1
|
Kurfiřt M, Dračínský M, Červenková Šťastná L, Cuřínová P, Hamala V, Hovorková M, Bojarová P, Karban J. Selectively Deoxyfluorinated N-Acetyllactosamine Analogues as 19 F NMR Probes to Study Carbohydrate-Galectin Interactions. Chemistry 2021; 27:13040-13051. [PMID: 34216419 DOI: 10.1002/chem.202101752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 01/12/2023]
Abstract
Galectins are widely expressed galactose-binding lectins implied, for example, in immune regulation, metastatic spreading, and pathogen recognition. N-Acetyllactosamine (Galβ1-4GlcNAc, LacNAc) and its oligomeric or glycosylated forms are natural ligands of galectins. To probe substrate specificity and binding mode of galectins, we synthesized a complete series of six mono-deoxyfluorinated analogues of LacNAc, in which each hydroxyl has been selectively replaced by fluorine while the anomeric position has been protected as methyl β-glycoside. Initial evaluation of their binding to human galectin-1 and -3 by ELISA and 19 F NMR T2 -filter revealed that deoxyfluorination at C3, C4' and C6' completely abolished binding to galectin-1 but very weak binding to galectin-3 was still detectable. Moreover, deoxyfluorination of C2' caused an approximately 8-fold increase in the binding affinity towards galectin-1, whereas binding to galectin-3 was essentially not affected. Lipophilicity measurement revealed that deoxyfluorination at the Gal moiety affects log P very differently compared to deoxyfluorination at the GlcNAc moiety.
Collapse
Affiliation(s)
- Martin Kurfiřt
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic.,University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Lucie Červenková Šťastná
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic
| | - Petra Cuřínová
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic
| | - Vojtěch Hamala
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic.,University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - Michaela Hovorková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jindřich Karban
- Department of Bioorganic Compounds and Nanocomposites, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502, Prague 6, Czech Republic
| |
Collapse
|
2
|
Hazelard D, Compain P. Nucleophilic Ring‐Opening of 1,6‐Anhydrosugars: Recent Advances and Applications in Organic Synthesis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Univ. de Strasbourg Univ. de Haute-Alsace CNRS (UMR 7042) Equipe de Synthèse Organique et Molécules Bioactives (SYBIO) ECPM 25 Rue Becquerel 67000 Strasbourg France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) Univ. de Strasbourg Univ. de Haute-Alsace CNRS (UMR 7042) Equipe de Synthèse Organique et Molécules Bioactives (SYBIO) ECPM 25 Rue Becquerel 67000 Strasbourg France
| |
Collapse
|
3
|
Viuff A, Salamone S, McLoughlin J, Deane JE, Jensen HH. The Bicyclic Form of galacto-Noeurostegine Is a Potent Inhibitor of β-Galactocerebrosidase. ACS Med Chem Lett 2021; 12:56-59. [PMID: 33488964 DOI: 10.1021/acsmedchemlett.0c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/12/2020] [Indexed: 11/29/2022] Open
Abstract
Competitive inhibitors of galactocerebrosidase (GALC) could be candidates for pharmacological chaperone therapy of patients with Krabbe disease. The known and selective nortropane-type iminosugar galacto-noeurostegine has been found to competitively inhibit GALC with K i = 7 μM at pH 4.6, which is 330-fold more potent than the analogous deoxynoeurostegine. It was shown through X-ray protein crystallography that galacto-noeurostegine binds to the active site of GALC in its bicyclic form.
Collapse
Affiliation(s)
- Agnete Viuff
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Stéphane Salamone
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Joseph McLoughlin
- Department of Clinical Neuroscience, Cambridge Institute of Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K
| | - Janet E. Deane
- Department of Clinical Neuroscience, Cambridge Institute of Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K
| | - Henrik H. Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Pirrone MG, Matsushita T, Vasella A, Crich D. Stereospecific synthesis of methyl 2-amino-2,4-dideoxy-6S-deuterio-α-D-xylo-hexopyranoside and methyl 2-amino-2,4-dideoxy-6S-deuterio-4-propyl-α-d-glucopyranoside: Side chain conformation of the novel aminoglycoside antibiotic propylamycin. Carbohydr Res 2020; 491:107984. [PMID: 32217361 DOI: 10.1016/j.carres.2020.107984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
The stereospecific syntheses of methyl 2-amino-2,4-dideoxy-4-C-propyl-α-d-glucopyranoside and of methyl 2-amino-2,4-dideoxy-α-D-xylo-hexopyranoside and of their 6S-deuterioisotopomers are described as models for ring I of the aminoglycoside antibiotics propylamycin and 4'-deoxyparomomycin, respectively. Analysis of the 1H NMR spectra of these compounds and of methyl 2-amino-2-deoxy-α-d-glucopyranoside, a model for paromomycin itself, reveals that neither deoxygenation at the 4-position, nor substitution of the C-O bond at the 4-postion by a C-C bond significantly changes the distribution of the side chain population between the three possible staggered conformations. From this it is concluded that the beneficial effect on antiribosomal and antibacterial activity of the propyl group in propylamycin does not derive from a change in side chain conformation. Rather, enhanced basicity of the ring oxygen and increased hydrophobicity and/or solvation effects are implicated.
