1
|
Willans M, Hollings A, Boseley RE, Munyard T, Ellison GC, Hackett MJ. The application of X-ray fluorescence microscopy and micro-XANES spectroscopy to study neuro-metallomics. J Inorg Biochem 2024:112744. [PMID: 39341704 DOI: 10.1016/j.jinorgbio.2024.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
This early career research highlight provides a review of my own research program over the last decade, a time frame that encompasses my transition from postdoctoral fellowships to independent researcher. As an analytical chemist and applied spectroscopist, the central theme of my research program over this time has been protocol development at synchrotron facilities, with the main objective to investigate brain metal homeostasis during both brain health and brain disease. I will begin my review with an overview of brain metal homeostasis, before introducing analytical challenges associated with its study. I will then provide a brief summary of the two main X-ray techniques I have used to study brain metal homeostasis, X-ray fluorescence microscopy (XFM) and X-ray absorption near edge structure spectroscopy (XANES). The review then finishes with a summary of my main research contributions using these two techniques, put in the context of the results from others in the field.
Collapse
Affiliation(s)
- Meg Willans
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Ashley Hollings
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Rhiannon E Boseley
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Thomas Munyard
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Gaewyn C Ellison
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Mark J Hackett
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
2
|
Schwehr BJ, Hartnell D, Ellison G, Hindes MT, Milford B, Dallerba E, Hickey SM, Pfeffer FM, Brooks DA, Massi M, Hackett MJ. Fluorescent probes for neuroscience: imaging ex vivo brain tissue sections. Analyst 2024; 149:4536-4552. [PMID: 39171617 DOI: 10.1039/d4an00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Neurobiological research relies heavily on imaging techniques, such as fluorescence microscopy, to understand neurological function and disease processes. However, the number and variety of fluorescent probes available for ex vivo tissue section imaging limits the advance of research in the field. In this review, we outline the current range of fluorescent probes that are available to researchers for ex vivo brain section imaging, including their physical and chemical characteristics, staining targets, and examples of discoveries for which they have been used. This review is organised into sections based on the biological target of the probe, including subcellular organelles, chemical species (e.g., labile metal ions), and pathological phenomenon (e.g., degenerating cells, aggregated proteins). We hope to inspire further development in this field, given the considerable benefits to be gained by the greater availability of suitably sensitive probes that have specificity for important brain tissue targets.
Collapse
Affiliation(s)
- Bradley J Schwehr
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - David Hartnell
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| | - Gaewyn Ellison
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| | - Madison T Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Breah Milford
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Elena Dallerba
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Doug A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Massimiliano Massi
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Mark J Hackett
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| |
Collapse
|
3
|
Braun G, Schaier M, Werner P, Theiner S, Zanghellini J, Wisgrill L, Fyhrquist N, Koellensperger G. MeXpose-A Modular Imaging Pipeline for the Quantitative Assessment of Cellular Metal Bioaccumulation. JACS AU 2024; 4:2197-2210. [PMID: 38938797 PMCID: PMC11200229 DOI: 10.1021/jacsau.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
MeXpose is an end-to-end image analysis pipeline designed for mechanistic studies of metal exposure, providing spatial single-cell metallomics using laser ablation-inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS). It leverages the high-resolution capabilities of low-dispersion laser ablation setups, a standardized approach to quantitative bioimaging, and the toolbox of immunohistochemistry using metal-labeled antibodies for cellular phenotyping. MeXpose uniquely unravels quantitative metal bioaccumulation (sub-fg range per cell) in phenotypically characterized tissue. Furthermore, the full scope of single-cell metallomics is offered through an extended mass range accessible by ICP-TOFMS instrumentation (covering isotopes from m/z 14-256). As a showcase, an ex vivo human skin model exposed to cobalt chloride (CoCl2) was investigated. For the first time, metal permeation was studied at single-cell resolution, showing high cobalt (Co) accumulation in the epidermis, particularly in mitotic basal cells, which correlated with DNA damage. Significant Co deposits were also observed in vascular cells, with notably lower levels in dermal fibers. MeXpose provides unprecedented insights into metal bioaccumulation with the ability to explore relationships between metal exposure and cellular responses on a single-cell level, paving the way for advanced toxicological and therapeutic studies.
Collapse
Affiliation(s)
- Gabriel Braun
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Martin Schaier
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Paulina Werner
- Institute
of Environmental Medicine, Karolinska Institutet, 17165 Solna, Sweden
| | - Sarah Theiner
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Jürgen Zanghellini
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Lukas Wisgrill
- Division
of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department
of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National
EIRENE Hub, 1090 Vienna, Austria
| | - Nanna Fyhrquist
- Institute
of Environmental Medicine, Karolinska Institutet, 17165 Solna, Sweden
| | - Gunda Koellensperger
- Institute
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National
EIRENE Hub, 1090 Vienna, Austria
| |
Collapse
|
4
|
Mizuno D, Kawahara M, Konoha-Mizuno K, Hama R, Ogawara T. The Role of Zinc in the Development of Vascular Dementia and Parkinson's Disease and the Potential of Carnosine as Their Therapeutic Agent. Biomedicines 2024; 12:1296. [PMID: 38927502 PMCID: PMC11201809 DOI: 10.3390/biomedicines12061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Synaptic zinc ions (Zn2+) play an important role in the development of vascular dementia (VD) and Parkinson's disease (PD). In this article, we reviewed the current comprehension of the Zn2+-induced neurotoxicity that leads to the pathogenesis of these neuronal diseases. Zn2+-induced neurotoxicity was investigated by using immortalised hypothalamic neurons (GT1-7 cells). This cell line is useful for the development of a rapid and convenient screening system for investigating Zn2+-induced neurotoxicity. GT1-7 cells were also used to search for substances that prevent Zn2+-induced neurotoxicity. Among the tested substances was a protective substance in the extract of Japanese eel (Anguilla japonica), and we determined its structure to be like carnosine (β-alanylhistidine). Carnosine may be a therapeutic drug for VD and PD. Furthermore, we reviewed the molecular mechanisms that involve the role of carnosine as an endogenous protector and its protective effect against Zn2+-induced cytotoxicity and discussed the prospects for the future therapeutic applications of this dipeptide for neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Dai Mizuno
- Department of Forensic Medicine, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata-shi 990-9585, Yamagata, Japan; (K.K.-M.); (R.H.); (T.O.)
| | - Masahiro Kawahara
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishitokyo-shi 202-8585, Tokyo, Japan;
| | - Keiko Konoha-Mizuno
- Department of Forensic Medicine, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata-shi 990-9585, Yamagata, Japan; (K.K.-M.); (R.H.); (T.O.)
| | - Ryoji Hama
- Department of Forensic Medicine, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata-shi 990-9585, Yamagata, Japan; (K.K.-M.); (R.H.); (T.O.)
| | - Terumasa Ogawara
- Department of Forensic Medicine, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata-shi 990-9585, Yamagata, Japan; (K.K.-M.); (R.H.); (T.O.)
| |
Collapse
|
5
|
Niculescu AG, Mihaiescu B, Bîrcă AC, Moroșan A, Munteanu (Mihaiescu) OM, Vasile BȘ, Hadibarata T, Istrati D, Mihaiescu DE, Grumezescu AM. Fabrication and Advanced Imaging Characterization of Magnetic Aerogel-Based Thin Films for Water Decontamination. Gels 2024; 10:394. [PMID: 38920940 PMCID: PMC11202994 DOI: 10.3390/gels10060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Aerogels have emerged as appealing materials for various applications due to their unique features, such as low density, high porosity, high surface area, and low thermal conductivity. Aiming to bring the advantages of these materials to the environmental field, this study focuses on synthesizing magnetic silica aerogel-based films suitable for water decontamination. In this respect, a novel microfluidic platform was created to obtain core-shell iron oxide nanoparticles that were further incorporated into gel-forming precursor solutions. Afterward, dip-coating deposition was utilized to create thin layers of silica-based gels, which were further processed by 15-hour gelation time, solvent transfer, and further CO2 desiccation. A series of physicochemical analyses (XRD, HR-MS FT-ICR, FT-IR, TEM, SEM, and EDS) were performed to characterize the final films and intermediate products. The proposed advanced imaging experimental model for film homogeneity and adsorption characteristics confirmed uniform aerogel film deposition, nanostructured surface, and ability to remove pesticides from contaminated water samples. Based on thorough investigations, it was concluded that the fabricated magnetic aerogel-based thin films are promising candidates for water decontamination and novel solid-phase extraction sample preparation.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Bogdan Mihaiescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Alina Moroșan
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Oana Maria Munteanu (Mihaiescu)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
- Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia
| | - Daniela Istrati
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.M.); (D.I.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (B.M.); (A.C.B.); (O.M.M.); (B.Ș.V.); (T.H.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
6
|
Gorman BL, Torti SV, Torti FM, Anderton CR. Mass spectrometry imaging of metals in tissues and cells: Methods and biological applications. Biochim Biophys Acta Gen Subj 2024; 1868:130329. [PMID: 36791830 PMCID: PMC10423302 DOI: 10.1016/j.bbagen.2023.130329] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Metals are pervasive throughout biological processes, where they play essential structural and catalytic roles. Metals can also exhibit deleterious effects on human health. Powerful analytical techniques, such as mass spectrometry imaging (MSI), are required to map metals due to their low concentrations within biological tissue. SCOPE OF REVIEW This Mini Review focuses on key MSI technology that can image metal distributions in situ, describing considerations for each technique (e.g., resolution, sensitivity, etc.). We highlight recent work using MSI for mapping trace metals in tissues, detecting metal-based drugs, and simultaneously imaging metals and biomolecules. MAJOR CONCLUSIONS MSI has enabled significant advances in locating bioactive metals at high spatial resolution and correlating their distributions with that of biomolecules. The use of metal-based immunochemistry has enabled simultaneous high-throughput protein and biomolecule imaging. GENERAL SIGNIFICANCE The techniques and examples described herein can be applied to many biological questions concerning the important biological roles of metals, metal toxicity, and localization of metal-based drugs.
