1
|
Kranjec C, Mathew JP, Ovchinnikov K, Fadayomi I, Yang Y, Kjos M, Li WW. A bacteriocin-based coating strategy to prevent vancomycin-resistant Enterococcus faecium biofilm formation on materials of interest for indwelling medical devices. Biofilm 2024; 8:100211. [PMID: 39071174 PMCID: PMC11282937 DOI: 10.1016/j.bioflm.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
The ever-increasing use of exogenous materials as indwelling medical devices in modern medicine offers to pathogens new ways to gain access to human body and begin, in some cases, life threatening infections. Biofouling of such materials with bacteria or fungi is a major concern during surgeries, since this is often associated with biofilm formation and difficult to treat, recalcitrant infections. Intense research efforts have therefore developed several strategies to shield the medical devices' surface from colonization by pathogenic microorganisms. Here, we used dopamine as a coupling agent to coat four different materials of medical interest (plastic polyetheretherketone (PEEK), stainless steel, titanium and silicone catheter) with the bacteriocins, enterocin EJ97-short and the thiopeptide micrococcin P1. Water contact angle measurements and x-ray photoelectron spectroscopy were used to verify the effective coating of the materials. The effect of bacteriocins coated on these materials on the biofilm formation by a vancomycin resistant Enterococcus faecium (VRE) strain was studied by biofilm-oriented antimicrobial test (BOAT) and electron scanning microscopy. The in vitro biocompatibility of bacteriocin-modified biomaterials was tested on cultured human cells. The results demonstrated that the binding of the bacteriocins to the implant surfaces is achieved, and the two bacteriocins in combination could inhibit biofilm formation by E. faecium on all four materials. The modified implant showed no cytotoxicity to the human cells tested. Therefore, surface modification with the two bacteriocins may offer a novel and effective way to prevent biofilm formation on a wide range of implant materials.
Collapse
Affiliation(s)
- Christian Kranjec
- Laboratory of Microbial Gene Technology, Faculty of Chemistry, Biotechnology and Food Science. Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Jills Puthiaparambil Mathew
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Kirill Ovchinnikov
- Laboratory of Microbial Gene Technology, Faculty of Chemistry, Biotechnology and Food Science. Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Idowu Fadayomi
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Ying Yang
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Morten Kjos
- Laboratory of Microbial Gene Technology, Faculty of Chemistry, Biotechnology and Food Science. Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Wen-Wu Li
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, ST4 7QB, UK
| |
Collapse
|
2
|
Chen X, Li Q, Xie J, Nie S. Immunomodulatory Effects of Probiotic-Derived Extracellular Vesicles: Opportunities and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19259-19273. [PMID: 39177683 DOI: 10.1021/acs.jafc.4c04223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Probiotics are known to modulate host immune responses in the course of many diseases. Recently, bacterial extracellular vesicles (EVs), which contain bioactive proteins, lipids, nucleic acids, and metabolites released by bacteria, have been identified as potentially important mediators of bacteria-bacterium and bacteria-host interactions. With the deepening of research, it has been found that probiotic-derived EVs play a significant role in regulating host immune function and, thus, exerting health-promoting effects. Nevertheless, current research is in its early stages, and there remains a long way to go to bridge the gap between basic research and clinical practice. In this review, we describe the fundamental aspects of probiotic-derived EVs, including their biogenesis, cargo sorting mechanism, and transport capabilities. We further discussed the potential mechanisms of probiotic-derived EVs in regulating the host's gut microbiota and immune responses. Finally, we speculate about the potential of probiotic-derived EVs as new postbiotics for applications in functional food, disease treatment substitutes, and immune regulatory adjuvants.
Collapse
Affiliation(s)
- Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
Park J, Kim D, Son YJ, Ciufolini MA, Clovis S, Han M, Kim LH, Shin SJ, Hwang HJ. Chemical optimization and derivatization of micrococcin p2 to target multiple bacterial infections: new antibiotics from thiopeptides. World J Microbiol Biotechnol 2024; 40:307. [PMID: 39162916 DOI: 10.1007/s11274-024-04109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Antimicrobial resistance poses a significant threat to humanity, and the development of new antibiotics is urgently needed. Our research has focused on thiopeptide antibiotics such as micrococcin P2 (MP2) and derivatives thereof as new anti-infective agents. Thiopeptides are sulfur-rich, structurally complex substances that exhibit potent activity against Gram-positive pathogens and Mycobacteria species, including clinically resistant strains. The clinical development of thiopeptides has been hampered by the lack of efficient synthetic platforms to conduct detailed structure-activity relationship studies of these natural products. The present contribution touches upon efficient synthetic routes to MP2 that laid the groundwork for clinical translation. The medicinal chemistry campaign on MP2 has been guided by computational molecular dynamic simulations and parallel investigations to improve drug-like properties, such as enhancing the aqueous solubility and optimizing antibacterial activity. Such endeavors have enabled identification of promising lead compounds, AJ-037 and AJ-206, against Mycobacterium avium complex (MAC). Extensive in vitro studies revealed that these compounds exert potent activity against MAC species, a subspecies of non-tuberculous mycobacteria (NTM) that proliferate inside macrophages. Two additional pre-clinical candidates have been identified: AJ-024, for the treatment of Clostridioides difficile infections, and AJ-147, for methicillin-resistant Staphylococcus aureus impetigo. Both compounds compare quite favorably with current first-line treatments. In particular, the ability of AJ-147 to downregulate pro-inflammatory cytokines adds a valuable dimension to its clinical use. In light of above, these new thiopeptide derivatives are well-poised for further clinical development.