Collapse
Affiliation(s)
- Michael G Pirrone
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA; Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA; Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Takahiko Matsushita
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA; Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA; Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA.
| |
Collapse
|
5
|
Quiquempoix L, Wang Z, Graton J, Latchem PG, Light M, Le Questel JY, Linclau B. Synthesis of 2,3,4-Trideoxy-2,3,4-trifluoroglucose. J Org Chem 2019; 84:5899-5906. [DOI: 10.1021/acs.joc.9b00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lucas Quiquempoix
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Zhong Wang
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Jérôme Graton
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes 2, rue de la Houssinière−BP 92208, 44322 Nantes Cedex 3, France
| | - Peter G. Latchem
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Mark Light
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Jean-Yves Le Questel
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes 2, rue de la Houssinière−BP 92208, 44322 Nantes Cedex 3, France
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
6
|
Underlin EN, Jensen HH. Synthesis of nortropane alkaloid calystegine B2 from methyl α-d-xylopyranoside. Carbohydr Res 2019; 472:122-126. [DOI: 10.1016/j.carres.2018.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
|
7
|
Afewerki S, Wang JX, Liao WW, Córdova A. The Chemical Synthesis and Applications of Tropane Alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2018; 81:151-233. [PMID: 30685050 DOI: 10.1016/bs.alkal.2018.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tropanes are an important class of alkaloid natural products that are found in plants all over the world. These compounds can exhibit significant biological activity and are among the oldest known medicines. In the early 19th century, tropanes were isolated, characterized, and synthesized by notable chemical researchers. Their significant biological activities have inspired tremendous research efforts toward their synthesis and the elucidation of their pharmacological activity both in academia and in industry. In this chapter, which addresses the developments in this field since 1994, the focus is on the synthesis of these compounds, and several examples of sophisticated synthetic protocols involving both asymmetric and catalytic approaches are described. In addition, the structures of more than 100 new alkaloids are included as well as the applications and pharmacological properties of some tropane alkaloids.
Collapse
Affiliation(s)
- Samson Afewerki
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden; Berzelii Center EXSELENT, The Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Jia-Xin Wang
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, China.
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden; Berzelii Center EXSELENT, The Arrhenius Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
8
|
Knudsen IMB, Hedberg C, Ladefoged LK, Ide D, Brinkø A, Eikeland EZ, Kato A, Jensen HH. Divergent synthesis of new α-glucosidase inhibitors obtained through a vinyl Grignard-mediated carbocyclisation. Org Biomol Chem 2018; 16:6250-6261. [DOI: 10.1039/c8ob01433g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Four new α-glucosidase inhibitors have been synthesised through 5–8 synthetic steps from a common synthetic intermediate obtained through a recently developed carbocyclisation.
Collapse
Affiliation(s)
| | | | - Lucy Kate Ladefoged
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
- Interdisciplinary Nanoscience Center (iNANO)
| | - Daisuke Ide
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Anne Brinkø
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Espen Z. Eikeland
- Center for Materials Crystallography
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | | |
Collapse
|
9
|
Kato T, Vasella A, Crich D. Stereospecific synthesis of methyl 2-amino-2-deoxy-(6S)-deuterio-α,β-d-glucopyranoside and methyl 2,6-diamino-2,6-dideoxy-(6R)-deuterio-α,β-d-glucopyranoside: Side chain conformations of the 2-amino-2-deoxy and 2,6-diamino-2,6-dideoxyglucopyranosides. Carbohydr Res 2017; 448:10-17. [PMID: 28554123 DOI: 10.1016/j.carres.2017.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022]
Abstract
The stereospecifically labeled 6-monodeuterio methyl 2,6-diamino-2,6-dideoxy-α- and β- d-glucopyranosides were synthesized with a view to determining their side chain conformations. NMR studies in D2O at pH 5 and pH 11 reveal both anomers to adopt very predominantly the gt conformation consistent with the gauche conformation of 2-aminoethanol and its acetate salt. In contrast, as also revealed with the help of stereospecifically-labelled monodeuterio isotopomers, the methyl 2-amino-2-deoxy-α- and β- d-glucopyranosides are an approximately 1:1 mixture of gg and gt conformers as is found in glucopyranose itself.
Collapse
Affiliation(s)
- Takayuki Kato
- Department of Chemistry, Wayne State University, 5101 Cass Avenue Detroit, MI 48202, USA.