Collapse
Affiliation(s)
- Brittney L Gorman
- Environmental Molecular Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, United States of America
| | - Suzy V Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Frank M Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Christopher R Anderton
- Environmental Molecular Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, United States of America.
| |
Collapse
|
7
|
Maekawa S, Yuzu K, Chatani E, Morigaki K. Oligomerization and aggregation of NAP-22 with several metal ions. Neurosci Lett 2024; 821:137623. [PMID: 38184017 DOI: 10.1016/j.neulet.2023.137623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Metal ions participate in various biochemical processes such as electron transport chain, gene transcription, and enzymatic reactions. Furthermore, the aggregation promoting effect of several metal ions on neuronal proteins such as prion, tau, Aβ peptide, and α-synuclein, has been reported. NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched calmodulin-binding protein and one of the major proteins in the detergent-resistant membrane microdomain fraction of the neuronal cell membrane. Previously, we showed oligomer formation of NAP-22 in the presence of several phospholipids and fatty acids. In this study, we found the aggregation of NAP-22 by FeCl2, FeCl3, and AlCl3 using native-PAGE. Oligomer or aggregate formation of NAP-22 by ZnCl2 or CuSO4 was shown with SDS-PAGE after cross-linking with glutaraldehyde. Morphological analysis with electron microscopy revealed the formation of large aggregates composed of small annular oligomers in the presence of FeCl3, AlCl3, or CuSO4. In case of FeCl2 or ZnCl2, instead of large aggregates, scattered annular and globular oligomers were observed. Interestingly, metal ion induced aggregation of NAP-22 was inhibited by several coenzymes such as NADP+, NADPH, or thiamine pyrophosphate. Since NAP-22 is highly expressed in the presynaptic region of the synapse, this result suggests the participation of metal ions not only on the protein and membrane dynamics at the presynaptic region, but also on the metabolic regulation though the interaction with coenzymes.
Collapse
Affiliation(s)
- Shohei Maekawa
- Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan.
| | - Keisuke Yuzu
- Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Eri Chatani
- Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan; Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
8
|
Kret P, Bodzon-Kulakowska A, Drabik A, Ner-Kluza J, Suder P, Smoluch M. Mass Spectrometry Imaging of Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6343. [PMID: 37763619 PMCID: PMC10534324 DOI: 10.3390/ma16186343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The science related to biomaterials and tissue engineering accounts for a growing part of our knowledge. Surface modifications of biomaterials, their performance in vitro, and the interaction between them and surrounding tissues are gaining more and more attention. It is because we are interested in finding sophisticated materials that help us to treat or mitigate different disorders. Therefore, efficient methods for surface analysis are needed. Several methods are routinely applied to characterize the physical and chemical properties of the biomaterial surface. Mass Spectrometry Imaging (MSI) techniques are able to measure the information about molecular composition simultaneously from biomaterial and adjacent tissue. That is why it can answer the questions connected with biomaterial characteristics and their biological influence. Moreover, this kind of analysis does not demand any antibodies or dyes that may influence the studied items. It means that we can correlate surface chemistry with a biological response without any modification that could distort the image. In our review, we presented examples of biomaterials analyzed by MSI techniques to indicate the utility of SIMS, MALDI, and DESI-three major ones in the field of biomaterials applications. Examples include biomaterials used to treat vascular system diseases, bone implants with the effects of implanted material on adjacent tissues, nanofibers and membranes monitored by mass spectrometry-related techniques, analyses of drug-eluting long-acting parenteral (LAPs) implants and microspheres where MSI serves as a quality control system.
Collapse
Affiliation(s)
| | | | | | | | | | - Marek Smoluch
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland; (P.K.); (A.B.-K.); (A.D.); (J.N.-K.); (P.S.)
| |
Collapse
|
9
|
Jahan R, Yousaf M, Khan H, Shah SA, Khan AA, Bibi N, Javed F, Ijaz M, Ali A, Wei DQ. Zinc Ortho Methyl Carbonodithioate Improved Pre and Post-Synapse Memory Impairment via SIRT1/p-JNK Pathway against Scopolamine in Adult Mice. J Neuroimmune Pharmacol 2023; 18:183-194. [PMID: 37261605 DOI: 10.1007/s11481-023-10067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/17/2023] [Indexed: 06/02/2023]
Abstract
Alzheimer's disease (AD) is globally recognized as a prominent cause of dementia for which efficient treatment is still lacking. New candidate compounds that are biologically potent are regularly tested. We, therefore, hypothesized to study the neuroprotective potential of Zinc Ortho Methyl Carbonodithioate (thereafter called ZOMEC) against Scopolamine (SCOP) induced Alzheimer's disease (AD) model using adult albino mice. We post-administered ZOMEC (30 mg/Kg) into two group of mice for three weeks on daily basis that received either 0.9% saline or SCOP (1 mg/Kg) for initial two weeks. The other two groups of mice received 0.9% saline and SCOP (1 mg/Kg) respectively. After memory related behavioral analysis the brain homogenates were evaluated for the antioxidant potential of ZOMEC and multiple protein markers were examined through western blotting. Our results provide enough evidences that ZOMEC decrease oxidative stress by increasing catalase (CAT) and glutathione S transferase (GST) and decreasing the lipid peroxidation (LPO). The SIRT1 and pre and post synaptic marker proteins, synaptophysin (SYP) as well as post synaptic density protein (PSD-95) expression were also enhanced upon ZOMEC treatment. Furthermore, memory impairment was rescued and ZOMEC appreciably abrogated the Aβ accumulation, BACE1 expression C and the p-JNK pathway. The inflammatory protein markers, NF-kβ and IL-1β in ZOMEC treated mice were also comparable with control group. The predicted interaction of ZOMEC with SIRT1 was further confirmed by molecular docking. These findings thus provide initial reports on efficacy of ZOMEC in SCOP induced AD model.
Collapse
Affiliation(s)
- Rifat Jahan
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
- Department of Biochemistry Shaheed Benazir, Bhutto Women University, Peshawar, Pakistan
| | - Mohammad Yousaf
- Department of Chemistry, Islamia College University, Peshawar, Pakistan.
| | - Hamayun Khan
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Shahid Ali Shah
- Department of Biology, University of Haripur, Khyber Pakhtunkhwa, Haripur, 22620, Pakistan
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Musarrat Ijaz
- Department of Statistics Shaheed Benazir, Bhutto Women University, Peshawar, Pakistan
| | - Arif Ali
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Dong-Qing Wei
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, People's Republic of China.
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Department of Bioinformatics, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Kawahara M, Kato-Negishi M, Tanaka KI. Dietary Trace Elements and the Pathogenesis of Neurodegenerative Diseases. Nutrients 2023; 15:2067. [PMID: 37432185 PMCID: PMC10180548 DOI: 10.3390/nu15092067] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
Trace elements such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) are absorbed from food via the gastrointestinal tract, transported into the brain, and play central roles in normal brain functions. An excess of these trace elements often produces reactive oxygen species and damages the brain. Moreover, increasing evidence suggests that the dyshomeostasis of these metals is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, prion diseases, and Lewy body diseases. The disease-related amyloidogenic proteins can regulate metal homeostasis at the synapses, and thus loss of the protective functions of these amyloidogenic proteins causes neurodegeneration. Meanwhile, metal-induced conformational changes of the amyloidogenic proteins contribute to enhancing their neurotoxicity. Moreover, excess Zn and Cu play central roles in the pathogenesis of vascular-type senile dementia. Here, we present an overview of the intake, absorption, and transport of four essential elements (Fe, Zn, Cu, Mn) and one non-essential element (aluminum: Al) in food and their connections with the pathogenesis of neurodegenerative diseases based on metal-protein, and metal-metal cross-talk.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| |
Collapse
|
11
|
Juan SMA, Daglas M, Gunn AP, Lago L, Adlard PA. Characterization of the spatial distribution of metals and profile of metalloprotein complexes in a mouse model of repetitive mild traumatic brain injury. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865363. [PMID: 36460052 DOI: 10.1093/mtomcs/mfac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Metal dyshomeostasis is a well-established consequence of neurodegenerative diseases and traumatic brain injury. While the significance of metals continues to be uncovered in many neurological disorders, their implication in repetitive mild traumatic brain injury remains uncharted. To address this gap, we characterized the spatial distribution of metal levels (iron, zinc, and copper) using laser ablation-inductively coupled plasma-mass spectrometry, the profile of metal-binding proteins via size exclusion chromatography-inductively coupled plasma-mass spectrometry and the expression of the major iron storing protein ferritin via western blotting. Using a mouse model of repetitive mild traumatic brain injury, 3-month-old male and female C57Bl6 mice received one or five impacts (48 h apart). At 1 month following 5× TBI (traumatic brain injury), iron and ferritin levels were significantly elevated in the contralateral cortex. There was a trend toward increased iron levels in the entire contralateral hemisphere and a reduction in contralateral cortical iron-binding proteins following 1× TBI. No major changes in zinc levels were seen in both hemispheres following 5× or 1× TBI, although there was a reduction in ipsilateral zinc-binding proteins following 5× TBI and a contralateral increase in zinc-binding proteins following 1× TBI. Copper levels were significantly increased in both hemispheres following 5× TBI, without changes in copper-binding proteins. This study shows for the first time that repetitive mild TBI (r-mTBI) leads to metal dyshomeostasis, highlighting its potential involvement in promoting neurodegeneration, which provides a rationale for examining the benefit of metal-targeting drugs, which have shown promising results in neurodegenerative conditions and single TBI, but have yet to be tested following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Adam P Gunn
- Neuropathology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Larissa Lago
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Norman NJ, Ghali J, Radzyukevich TL, Heiny JA, Landero-Figueroa J. Glucose uptake in mammalian cells measured by ICP-MS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Busser B, Bulin AL, Gardette V, Elleaume H, Pelascini F, Bouron A, Motto-Ros V, Sancey L. Visualizing the cerebral distribution of chemical elements: A challenge met with LIBS elemental imaging. J Neurosci Methods 2022; 379:109676. [PMID: 35850297 DOI: 10.1016/j.jneumeth.2022.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
Biological tissues contain various metals and metalloids ions with central role in the regulation of several pathophysiological functions. In parallel, the development and the evaluation of novel nanocompounds for biomedicine require the monitoring of their biodistribution in tissues of interest. Therefore, researchers need to use reliable and accessible techniques to detect and quantify major and trace elements in space-resolved manner. In this communication, we report how Laser-Induced Breakdown Spectroscopy (LIBS) can be used to image the distribution of chemical elements in brain tissues.
