss design, applications and scale up of droplet- and flow-based microfluidic devices used for drug discovery and delivery.
Collapse
|
30
|
MA FQ, FENG Y, YANG GY. Ultrahigh-throughput Enzymatic Screening Method Based on Fluorescence-activated Cell Sorting and Its Applications*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.07.006] [Citation(s) in RCA: 381] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Kim SH, Kim JW, Cho JC, Weitz DA. Double-emulsion drops with ultra-thin shells for capsule templates. LAB ON A CHIP 2011; 11:3162-3166. [PMID: 21811710 DOI: 10.1039/c1lc20434c] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We introduce an emulsification technique that creates monodisperse double-emulsion drops with a core-shell geometry having an ultra-thin wall as a middle layer. We create a biphasic flow in a microfluidic capillary device by forming a sheath flow consisting of a thin layer of a fluid with high affinity to the capillary wall flowing along the inner wall of the capillary, surrounding the innermost fluid. This creates double-emulsion drops, using a single-step emulsification, having a very thin fluid shell. If the shell is solidified, its thickness can be small as a hundred nanometres or even less. Despite the small thickness of this shell, these structures are nevertheless very stable, giving them great potential for encapsulation. We demonstrate this by creating biodegradable microcapsules of poly(lactic acid) with a shell thickness of a few tens of nanometres, which are potentially useful for encapsulation and delivery of drugs, cosmetics, and nutrients.
Collapse
Affiliation(s)
- Shin-Hyun Kim
- School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
33
|
|
34
|
Saeki D, Sugiura S, Kanamori T, Sato S, Ichikawa S. Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer. LAB ON A CHIP 2010; 10:2292-2295. [PMID: 20625583 DOI: 10.1039/c003918g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper reports a novel formation method of monodisperse calcium alginate microbeads from water-in-oil-in-water (W/O/W) droplets with an ultra-thin oil phase layer. W/O/W droplets containing sodium alginate in an internal aqueous phase were formed as a template of calcium alginate microbeads using a microfluidic device. The ultra-thin oil phase layer of the W/O/W droplets was ruptured by an osmotic pressure difference between the internal and external aqueous phase. Immediately after the rupture, polyanionic alginate in the internal aqueous phase was cross-linked with calcium ion diffused from the external aqueous phase, and monodisperse and spherical calcium alginate microbeads were formed.
Collapse
Affiliation(s)
- Daisuke Saeki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|