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zurich, 8093 Zurich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue Detroit, MI 48202, USA.
| |
Collapse
|
10
|
Sánchez-Fernández EM, García Fernández JM, Mellet CO. Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, GM1-gangliosidosis and Fabry diseases. Chem Commun (Camb) 2016; 52:5497-515. [PMID: 27043200 DOI: 10.1039/c6cc01564f] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lysosomal storage disorders (LSDs) are often caused by mutations that destabilize native folding and impair the trafficking of enzymes, leading to premature endoplasmic reticulum (ER)-associated degradation, deficiencies of specific hydrolytic functions and aberrant storage of metabolites in the lysosomes. Enzyme replacement therapy (ERT) and substrate reduction therapy (SRT) are available for a few of these conditions, but most remain orphan. A main difficulty is that virtually all LSDs involve neurological decline and neither proteins nor the current SRT drugs can cross the blood-brain barrier. Twenty years ago a new therapeutic paradigm better suited for neuropathic LSDs was launched, namely pharmacological chaperone (PC) therapy. PCs are small molecules capable of binding to the mutant protein at the ER, inducing proper folding, restoring trafficking and increasing enzyme activity and substrate processing in the lysosome. In many LSDs the mutated protein is a glycosidase and the accumulated substrate is an oligo- or polysaccharide or a glycoconjugate, e.g. a glycosphingolipid. Although it might appear counterintuitive, substrate analogues (glycomimetics) behaving as competitive glycosidase inhibitors are good candidates to perform PC tasks. The advancements in the knowledge of the molecular basis of LSDs, including enzyme structures, binding modes, trafficking pathways and substrate processing mechanisms, have been put forward to optimize PC selectivity and efficacy. Moreover, the chemical versatility of glycomimetics and the variety of structures at hand allow simultaneous optimization of chaperone and pharmacokinetic properties. In this Feature Article we review the advancements made in this field in the last few years and the future outlook through the lessons taught by three archetypical LSDs: Gaucher disease, GM1-gangliosidosis and Fabry disease.
Collapse
Affiliation(s)
- Elena M Sánchez-Fernández
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, 41012, Sevilla, Spain.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, 41012, Sevilla, Spain.
| |
Collapse
|
11
|
Wang HY, Kato A, Kinami K, Li YX, Fleet GWJ, Yu CY. Concise synthesis of calystegines B2 and B3via intramolecular Nozaki-Hiyama-Kishi reaction. Org Biomol Chem 2016; 14:4885-96. [PMID: 27161660 DOI: 10.1039/c6ob00697c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The key step in the concise syntheses of calystegine B2 and its C-2 epimer calystegine B3 was the construction of cycloheptanone 8via an intramolecular Nozaki-Hiyama-Kishi (NHK) reaction of 9, an aldehyde containing a Z-vinyl iodide. Vinyl iodide 9 was obtained by the Stork olefination of aldehyde 10, derived from carbohydrate starting materials. Calystegines B2 (3) and B3 (4) were synthesized from d-xylose and l-arabinose derivatives respectively in 11 steps in excellent overall yields (27% and 19%).
Collapse
Affiliation(s)
- Hong-Yao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
12
|
Kato A, Zhang ZL, Wang HY, Jia YM, Yu CY, Kinami K, Hirokami Y, Tsuji Y, Adachi I, Nash RJ, Fleet GWJ, Koseki J, Nakagome I, Hirono S. Design and Synthesis of Labystegines, Hybrid Iminosugars from LAB and Calystegine, as Inhibitors of Intestinal α-Glucosidases: Binding Conformation and Interaction for ntSI. J Org Chem 2015; 80:4501-15. [DOI: 10.1021/acs.joc.5b00342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Zhao-Lan Zhang
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Yao Wang
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue-Mei Jia
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chu-Yi Yu
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kyoko Kinami
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yuki Hirokami
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yutaro Tsuji
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Robert J. Nash
- Institute
of Biological, Environmental and Rural Sciences, Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - George W. J. Fleet
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jun Koseki
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Izumi Nakagome
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Shuichi Hirono
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
13
|
Thiery E, Reniers J, Wouters J, Vincent SP. Stereoselective Synthesis of Boat-Locked Glycosides Designed as Glycosyl Hydrolase Conformational Probes. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Salamone S, Clement LL, Viuff AH, Andersen OJ, Jensen F, Jensen HH. Synthesis and evaluation of galacto-noeurostegine and its 2-deoxy analogue as glycosidase inhibitors. Org Biomol Chem 2015; 13:7979-92. [DOI: 10.1039/c5ob01062d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An epimer of the known glycosidase inhibitor noeurostegine, galacto-noeurostegine, was synthesised in 21 steps from levoglucosan and found to be a potent, competitive and highly selective galactosidase inhibitor of Aspergillus oryzae β-galactosidase.