Collapse
Affiliation(s)
- Benoit Busser
- Univ. Grenoble Alpes, INSERM U1209, CNRS, UMR 5309, Institute for Advanced Biosciences (IAB), 38000 Grenoble, France; Grenoble Alpes University Hospital, 38700 Grenoble, France; Institut Universitaire de France (IUF), France.
| | - Anne-Laure Bulin
- Univ. Grenoble Alpes, INSERM U1209, CNRS, UMR 5309, Institute for Advanced Biosciences (IAB), 38000 Grenoble, France; Univ. Grenoble Alpes, INSERM, UA07 STROBE, 38000 Grenoble, France.
| | - Vincent Gardette
- Institut Lumière Matière, UMR 5306, Univ. Lyon 1, CNRS, 69622 Villeurbanne, France.
| | - Hélène Elleaume
- Univ. Grenoble Alpes, INSERM, UA07 STROBE, 38000 Grenoble, France.
| | | | - Alexandre Bouron
- Univ. Grenoble Alpes, INSERM, CEA, UMR 1292, 38000 Grenoble, France.
| | - Vincent Motto-Ros
- Institut Lumière Matière, UMR 5306, Univ. Lyon 1, CNRS, 69622 Villeurbanne, France.
| | - Lucie Sancey
- Univ. Grenoble Alpes, INSERM U1209, CNRS, UMR 5309, Institute for Advanced Biosciences (IAB), 38000 Grenoble, France.
| |
Collapse
|
14
|
Kawahara M, Tanaka KI, Kato-Negishi M. Crosstalk of copper and zinc in the pathogenesis of vascular dementia. J Clin Biochem Nutr 2022; 71:7-15. [PMID: 35903609 PMCID: PMC9309079 DOI: 10.3164/jcbn.22-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Copper and zinc are essential for normal brain functions. Both are localized in presynaptic vesicles and are secreted into synaptic clefts during neuronal excitation. Despite their significance, excesses of copper and zinc are neurotoxic. In particular, excess zinc after transient global ischemia plays a central role in the ischemia-induced neurodegeneration and pathogenesis of vascular type senile dementia. We previously found that sub-lethal concentrations of copper remarkably exacerbated zinc-induced neurotoxicity, and we investigated the molecular pathways of copper-enhanced zinc-induced neurotoxicity. The endoplasmic reticulum stress pathway, the stress-activated protein kinases/c-Jun amino-terminal kinases pathway, and mitochondrial energy production failure were revealed to be involved in the neurodegenerative processes. Regarding the upstream factors of these pathways, we focused on copper-derived reactive oxygen species and the disruption of calcium homeostasis. Because excess copper and zinc may be present in the synaptic clefts during ischemia, it is possible that secreted copper and copper-induced reactive oxygen species may enhance zinc neurotoxicity and eventually contribute to the pathogenesis of vascular type senile dementia.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| |
Collapse
|
15
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
16
|
de Jesus JR, Galazzi RM, Lopes Júnior CA, Arruda MAZ. Trace element homeostasis in the neurological system after SARS-CoV-2 infection: Insight into potential biochemical mechanisms. J Trace Elem Med Biol 2022; 71:126964. [PMID: 35240553 PMCID: PMC8881805 DOI: 10.1016/j.jtemb.2022.126964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Several studies have suggested that COVID-19 is a systemic disease that can affect several organs, including the brain. In the brain, specifically, viral infection can cause dyshomeostasis of some trace elements that promote complex biochemical reactions in specialized neurological functions. OBJECTIVE Understand the neurovirulence of SARS-CoV-2 and the relationship between trace elements and neurological disorders after infection, and provide new insights on the drug development for the treatment of SARS-CoV-2 infections. METHODS The main databases were used to search studies published up September 2021, focusing on the role of trace elements during viral infection and on the correct functioning of the brain. RESULTS The imbalance of important trace elements can accelerate SARS-CoV-2 neurovirulence and increase the neurotoxicity since many neurological processes can be associated with the homeostasis of metal and metalloproteins. Some studies involving animals and humans have suggested the synapse as a vulnerable region of the brain to neurological disorders after viral infection. Considering the combined evidence, some mechanisms have been suggested to understand the relationship between neurological disorders and imbalance of trace elements in the brain after viral infection. CONCLUSION Trace elements play important roles in viral infections, such as helping to activate immune cells, produce antibodies, and inhibit virus replication. However, the relationship between trace elements and virus infections is complex since the specific functions of several elements remain largely undefined. Therefore, there is still a lot to be explored to understand the biochemical mechanisms involved between trace elements and viral infections, especially in the brain.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- Research Laboratory in Bionanomaterials, LPbio, Brazil; Chemistry Department, Federal University of Viçosa, UFV, Viçosa, Minas Gerais, Brazil.
| | - Rodrigo Moretto Galazzi
- Analytical Instrumentation Division, Analytik Jena GmbH, an Endress & Hauser Company, São Paulo, SP 04029-901, Brazil.
| | - Cícero Alves Lopes Júnior
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, Institute of Chemistry, University of Campinas, UNICAMP, Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, Brazil.
| |
Collapse
|
17
|
LA-ICP-MS bioimaging demonstrated disturbance of metal ions in the brain of Parkinson's disease model mouse undergoing manganese-enhanced MRI. Anal Bioanal Chem 2022; 414:5561-5571. [PMID: 35275218 DOI: 10.1007/s00216-022-03994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 11/01/2022]
Abstract
Manganese-enhanced MRI (MEMRI) is a powerful tool to study neuronal activity and microarchitecture in vivo. Yet the influence of exogenous manganese on the brain of the Parkinson's disease (PD) model mouse is poorly understood. Laser ablation connected to inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging for tissue section is an ideal tool to simultaneously analyze the metabolism of endogenous metal ions. In this study, DJ-1 knockout PD model mice were subjected to an MnCl2 saline treatment and the distribution of Mn and several other endogenous metal ions in brain regions was assessed by MEMRI and LA-ICP-MS imaging. The results demonstrated that Mn mainly deposited in subcortical regions, such as ventricles, hippocampus (HC), medial preoptic nucleus (MPO), lateral septal nucleus (LS), and ventromedial hypothalamic nucleus (VMH). The enhanced signal-to-noise ratio (S/N) determined by MEMRI for Mn is closely related to the signal in LA-ICP-MS imaging. Significantly, the treatment of MnCl2 disturbs the homeostasis of iron, zinc, copper, and calcium in the DJ-1 mouse, which could result in more severe symptoms of PD. Therefore, the application of MEMRI in the study of neurological disease must be made with caution.
Collapse
|
18
|
Ogra Y, Tanaka YK, Suzuki N. Recent advances in copper analyses by inorganic mass spectrometry. J Clin Biochem Nutr 2022; 71:2-6. [PMID: 35903601 PMCID: PMC9309087 DOI: 10.3164/jcbn.21-170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Copper (Cu) participates in the biological redox reaction in the body, and its deficiency is fatal to the body. At the same time, Cu is extremely toxic when it exists in excess. Thus, the body has to tightly and spatiotemporally regulate the concentration of Cu within a physiological range by several groups of Cu-regulating proteins. However, entire mechanisms underlying the maintenance of Cu homeostasis in body and cells have not fully understood. It is necessary to analyze Cu itself in a body and in a cell to reveal the Cu homeostasis. In this review, recent advances in the analytical techniques to understand the Cu metabolism such as speciation, imaging and single-cell analysis of Cu were highlighted.