Collapse
Affiliation(s)
| | | | | | - Ole Juul Andersen
- Department of Chemistry
- Aarhus University
- Aarhus C
- Denmark
- Center for Insoluble Protein Structures (inSPIN) and the Interdisciplinary Nanoscience Center (iNANO)
| | - Frank Jensen
- Department of Chemistry
- Aarhus University
- Aarhus C
- Denmark
| | | |
Collapse
|
15
|
Viuff AH, Besenbacher LM, Kamori A, Jensen MT, Kilian M, Kato A, Jensen HH. Stable analogues of nojirimycin – synthesis and biological evaluation of nojiristegine and manno-nojiristegine. Org Biomol Chem 2015; 13:9637-58. [DOI: 10.1039/c5ob01281c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel iminosugars called nojiristegines, being structural hybrids between nor-tropane alkaloid calystegine and nojirimycins, have been synthesised and the hemiaminal functionality found to be stable.
Collapse
Affiliation(s)
| | | | - Akiko Kamori
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-01940
- Japan
| | | | - Mogens Kilian
- Department of Biomedicine
- Aarhus University
- 8000 Aarhus C
- Denmark
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-01940
- Japan
| | | |
Collapse
|
16
|
Ansari AA, Rajasekaran P, Khan MM, Vankar YD. Bicyclic Hybrid Sugars as Glycosidase Inhibitors: Synthesis and Comparative Study of Inhibitory Activities of Fused Oxa-Oxa, Oxa-Aza, and Oxa-Carbasugar Hybrid Molecules. J Org Chem 2014; 79:1690-9. [DOI: 10.1021/jo402574h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alafia A. Ansari
- Department
of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Parasuraman Rajasekaran
- Department
of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - M. Musawwer Khan
- Department
of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Yashwant D. Vankar
- Department
of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
17
|
Griffen JA, White JC, Kociok-Köhn G, Lloyd MD, Wells A, Arnot TC, Lewis SE. New aminocyclitols with quaternary stereocentres via acylnitroso cycloaddition with an ipso,ortho arene dihydrodiol. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.04.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Viuff AH, Hansen JC, Christiansen AB, Jensen HH. Synthesis of a Dual-Purpose 2-Deoxy-2-fluoro-glucopyranosyl Building Block. SYNTHETIC COMMUN 2013. [DOI: 10.1080/00397911.2011.648001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Agnete H. Viuff
- a Department of Chemistry , Aarhus University , Aarhus , Denmark
| | - Jacob C. Hansen
- a Department of Chemistry , Aarhus University , Aarhus , Denmark
| | | | - Henrik H. Jensen
- a Department of Chemistry , Aarhus University , Aarhus , Denmark
| |
Collapse
|
19
|
Herndon JW. The chemistry of the carbon–transition metal double and triple bond: Annual survey covering the year 2010. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Chiral pool synthesis of calystegine A3 from 2-deoxyglucose via a Brown allylation. Carbohydr Res 2011; 346:2855-61. [DOI: 10.1016/j.carres.2011.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/14/2011] [Accepted: 10/14/2011] [Indexed: 11/23/2022]
|
21
|
Rasmussen TS, Allman S, Twigg G, Butters TD, Jensen HH. Synthesis of N-alkylated noeurostegines and evaluation of their potential as treatment for Gaucher's disease. Bioorg Med Chem Lett 2011; 21:1519-22. [PMID: 21292481 DOI: 10.1016/j.bmcl.2010.12.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
Abstract
The potent and selective inhibitor of β-glucosidases, noeurostegine, was evaluated as an inhibitor of glucocerebrosidase (GCase) to give an IC(50) value of 0.4 μM, being 250- and 150-fold better than N-butyl and N-nonyl noeurostegine, respectively. The parent noeurostegine and its N-butyl and N-nonyl alkylated congeners were also tested as pharmacological chaperones against a N370S GCase mutant. Of these, only noeurostegine, was found to increase enzyme activity, which in potency was comparable to that previously reported for isofagomine.
Collapse
|
22
|
Rasmussen TS, Koldsø H, Nakagawa S, Kato A, Schiøtt B, Jensen HH. Synthesis of uronic-Noeurostegine – a potent bacterial β-glucuronidase inhibitor. Org Biomol Chem 2011; 9:7807-13. [DOI: 10.1039/c1ob06038d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Slámová K, Marhol P, Bezouska K, Lindkvist L, Hansen SG, Kren V, Jensen HH. Synthesis and biological activity of glycosyl-1H-1,2,3-triazoles. Bioorg Med Chem Lett 2010; 20:4263-5. [PMID: 20542427 DOI: 10.1016/j.bmcl.2010.04.151] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Kristýna Slámová
- Centre of Biocatalysis and Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ 14220, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|