Collapse
Affiliation(s)
- Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Yu-ki Tanaka
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
19
|
Ellison G, Hollings AL, Hackett MJ. A review of the “metallome” within neurons and glia, as revealed by elemental mapping of brain tissue. BBA ADVANCES 2022; 2:100038. [PMID: 37082604 PMCID: PMC10074908 DOI: 10.1016/j.bbadva.2021.100038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
It is now well established that transition metals, such as Iron (Fe), Copper (Cu), and Zinc (Zn) are necessary for healthy brain function. Although Fe, Cu, and Zn are essential to the brain, imbalances in the amount, distribution, or chemical form ("metallome") of these metals is linked to the pathology of numerous brain diseases or disorders. Despite the known importance of metal ions for both brain health and disease, the metallome that exists within specific types of brain cells is yet to be fully characterised. The aim of this mini-review is to present an overview of the current knowledge of the metallome found within specific brain cells (oligodendrocytes, astrocytes, microglia, and neurons), as revealed by direct elemental mapping techniques. It is hoped this review will foster continued research using direct elemental mapping techniques to fully characterise the brain cell metallome.
Collapse
Affiliation(s)
- Gaewyn Ellison
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Ashley L. Hollings
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Mark J. Hackett
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Corresponding author.
| |
Collapse
|
20
|
Folarin OR, Olopade FE, Olopade JO. Essential Metals in the Brain and the Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for their Detection. Niger J Physiol Sci 2021; 36:123-147. [PMID: 35947740 DOI: 10.54548/njps.v36i2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/15/2023]
Abstract
Metals are natural component of the ecosystem present throughout the layers of atmosphere; their abundant expression in the brain indicates their importance in the central nervous system (CNS). Within the brain tissue, their distribution is highly compartmentalized, the pattern of which is determined by their primary roles. Bio-imaging of the brain to reveal spatial distribution of metals within specific regions has provided a unique understanding of brain biochemistry and architecture, linking both the structures and the functions through several metal mediated activities. Bioavailability of essential trace metal is needed for normal brain function. However, disrupted metal homeostasis can influence several biochemical pathways in different fields of metabolism and cause characteristic neurological disorders with a typical disease process usually linked with aberrant metal accumulations. In this review we give a brief overview of roles of key essential metals (Iron, Copper and Zinc) including their molecular mechanisms and bio-distribution in the brain as well as their possible involvement in the pathogenesis of related neurodegenerative diseases. In addition, we also reviewed recent applications of Laser Ablation Inductively Couple Plasma Mass Spectrophotometry (LA-ICP-MS) in the detection of both toxic and essential metal dyshomeostasis in neuroscience research and other related brain diseases.
Collapse
|
21
|
Yang HS, LaFrance DR, Hao Y. Elemental Testing Using Inductively Coupled Plasma Mass Spectrometry in Clinical Laboratories. Am J Clin Pathol 2021; 156:167-175. [PMID: 33978166 DOI: 10.1093/ajcp/aqab013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES This review aims to describe the principles underlying different types of inductively coupled plasma mass spectrometry (ICP-MS), and major technical advancements that reduce spectral interferences, as well as their suitability and wide applications in clinical laboratories. METHODS A literature survey was performed to review the technical aspects of ICP-MS, ICP-MS/MS, high-resolution ICP-MS, and their applications in disease diagnosis and monitoring. RESULTS Compared to the atomic absorption spectrometry and ICP-optical emission spectrometry, ICP-MS has advantages including improved precision, sensitivity and accuracy, wide linear dynamic range, multielement measurement capability, and ability to perform isotopic analysis. Technical advancements, such as collision/reaction cells, triple quadrupole ICP-MS, and sector-field ICP-MS, have been introduced to improve resolving power and reduce interferences. Cases are discussed that highlight the clinical applications of ICP-MS including determination of toxic elements, quantification of nutritional elements, monitoring elemental deficiency in metabolic disease, and multielement analysis. CONCLUSIONS This review provides insight on the strategies of elemental analysis in clinical laboratories and demonstrates current and emerging clinical applications of ICP-MS.
Collapse
Affiliation(s)
- He S Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- NewYork Presbyterian Hospital, Weill Cornell Medical Campus, New York, NY, USA
| | | | - Ying Hao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
22
|
Kawahara M, Kato-Negishi M, Tanaka KI. Neurometals in the Pathogenesis of Prion Diseases. Int J Mol Sci 2021; 22:ijms22031267. [PMID: 33525334 PMCID: PMC7866166 DOI: 10.3390/ijms22031267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
Prion diseases are progressive and transmissive neurodegenerative diseases. The conformational conversion of normal cellular prion protein (PrPC) into abnormal pathogenic prion protein (PrPSc) is critical for its infection and pathogenesis. PrPC possesses the ability to bind to various neurometals, including copper, zinc, iron, and manganese. Moreover, increasing evidence suggests that PrPC plays essential roles in the maintenance of homeostasis of these neurometals in the synapse. In addition, trace metals are critical determinants of the conformational change and toxicity of PrPC. Here, we review our studies and other new findings that inform the current understanding of the links between trace elements and physiological functions of PrPC and the neurotoxicity of PrPSc.
Collapse
|
23
|
Brooks J, Everett J, Lermyte F, Tjendana Tjhin V, Sadler PJ, Telling N, Collingwood JF. Analysis of neuronal iron deposits in Parkinson's disease brain tissue by synchrotron x-ray spectromicroscopy. J Trace Elem Med Biol 2020; 62:126555. [PMID: 32526631 DOI: 10.1016/j.jtemb.2020.126555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuromelanin-pigmented neurons, which are highly susceptible to neurodegeneration in the Parkinson's disease substantia nigra, harbour elevated iron levels in the diseased state. Whilst it is widely believed that neuronal iron is stored in an inert, ferric form, perturbations to normal metal homeostasis could potentially generate more reactive forms of iron capable of stimulating toxicity and cell death. However, non-disruptive analysis of brain metals is inherently challenging, since use of stains or chemical fixatives, for example, can significantly influence metal ion distributions and/or concentrations in tissues. AIMS The aim of this study was to apply synchrotron soft x-ray spectromicroscopy to the characterisation of iron deposits and their local environment within neuromelanin-containing neurons of Parkinson's disease substantia nigra. METHODS Soft x-ray spectromicroscopy was applied in the form of Scanning Transmission X-ray Microscopy (STXM) to analyse resin-embedded tissue, without requirement for chemically disruptive processing or staining. Measurements were performed at the oxygen and iron K-edges in order to characterise both organic and inorganic components of anatomical tissue using a single label-free method. RESULTS STXM revealed evidence for mixed oxidation states of neuronal iron deposits associated with neuromelanin clusters in Parkinson's disease substantia nigra. The excellent sensitivity, specificity and spatial resolution of these STXM measurements showed that the iron oxidation state varies across sub-micron length scales. CONCLUSIONS The label-free STXM approach is highly suited to characterising the distributions of both inorganic and organic components of anatomical tissue, and provides a proof-of-concept for investigating trace metal speciation within Parkinson's disease neuromelanin-containing neurons.
Collapse
Affiliation(s)
- Jake Brooks
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
| | - James Everett
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK; School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Frederik Lermyte
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK; Department of Chemistry, University of Warwick, Coventry, CV4 7EQ, UK
| | | | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7EQ, UK
| | - Neil Telling
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | | |
Collapse
|
24
|
Nakano Y, Shimoda M, Okudomi S, Kawaraya S, Kawahara M, Tanaka KI. Seleno-l-methionine suppresses copper-enhanced zinc-induced neuronal cell death via induction of glutathione peroxidase. Metallomics 2020; 12:1693-1701. [PMID: 32926024 DOI: 10.1039/d0mt00136h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Excessive zinc ion (Zn2+) release is induced in pathological situations and causes neuronal cell death. Previously, we have reported that copper ions (Cu2+) markedly exacerbated Zn2+-induced neuronal cell death by potentiating oxidative stress, the endoplasmic reticulum (ER) stress response, and the activation of the c-Jun amino-terminal kinase (JNK) signaling pathway. In contrast, selenium (Se), an essential trace element, and amino acids containing selenium (such as seleno-l-methionine) have been reported to inhibit stress-induced neuronal cell death and oxidative stress. Thus, we investigated the effect of seleno-l-methionine on Cu2+/Zn2+-induced neuronal cell death in GT1-7 cells. Seleno-l-methionine treatment clearly restored the Cu2+/Zn2+-induced decrease in the viable cell number and attenuated the Cu2+/Zn2+-induced cytotoxicity. Accordingly, the levels of ER stress-related factors (especially, CHOP and GADD34) and of phosphorylated JNK increased upon CuCl2 and ZnCl2 co-treatment, whereas pre-treatment with seleno-l-methionine significantly suppressed these upregulations. Analysis of reactive oxygen species (ROS) as upstream factors of these pathways revealed that Cu2+/Zn2+-induced ROS production was clearly suppressed by seleno-l-methionine treatment. Finally, we found that seleno-l-methionine induced the antioxidative protein, glutathione peroxidase. Taken together, our findings suggest that seleno-l-methionine suppresses Cu2+/Zn2+-induced neuronal cell death and oxidative stress via induction of glutathione peroxidase. Thus, we think that seleno-l-methionine may help prevent refractory neurological diseases.
Collapse
Affiliation(s)
- Yukari Nakano
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Dukes MP, Rowe RK, Harvey T, Rangel W, Pedigo S. Nickel reduces calcium dependent dimerization in neural cadherin. Metallomics 2020; 11:475-482. [PMID: 30624456 DOI: 10.1039/c8mt00349a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cadherins are the transmembrane component in adherens junctions, structures that link the actin cytoskeletons in adjacent cells within solid tissues including neurological synapses, epithelium and endothelium. Cell-cell adhesion by cadherins requires the binding of calcium ions to specific sites in the extracellular region. Given the complexity of the cell adhesion microenvironment, we are investigating whether other divalent cations might affect calcium-dependent dimerization of neural (N) cadherin. The studies reported herein characterize the impact of binding physiological magnesium(ii) or neurotoxic nickel(ii) on calcium-dependent N-cadherin function. Physiological levels of magnesium have only a small effect on the calcium-binding affinity and calcium-induced dimerization of N-cadherin. However, a tenfold lower concentration of nickel decreases the apparent calcium-binding affinity and calcium-induced dimerization of N-cadherin. Competitive binding studies indicate that the apparent dissociation constants for nickel and magnesium are 0.2 mM and 2.5 mM, respectively. These Kd values are consistent with concentrations observed for a range of divalent cations in the extracellular space. Results from these studies indicate that calcium-induced dimerization by N-cadherin is attenuated by natural and non-physiological divalent cations in the extracellular microenvironment.
Collapse
Affiliation(s)
- M P Dukes
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
| | | | | | | | | |
Collapse
|
26
|
Tanaka KI, Shimoda M, Kasai M, Ikeda M, Ishima Y, Kawahara M. Involvement of SAPK/JNK Signaling Pathway in Copper Enhanced Zinc-Induced Neuronal Cell Death. Toxicol Sci 2020; 169:293-302. [PMID: 30768131 DOI: 10.1093/toxsci/kfz043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc (Zn) plays an important role in many organisms in various physiological functions such as cell division, immune mechanisms and protein synthesis. However, excessive Zn release is induced in pathological situations and causes neuronal cell death. Previously, we reported that Cu ions (Cu2+) markedly exacerbates Zn2+-induced neuronal cell death by potentiating oxidative stress and the endoplasmic reticulum stress response. In contrast, the stress-activated protein kinase/c-Jun amino-terminal kinase (SAPK/JNK) signaling pathway is important in neuronal cell death. Thus, in this study, we focused on the SAPK/JNK signaling pathway and examined its involvement in Cu2+/Zn2+-induced neurotoxicity. Initially, we examined expression of factors involved in the SAPK/JNK signaling pathway. Accordingly, we found that phosphorylated (ie, active) forms of SAPK/JNK (p46 and p54) are increased by CuCl2 and ZnCl2 co-treatment in hypothalamic neuronal mouse cells (GT1-7 cells). Downstream factors of SAPK/JNK, phospho-c-Jun, and phospho-activating transcription factor 2 are also induced by CuCl2 and ZnCl2 co-treatment. Moreover, an inhibitor of the SAPK/JNK signaling pathway, SP600125, significantly suppressed neuronal cell death and activation of the SAPK/JNK signaling pathway induced by CuCl2 and ZnCl2 cotreatment. Finally, we examined involvement of oxidative stress in activation of the SAPK/JNK signaling pathway, and found that human serum albumin-thioredoxin fusion protein, an antioxidative protein, suppresses activation of the SAPK/JNK signaling pathway. On the basis of these results, our findings suggest that activation of ZnCl2-dependent SAPK/JNK signaling pathway is important in neuronal cell death, and CuCl2-induced oxidative stress triggers the activation of this pathway.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Mikako Shimoda
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Misato Kasai
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Mayumi Ikeda
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
27
|
Stewart TJ. Across the spectrum: integrating multidimensional metal analytics for in situ metallomic imaging. Metallomics 2020; 11:29-49. [PMID: 30499574 PMCID: PMC6350628 DOI: 10.1039/c8mt00235e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To know how much of a metal species is in a particular location within a biological context at any given time is essential for understanding the intricate roles of metals in biology and is the fundamental question upon which the field of metallomics was born. Simply put, seeing is powerful. With the combination of spectroscopy and microscopy, we can now see metals within complex biological matrices complemented by information about associated molecules and their structures. With the addition of mass spectrometry and particle beam based techniques, the field of view grows to cover greater sensitivities and spatial resolutions, addressing structural, functional and quantitative metallomic questions from the atomic level to whole body processes. In this perspective, I present a paradigm shift in the way we relate to and integrate current and developing metallomic analytics, highlighting both familiar and perhaps less well-known state of the art techniques for in situ metallomic imaging, specific biological applications, and their use in correlative studies. There is a genuine need to abandon scientific silos and, through the establishment of a metallomic scientific platform for further development of multidimensional analytics for in situ metallomic imaging, we have an incredible opportunity to enhance the field of metallomics and demonstrate how discovery research can be done more effectively.
Collapse
Affiliation(s)
- Theodora J Stewart
- King's College London, Mass Spectrometry, London Metallomics Facility, 4th Floor Franklin-Wilkins Building, 150 Stamford St., London SE1 9NH, UK.
| |
Collapse
|
28
|
Kawahara M, Sadakane Y, Mizuno K, Kato-Negishi M, Tanaka KI. Carnosine as a Possible Drug for Zinc-Induced Neurotoxicity and Vascular Dementia. Int J Mol Sci 2020; 21:ijms21072570. [PMID: 32272780 PMCID: PMC7177235 DOI: 10.3390/ijms21072570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests that the metal homeostasis is involved in the pathogenesis of various neurodegenerative diseases including senile type of dementia such as Alzheimer’s disease, dementia with Lewy bodies, and vascular dementia. In particular, synaptic Zn2+ is known to play critical roles in the pathogenesis of vascular dementia. In this article, we review the molecular pathways of Zn2+-induced neurotoxicity based on our and numerous other findings, and demonstrated the implications of the energy production pathway, the disruption of calcium homeostasis, the production of reactive oxygen species (ROS), the endoplasmic reticulum (ER)-stress pathway, and the stress-activated protein kinases/c-Jun amino-terminal kinases (SAPK/JNK) pathway. Furthermore, we have searched for substances that protect neurons from Zn2+-induced neurotoxicity among various agricultural products and determined carnosine (β-alanyl histidine) as a possible therapeutic agent for vascular dementia.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan; (M.K.-N.); (K.T.)
- Correspondence: ; Tel.: +81–42–468–8299
| | - Yutaka Sadakane
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan;
| | - Keiko Mizuno
- Department of Forensic Medicine, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan;
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan; (M.K.-N.); (K.T.)
| | - Ken-ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan; (M.K.-N.); (K.T.)
| |
Collapse
|
29
|
Kawahara M, Kato-Negishi M, Tanaka KI. Amyloids: Regulators of Metal Homeostasis in the Synapse. Molecules 2020; 25:molecules25061441. [PMID: 32210005 PMCID: PMC7145306 DOI: 10.3390/molecules25061441] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Conformational changes in amyloidogenic proteins, such as β-amyloid protein, prion proteins, and α-synuclein, play a critical role in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer’s disease, prion disease, and Lewy body disease. The disease-associated proteins possess several common characteristics, including the ability to form amyloid oligomers with β-pleated sheet structure, as well as cytotoxicity, although they differ in amino acid sequence. Interestingly, these amyloidogenic proteins all possess the ability to bind trace metals, can regulate metal homeostasis, and are co-localized at the synapse, where metals are abundantly present. In this review, we discuss the physiological roles of these amyloidogenic proteins in metal homeostasis, and we propose hypothetical models of their pathogenetic role in the neurodegenerative process as the loss of normal metal regulatory functions of amyloidogenic proteins. Notably, these amyloidogenic proteins have the capacity to form Ca2+-permeable pores in membranes, suggestive of a toxic gain of function. Therefore, we focus on their potential role in the disruption of Ca2+ homeostasis in amyloid-associated neurodegenerative diseases.
Collapse
|
30
|
Semenova D, Silina YE. The Role of Nanoanalytics in the Development of Organic-Inorganic Nanohybrids-Seeing Nanomaterials as They Are. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1673. [PMID: 31771202 PMCID: PMC6955912 DOI: 10.3390/nano9121673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
The functional properties of organic-inorganic (O-I) hybrids can be easily tuned by combining system components and parameters, making this class of novel nanomaterials a crucial element in various application fields. Unfortunately, the manufacturing of organic-inorganic nanohybrids still suffers from mechanical instability and insufficient synthesis reproducibility. The control of the composition and structure of nanosurfaces themselves is a specific analytical challenge and plays an important role in the future reproducibility of hybrid nanomaterials surface properties and response. Therefore, appropriate and sufficient analytical methodologies and technical guidance for control of their synthesis, characterization and standardization of the final product quality at the nanoscale level should be established. In this review, we summarize and compare the analytical merit of the modern analytical methods, viz. Fourier transform infrared spectroscopy (FTIR), RAMAN spectroscopy, surface plasmon resonance (SPR) and several mass spectrometry (MS)-based techniques, that is, inductively coupled plasma mass spectrometry (ICP-MS), single particle ICP-MS (sp-ICP-MS), laser ablation coupled ICP-MS (LA-ICP-MS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), liquid chromatography mass spectrometry (LC-MS) utilized for characterization of O-I nanohybrids. Special attention is given to laser desorption ionization mass spectrometry (LDI-MS) as a reliable nanoanalytical platform for characterization of O-I hybrid nanomaterials, their quality, design verification and validation.
Collapse
Affiliation(s)
- Daria Semenova
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark;
| | - Yuliya E. Silina
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
31
|
Samal J, Rebelo AL, Pandit A. A window into the brain: Tools to assess pre-clinical efficacy of biomaterials-based therapies on central nervous system disorders. Adv Drug Deliv Rev 2019; 148:68-145. [PMID: 30710594 DOI: 10.1016/j.addr.2019.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/04/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Therapeutic conveyance into the brain is a cardinal requirement for treatment of diverse central nervous system (CNS) disorders and associated pathophysiology. Effectual shielding of the brain by the blood-brain barrier (BBB) sieves out major proportion of therapeutics with the exception of small lipophilic molecules. Various nano-delivery systems (NDS) provide an effective solution around this obstacle owing to their small size and targeting properties. To date, these systems have been used for several pre-clinical disease models including glioma, neurodegenerative diseases and psychotic disorders. An efficacy screen for these systems involves a test battery designed to probe into the multiple facets of therapeutic delivery. Despite their wide application in redressing various disease targets, the efficacy evaluation strategies for all can be broadly grouped into four modalities, namely: histological, bio-imaging, molecular and behavioural. This review presents a comprehensive insight into all of these modalities along with their strengths and weaknesses as well as perspectives on an ideal design for a panel of tests to screen brain nano-delivery systems.
Collapse
Affiliation(s)
- Juhi Samal
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Ana Lucia Rebelo
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
32
|
Nickel Enhances Zinc-Induced Neuronal Cell Death by Priming the Endoplasmic Reticulum Stress Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9693726. [PMID: 31316722 PMCID: PMC6604344 DOI: 10.1155/2019/9693726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Trace metals such as zinc (Zn), copper (Cu), and nickel (Ni) play important roles in various physiological functions such as immunity, cell division, and protein synthesis in a wide variety of species. However, excessive amounts of these trace metals cause disorders in various tissues of the central nervous system, respiratory system, and other vital organs. Our previous analysis focusing on neurotoxicity resulting from interactions between Zn and Cu revealed that Cu2+ markedly enhances Zn2+-induced neuronal cell death by activating oxidative stress and the endoplasmic reticulum (ER) stress response. However, neurotoxicity arising from interactions between zinc and metals other than copper has not been examined. Thus, in the current study, we examined the effect of Ni2+ on Zn2+-induced neurotoxicity. Initially, we found that nontoxic concentrations (0–60 μM) of Ni2+ enhance Zn2+-induced neurotoxicity in an immortalized hypothalamic neuronal cell line (GT1-7) in a dose-dependent manner. Next, we analyzed the mechanism enhancing neuronal cell death, focusing on the ER stress response. Our results revealed that Ni2+ treatment significantly primed the Zn2+-induced ER stress response, especially expression of the CCAAT-enhancer-binding protein homologous protein (CHOP). Finally, we examined the effect of carnosine (an endogenous peptide) on Ni2+/Zn2+-induced neurotoxicity and found that carnosine attenuated Ni2+/Zn2+-induced neuronal cell death and ER stress occurring before cell death. Based on our results, Ni2+ treatment significantly enhances Zn2+-induced neuronal cell death by priming the ER stress response. Thus, compounds that decrease the ER stress response, such as carnosine, may be beneficial for neurological diseases.
Collapse
|
33
|
Arakawa A, Jakubowski N, Flemig S, Koellensperger G, Rusz M, Iwahata D, Traub H, Hirata T. High-resolution laser ablation inductively coupled plasma mass spectrometry used to study transport of metallic nanoparticles through collagen-rich microstructures in fibroblast multicellular spheroids. Anal Bioanal Chem 2019; 411:3497-3506. [DOI: 10.1007/s00216-019-01827-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 01/03/2023]
|
34
|
Laser Ablation Inductively Coupled Plasma Spectrometry: Metal Imaging in Experimental and Clinical Wilson Disease. INORGANICS 2019. [DOI: 10.3390/inorganics7040054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wilson disease is an inherited disorder caused by mutations in the ATP7B gene resulting in copper metabolism disturbances. As a consequence, copper accumulates in different organs with most common presentation in liver and brain. Chelating agents that nonspecifically chelate copper, and promote its urinary excretion, or zinc salts interfering with the absorption of copper from the gastrointestinal tract, are current medications. Also gene therapy, restoring ATP7B gene function or trials with bis-choline tetrathiomolybdate (WTX101) removing excess copper from intracellular hepatic copper stores and increasing biliary copper excretion, is promising in reducing body’s copper content. Therapy efficacy is mostly evaluated by testing for evidence of liver disease and neurological symptoms, hepatic synthetic functions, indices of copper metabolisms, urinary copper excretions, or direct copper measurements. However, several studies conducted in patients or Wilson disease models have shown that not only the absolute concentration of copper, but also its spatial distribution within the diseased tissue is relevant for disease severity and outcome. Here we discuss laser ablation inductively coupled plasma spectrometry imaging as a novel method for accurate determination of trace element concentrations with high diagnostic sensitivity, spatial resolution, specificity, and quantification ability in experimental and clinical Wilson disease specimens.
Collapse
|
35
|
Pushie MJ, Kelly ME, Hackett MJ. Direct label-free imaging of brain tissue using synchrotron light: a review of new spectroscopic tools for the modern neuroscientist. Analyst 2019; 143:3761-3774. [PMID: 29961790 DOI: 10.1039/c7an01904a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The incidence of brain disease and brain disorders is increasing on a global scale. Unfortunately, development of new therapeutic strategies has not increased at the same rate, and brain diseases and brain disorders now inflict substantial health and economic impacts. A greater understanding of the fundamental neurochemistry that underlies healthy brain function, and the chemical pathways that manifest in brain damage or malfunction, are required to enable and accelerate therapeutic development. A previous limitation to the study of brain function and malfunction has been the limited number of techniques that provide both a wealth of biochemical information, and spatially resolved information (i.e., there was a previous lack of techniques that provided direct biochemical or elemental imaging at the cellular level). In recent times, a suite of direct spectroscopic imaging techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence microscopy (XFM), and X-ray absorption spectroscopy (XAS) have been adapted, optimized and integrated into the field of neuroscience, to fill the above mentioned capability-gap. Advancements at synchrotron light sources, such as improved light intensity/flux, increased detector sensitivities and new capabilities of imaging/optics, has pushed the above suite of techniques beyond "proof-of-concept" studies, to routine application to study complex research problems in the field of neuroscience (and other scientific disciplines). This review examines several of the major advancements that have occurred over the last several years, with respect to FTIR, XFM and XAS capabilities at synchrotron facilities, and how the increases in technical capabilities have being integrated and used in the field of neuroscience.
Collapse
Affiliation(s)
- M J Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | |
Collapse
|
36
|
Linscheid MW. Molecules and elements for quantitative bioanalysis: The allure of using electrospray, MALDI, and ICP mass spectrometry side-by-side. MASS SPECTROMETRY REVIEWS 2019; 38:169-186. [PMID: 29603315 DOI: 10.1002/mas.21567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
To understand biological processes, not only reliable identification, but quantification of constituents in biological processes play a pivotal role. This is especially true for the proteome: protein quantification must follow protein identification, since sometimes minute changes in abundance tell the real tale. To obtain quantitative data, many sophisticated strategies using electrospray and MALDI mass spectrometry (MS) have been developed in recent years. All of them have advantages and limitations. Several years ago, we started to work on strategies, which are principally capable to overcome some of these limits. The fundamental idea is to use elemental signals as a measure for quantities. We began by replacing the radioactive 32 P with the "cold" natural 31 P to quantify modified nucleotides and phosphorylated peptides and proteins and later used tagging strategies for quantification of proteins more generally. To do this, we introduced Inductively Coupled Plasma Mass Spectrometry (ICP-MS) into the bioanalytical workflows, allowing not only reliable and sensitive detection but also quantification based on isotope dilution absolute measurements using poly-isotopic elements. The detection capability of ICP-MS becomes particularly attractive with heavy metals. The covalently bound proteins tags developed in our group are based on the well-known DOTA chelate complex (1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid) carrying ions of lanthanoides as metal core. In this review, I will outline the development of this mutual assistance between molecular and elemental mass spectrometry and discuss the scope and limitations particularly of peptide and protein quantification. The lanthanoide tags provide low detection limits, but offer multiplexing capabilities due to the number of very similar lanthanoides and their isotopes. With isotope dilution comes previously unknown accuracy. Separation techniques such as electrophoresis and HPLC were used and just slightly adapted workflows, already in use for quantification in bioanalysis. Imaging mass spectrometry (MSI) with MALDI and laser ablation ICP-MS complemented the range of application in recent years.
Collapse
MESH Headings
- Animals
- Chelating Agents/chemistry
- Chromatography, High Pressure Liquid/instrumentation
- Chromatography, High Pressure Liquid/methods
- Heterocyclic Compounds, 1-Ring/chemistry
- Humans
- Lanthanoid Series Elements/chemistry
- Nucleotides/analysis
- Proteins/analysis
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Workflow
Collapse
|
37
|
Han J, Permentier H, Bischoff R, Groothuis G, Casini A, Horvatovich P. Imaging of protein distribution in tissues using mass spectrometry: An interdisciplinary challenge. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Grunert B, Saatz J, Hoffmann K, Appler F, Lubjuhn D, Jakubowski N, Resch-Genger U, Emmerling F, Briel A. Multifunctional Rare-Earth Element Nanocrystals for Cell Labeling and Multimodal Imaging. ACS Biomater Sci Eng 2018; 4:3578-3587. [DOI: 10.1021/acsbiomaterials.8b00495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Jessica Saatz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Katrin Hoffmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | | | - Dominik Lubjuhn
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Norbert Jakubowski
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | | |
Collapse
|
39
|
Sadakane Y, Kawahara M. Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation. Int J Mol Sci 2018; 19:ijms19082449. [PMID: 30126231 PMCID: PMC6121660 DOI: 10.3390/ijms19082449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that amyloid formation, i.e., self-assembly of proteins and the resulting conformational changes, is linked with the pathogenesis of various neurodegenerative disorders such as Alzheimer’s disease, prion diseases, and Lewy body diseases. Among the factors that accelerate or inhibit oligomerization, we focus here on two non-genetic and common characteristics of many amyloidogenic proteins: metal binding and asparagine deamidation. Both reflect the aging process and occur in most amyloidogenic proteins. All of the amyloidogenic proteins, such as Alzheimer’s β-amyloid protein, prion protein, and α-synuclein, are metal-binding proteins and are involved in the regulation of metal homeostasis. It is widely accepted that these proteins are susceptible to non-enzymatic posttranslational modifications, and many asparagine residues of these proteins are deamidated. Moreover, these two factors can combine because asparagine residues can bind metals. We review the current understanding of these two common properties and their implications in the pathogenesis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Yutaka Sadakane
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan.
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
40
|
Kawahara M, Kato-Negishi M, Tanaka K. Cross talk between neurometals and amyloidogenic proteins at the synapse and the pathogenesis of neurodegenerative diseases. Metallomics 2018; 9:619-633. [PMID: 28516990 DOI: 10.1039/c7mt00046d] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increasing evidence suggests that disruption of metal homeostasis contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease, prion diseases, Lewy body diseases, and vascular dementia. Conformational changes of disease-related proteins (amyloidogenic proteins), such as β-amyloid protein, prion proteins, and α-synuclein, are well-established contributors to neurotoxicity and to the pathogenesis of these diseases. Recent studies have demonstrated that these amyloidogenic proteins are metalloproteins that bind trace elements, including zinc, iron, copper, and manganese, and play significant roles in the maintenance of metal homeostasis. We present a current review of the role of trace elements in the functions and toxicity of amyloidogenic proteins, and propose a hypothesis integrating metal homeostasis and the pathogenesis of neurodegenerative diseases that is focused on the interactions among metals and between metals and amyloidogenic proteins at the synapse, considering that these amyloidogenic proteins and metals are co-localized at the synapse.
Collapse
Affiliation(s)
- M Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | | | | |
Collapse
|
41
|
González de San Román E, Bidmon HJ, Malisic M, Susnea I, Küppers A, Hübbers R, Wree A, Nischwitz V, Amunts K, Huesgen PF. Molecular composition of the human primary visual cortex profiled by multimodal mass spectrometry imaging. Brain Struct Funct 2018; 223:2767-2783. [PMID: 29633039 PMCID: PMC5995978 DOI: 10.1007/s00429-018-1660-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
The primary visual cortex (area V1) is an extensively studied part of the cerebral cortex with well-characterized connectivity, cellular and molecular architecture and functions (for recent reviews see Amunts and Zilles, Neuron 88:1086-1107, 2015; Casagrande and Xu, Parallel visual pathways: a comparative perspective. The visual neurosciences, MIT Press, Cambridge, pp 494-506, 2004). In humans, V1 is defined by heavily myelinated fibers arriving from the radiatio optica that form the Gennari stripe in cortical layer IV, which is further subdivided into laminae IVa, IVb, IVcα and IVcβ. Due to this unique laminar pattern, V1 represents an excellent region to test whether multimodal mass spectrometric imaging could reveal novel biomolecular markers for a functionally relevant parcellation of the human cerebral cortex. Here we analyzed histological sections of three post-mortem brains with matrix-assisted laser desorption/ionization mass spectrometry imaging and laser ablation inductively coupled plasma mass spectrometry imaging to investigate the distribution of lipids, proteins and metals in human V1. We identified 71 peptides of 13 different proteins by in situ tandem mass spectrometry, of which 5 proteins show a differential laminar distribution pattern revealing the border between V1 and V2. High-accuracy mass measurements identified 123 lipid species, including glycerolipids, glycerophospholipids and sphingolipids, of which at least 20 showed differential distribution within V1 and V2. Specific lipids labeled not only myelinated layer IVb, but also IVa and especially IVc in a layer-specific manner, but also and clearly separated V1 from V2. Elemental imaging further showed a specific accumulation of copper in layer IV. In conclusion, multimodal mass spectrometry imaging identified novel biomolecular and elemental markers with specific laminar and inter-areal differences. We conclude that mass spectrometry imaging provides a promising new approach toward multimodal, molecule-based cortical parcellation.
Collapse
Affiliation(s)
- Estibaliz González de San Román
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Jürgen Bidmon
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Milena Malisic
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Iuliana Susnea
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Küppers
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Rene Hübbers
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, INM-1, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Volker Nischwitz
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine, INM-1, Forschungszentrum Jülich, Jülich, Germany.
| | - Pitter F Huesgen
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
42
|
Affiliation(s)
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| | - Tomás R Guilarte
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
43
|
Tanaka KI, Shimoda M, Kawahara M. Pyruvic acid prevents Cu 2+/Zn 2+-induced neurotoxicity by suppressing mitochondrial injury. Biochem Biophys Res Commun 2017; 495:1335-1341. [PMID: 29180015 DOI: 10.1016/j.bbrc.2017.11.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 12/23/2022]
Abstract
Zinc (Zn) is known as a co-factor for over 300 metalloproteins or enzymes, and has essential roles in many physiological functions. However, excessively high Zn concentrations are induced in pathological conditions such as interruption of blood flow in stroke or transient global ischemia-induced neuronal cell death. Furthermore, we recently found that copper (Cu2+) significantly exacerbates Zn2+ neurotoxicity in mouse hypothalamic neuronal cells, suggesting that Zn2+ interaction with Cu2+ is important for the development of neurological disease. Meanwhile, organic acids such as pyruvic acid and citric acid are reported to prevent neuronal cell death induced by various stresses. Thus, in this study, we focused on organic acids and searched for compounds that inhibit Cu2+/Zn2+-induced neurotoxicity. Initially, we examined the protective effect of various organic acids on Cu2+/Zn2+-induced neurotoxicity, and found that pyruvic acid clearly suppresses Cu2+/Zn2+-induced neurotoxicity in GT1-7 cells. Next, we examined the protective mechanisms of pyruvic acid against Cu2+/Zn2+-induced neurotoxicity. Specifically, we examined the possibilities that pyruvic acid chelates Cu2+ and Zn2+ or suppresses the ER stress response, but found that neither was suppressed by pyruvic acid treatment. In contrast, pyruvic acid significantly suppressed cytochrome c release into cytoplasm, an index of mitochondrial injury, in a dose-dependent manner. These results suggest that pyruvic acid prevents Cu2+/Zn2+-induced neuronal cell death by suppressing mitochondrial injury. Based on our results, we assume that pyruvic acid may be therapeutically beneficial for neurological diseases involving neuronal cell death such as vascular dementia.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Mikako Shimoda
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
44
|
Tanaka KI, Shimoda M, Chuang VTG, Nishida K, Kawahara M, Ishida T, Otagiri M, Maruyama T, Ishima Y. Thioredoxin-albumin fusion protein prevents copper enhanced zinc-induced neurotoxicity via its antioxidative activity. Int J Pharm 2017; 535:140-147. [PMID: 29122608 DOI: 10.1016/j.ijpharm.2017.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/20/2017] [Accepted: 11/05/2017] [Indexed: 11/29/2022]
Abstract
Zinc (Zn) is a co-factor for a vast number of enzymes, and functions as a regulator for immune mechanism and protein synthesis. However, excessive Zn release induced in pathological situations such as stroke or transient global ischemia is toxic. Previously, we demonstrated that the interaction of Zn and copper (Cu) is involved in the pathogenesis of Alzheimer's disease and vascular dementia. Furthermore, oxidative stress has been shown to play a significant role in the pathogenesis of various metal ions induced neuronal death. Thioredoxin-Albumin fusion (HSA-Trx) is a derivative of thioredoxin (Trx), an antioxidative protein, with improved plasma retention and stability of Trx. In this study, we examined the effect of HSA-Trx on Cu2+/Zn2+-induced neurotoxicity. Firstly, HSA-Trx was found to clearly suppress Cu2+/Zn2+-induced neuronal cell death in mouse hypothalamic neuronal cells (GT1-7 cells). Moreover, HSA-Trx markedly suppressed Cu2+/Zn2+-induced ROS production and the expression of oxidative stress related genes, such as heme oxygenase-1. In contrast, HSA-Trx did not affect the intracellular levels of both Cu2+ and Zn2+ after Cu2+/Zn2+ treatment. Finally, HSA-Trx was found to significantly suppress endoplasmic reticulum (ER) stress response induced by Cu2+/Zn2+ treatment in a dose dependent manner. These results suggest that HSA-Trx counteracted Cu2+/Zn2+-induced neurotoxicity by suppressing the production of ROS via interfering the related gene expressions, in addition to the highly possible radical scavenging activity of the fusion protein. Based on these findings, HSA-Trx has great potential as a promising therapeutic agent for the treatment of refractory neurological diseases.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Mikako Shimoda
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Victor T G Chuang
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences and DDS Research Institute, Sojo University, 1-22-4 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
45
|
Petit-Pierre G, Colin P, Laurer E, Déglon J, Bertsch A, Thomas A, Schneider BL, Renaud P. In vivo neurochemical measurements in cerebral tissues using a droplet-based monitoring system. Nat Commun 2017; 8:1239. [PMID: 29093476 PMCID: PMC5665973 DOI: 10.1038/s41467-017-01419-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/15/2017] [Indexed: 11/09/2022] Open
Abstract
Direct collection of extracellular fluid (ECF) plays a central role in the monitoring of neurological disorders. Current approaches using microdialysis catheters are however drastically limited in term of temporal resolution. Here we show a functional in vivo validation of a droplet collection system included at the tip of a neural probe. The system comprises an advanced droplet formation mechanism which enables the collection of neurochemicals present in the brain ECF at high-temporal resolution. The probe was implanted in a rat brain and could successfully collect fluid samples organized in a train of droplets. A microfabricated target plate compatible with most of the surface-based detection methods was specifically developed for sample analysis. The time-resolved brain-fluid samples are analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results provide a time evolution picture of the cerebral tissues neurochemical composition for selected elements known for their involvement in neurodegenerative diseases.
Collapse
Affiliation(s)
- Guillaume Petit-Pierre
- Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Philippe Colin
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Estelle Laurer
- Unit of Toxicology, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne-Geneva, Switzerland
| | - Julien Déglon
- Unit of Toxicology, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne-Geneva, Switzerland
| | - Arnaud Bertsch
- Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aurélien Thomas
- Unit of Toxicology, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne-Geneva, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Philippe Renaud
- Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
46
|
Study of metal accumulation in tapeworm section using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Microchem J 2017. [DOI: 10.1016/j.microc.2017.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Braidy N, Poljak A, Marjo C, Rutlidge H, Rich A, Jugder BE, Jayasena T, Inestrosa NC, Sachdev PS. Identification of Cerebral Metal Ion Imbalance in the Brain of Aging Octodon degus. Front Aging Neurosci 2017; 9:66. [PMID: 28405187 PMCID: PMC5370394 DOI: 10.3389/fnagi.2017.00066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 03/03/2017] [Indexed: 01/18/2023] Open
Abstract
The accumulation of redox-active transition metals in the brain and metal dyshomeostasis are thought to be associated with the etiology and pathogenesis of several neurodegenerative diseases, and Alzheimer’s disease (AD) in particular. As well, distinct biometal imaging and role of metal uptake transporters are central to understanding AD pathogenesis and aging but remain elusive, due inappropriate detection methods. We therefore hypothesized that Octodon degus develop neuropathological abnormalities in the distribution of redox active biometals, and this effect may be due to alterations in the expression of lysosomal protein, major Fe/Cu transporters, and selected Zn transporters (ZnTs and ZIPs). Herein, we report the distribution profile of biometals in the aged brain of the endemic Chilean rodent O. degus—a natural model to investigate the role of metals on the onset and progression of AD. Using laser ablation inductively coupled plasma mass spectrometry, our quantitative images of biometals (Fe, Ca, Zn, Cu, and Al) appear significantly elevated in the aged O. degus and show an age-dependent rise. The metals Fe, Ca, Zn, and Cu were specifically enriched in the cortex and hippocampus, which are the regions where amyloid plaques, tau phosphorylation and glial alterations are most commonly reported, whilst Al was enriched in the hippocampus alone. Using whole brain extracts, age-related deregulation of metal trafficking pathways was also observed in O. degus. More specifically, we observed impaired lysosomal function, demonstrated by increased cathepsin D protein expression. An age-related reduction in the expression of subunit B2 of V-ATPase, and significant increases in amyloid beta peptide 42 (Aβ42), and the metal transporter ATP13a2 were also observed. Although the protein expression levels of the zinc transporters, ZnT (1,3,4,6, and 7), and ZIP7,8 and ZIP14 increased in the brain of aged O. degus, ZnT10, decreased. Although no significant age-related change was observed for the major iron/copper regulator IRP2, we did find a significant increase in the expression of DMT1, a major transporter of divalent metal species, 5′-aminolevulinate synthase 2 (ALAS2), and the proto-oncogene, FOS. Collectively, our data indicate that transition metals may be enriched with age in the brains of O. degus, and metal dyshomeostasis in specific brain regions is age-related.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; Mark Wainwright Analytical Centre, University of New South WalesSydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| | - Chris Marjo
- Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Helen Rutlidge
- Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Anne Rich
- Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia
| | - Nibaldo C Inestrosa
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; Centre for Ageing and Regeneration, Faculty of Biological Sciences, Pontifical Catholic University of ChileSantiago, Chile
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; Neuropsychiatric Institute, Euroa Centre, Prince of Wales HospitalSydney, NSW, Australia
| |
Collapse
|
48
|
Sela H, Cohen H, Karpas Z, Zeiri Y. Distinctive hippocampal zinc distribution patterns following stress exposure in an animal model of PTSD. Metallomics 2017; 9:323-333. [PMID: 28252129 DOI: 10.1039/c6mt00207b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emerging evidence suggests that zinc (Zn) deficiency is associated with depression and anxiety in both human and animal studies. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of Zn distribution. The work has focused on one case study, the association between an animal model of posttraumatic stress disorder (PTSD) and the Zn distribution in the rat hippocampus. Behaviors were assessed with the elevated plus-maze and acoustic startle response tests 7 days later. Preset cut-off criteria classified exposed animals according to their individual behavioral responses. To further characterize the distribution of Zn that occurs in the hippocampus 8 days after the exposure, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging was used. It has been found that Zn distribution in the dentate gyrus (DG) sub-region in the hippocampus is clearly more widely spread for rats that belong to the extreme behavioral response (EBR) group as compared to the control group. Comparison of the Zn concentration changes in the cornu ammonis 1 (CA1) and the DG sub-regions of the hippocampus shows that the concentration changes are statistically significantly higher in the EBR rats compared to the rats in the control and minimal behavioral response (MBR) groups. In order to understand the mechanism of stress-induced hippocampal Zn dyshomeostasis, relative quantitative analyses of metallothionein (MT), B-cell lymphoma 2 (Bcl-2) and caspase 3 immunoreactivity were performed. Significant differences in the number of caspase-ir and Bcl-2 cells were found in the hippocampal DG sub-region between the EBR group and the control and MBR groups. The results of this study demonstrate a statistically significant association between the degree of behavioral disruption resulting from stress exposure and the patterns of Zn distribution and concentration changes in the various hippocampal regions. Taken together, these findings indicate that Zn distribution patterns play an active role in the neurobiological response to predator scent stress.
Collapse
Affiliation(s)
- Hagit Sela
- Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel. and Department of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 8419001, Israel.
| | - Hagit Cohen
- Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Zeev Karpas
- Department of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 8419001, Israel.
| | - Yehuda Zeiri
- Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel. and Department of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 8419001, Israel.
| |
Collapse
|
49
|
Mizuno D, Kawahara M. Link Between Metal Homeostasis and Neurodegenerative Diseases: Crosstalk of Metals and Amyloidogenic Proteins at the Synapse. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
50
|
Tanaka KI, Kawahara M. Copper Enhances Zinc-Induced Neurotoxicity and the Endoplasmic Reticulum Stress Response in a Neuronal Model of Vascular Dementia. Front Neurosci 2017; 11:58. [PMID: 28232787 PMCID: PMC5299027 DOI: 10.3389/fnins.2017.00058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/26/2017] [Indexed: 11/13/2022] Open
Abstract
Zinc (Zn), an essential trace element, is secreted by synaptic vesicles during neuronal excitation and plays several critical roles in neuronal information processing. However, excess Zn ion (Zn2+) is neurotoxic and has a causative role in the pathogenesis of vascular dementia. Here, we investigated the molecular mechanism of Zn2+-induced neurotoxicity by using immortalized hypothalamic neurons (GT1-7 cells), which are more vulnerable than other neuronal cells to Zn2+. We examined the effects of other metal ions on the Zn2+-induced neurotoxicity in these cells and found that sub-lethal concentrations of copper ion (Cu2+) markedly exacerbated Zn2+-induced neurotoxicity. The co-administration of Cu2+ and Zn2+ also significantly increased the expression of genes related to the endoplasmic reticulum's stress response, including CHOP, GADD34, and ATF4. Similar to Zn2+, Cu2+ is stored in presynaptic vesicles and secreted during neuronal excitation. Thus, based on our results, we hypothesize here that Cu2+ interacts with Zn2+ in the synapse to synergistically promote neuronal death and significantly influence the pathogenesis of vascular dementia.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Bio Analytical Chemistry, Musashino University Nishitokyo-shi, Japan
| | - Masahiro Kawahara
- Department of Bio Analytical Chemistry, Musashino University Nishitokyo-shi, Japan
| |
Collapse
|