Collapse
Affiliation(s)
- Jiyun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dahyun Kim
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea
| | - Young-Jin Son
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea
| | - Marco A Ciufolini
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6K 1Z1, Canada
| | - Shyaka Clovis
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea
| | - Minwoo Han
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Hee-Jong Hwang
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea.
| |
Collapse
|
4
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
5
|
Hwang HJ, Ciufolini MA. Therapies from Thiopeptides. Molecules 2023; 28:7579. [PMID: 38005301 PMCID: PMC10673184 DOI: 10.3390/molecules28227579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The first part of this contribution describes solutions that were developed to achieve progressively more efficient syntheses of the thiopeptide natural products, micrococcins P1 and P2 (MP1-MP2), with an eye toward exploring their potential as a source of new antibiotics. Such efforts enabled investigations on the medicinal chemistry of those antibiotics, and inspired the development of the kinase inhibitor, Masitinib®, two candidate oncology drugs, and new antibacterial agents. The studies that produced such therapeutic resources are detailed in the second part. True to the theme of this issue, "Organic Synthesis and Medicinal Chemistry: Two Inseparable Partners", an important message is that the above advances would have never materialized without the support of curiosity-driven, academic synthetic organic chemistry: a beleaguered science that nonetheless has been-and continues to be-instrumental to progress in the biomedical field.
Collapse
Affiliation(s)
- Hee-Jong Hwang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada;
- A&J Science, Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Marco A. Ciufolini
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada;
| |
Collapse
|
6
|
Heinzinger LR, Pugh AR, Wagner JA, Otto M. Evaluating the Translational Potential of Bacteriocins as an Alternative Treatment for Staphylococcus aureus Infections in Animals and Humans. Antibiotics (Basel) 2023; 12:1256. [PMID: 37627676 PMCID: PMC10451987 DOI: 10.3390/antibiotics12081256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance remains a global threat to human and animal health. Staphylococcus aureus is an opportunistic pathogen that causes minor to life-threatening infections. The widespread use of antibiotics in the clinical, veterinary, and agricultural setting combined with the increasing prevalence of antibiotic-resistant S. aureus strains makes it abundantly clear that alternatives to antibiotics are urgently needed. Bacteriocins represent one potential alternative therapeutic. They are antimicrobial peptides that are produced by bacteria that are generally nontoxic and have a relatively narrow target spectrum, and they leave many commensals and most mammalian cells unperturbed. Multiple studies involving bacteriocins (e.g., nisin, epidermicin, mersacidin, and lysostaphin) have demonstrated their efficacy at eliminating or treating a wide variety of S. aureus infections in animal models. This review provides a comprehensive and updated evaluation of animal studies involving bacteriocins and highlights their translational potential. The strengths and limitations associated with bacteriocin treatments compared with traditional antibiotic therapies are evaluated, and the challenges that are involved with implementing novel therapeutics are discussed.
Collapse
Affiliation(s)
| | | | | | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA; (L.R.H.); (A.R.P.); (J.A.W.)
| |
Collapse
|
7
|
Horizontal Transfer of Bacteriocin Biosynthesis Genes Requires Metabolic Adaptation To Improve Compound Production and Cellular Fitness. Microbiol Spectr 2023; 11:e0317622. [PMID: 36472430 PMCID: PMC9927498 DOI: 10.1128/spectrum.03176-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biosynthetic gene clusters (BGCs) encoding the production of bacteriocins are widespread among bacterial isolates and are important genetic determinants of competitive fitness within a given habitat. Staphylococci produce a tremendous diversity of compounds, and the corresponding BGCs are frequently associated with mobile genetic elements, suggesting gain and loss of biosynthetic capacity. Pharmaceutical biology has shown that compound production in heterologous hosts is often challenging, and many BGC recipients initially produce small amounts of compound or show reduced growth rates. To assess whether transfer of BGCs between closely related Staphylococcus aureus strains can be instantly effective or requires elaborate metabolic adaptation, we investigated the intraspecies transfer of a BGC encoding the ribosomally synthesized and posttranslationally modified peptide (RiPP) micrococcin P1 (MP1). We found that acquisition of the BGC by S. aureus RN4220 enabled immediate MP1 production but also imposed a metabolic burden, which was relieved after prolonged cultivation by adaptive mutation. We used a multiomics approach to study this phenomenon and found adaptive evolution to select for strains with increased activity of the tricarboxylic acid cycle (TCA), which enhanced metabolic fitness and levels of compound production. Metabolome analysis revealed increases of central metabolites, including citrate and α-ketoglutarate in the adapted strain, suggesting metabolic adaptation to overcome the BGC-associated growth defects. Our results indicate that BGC acquisition requires genetic and metabolic predispositions, allowing the integration of bacteriocin production into the cellular metabolism. Inappropriate metabolic characteristics of recipients can entail physiological burdens, negatively impacting the competitive fitness of recipients within natural bacterial communities. IMPORTANCE Human microbiomes are critically associated with human health and disease. Importantly, pathogenic bacteria can hide in human-associated communities and can cause disease when the composition of the community becomes unbalanced. Bacteriocin-producing commensals are able to displace pathogens from microbial communities, suggesting that their targeted introduction into human microbiomes might prevent pathogen colonization and infection. However, to develop probiotic approaches, strains are needed that produce high levels of bioactive compounds and retain cellular fitness within mixed bacterial communities. Our work offers insights into the metabolic burdens associated with the production of the bacteriocin micrococcin P1 and highlights evolutionary strategies that increase cellular fitness in the context of production. Metabolic adaptations are most likely broadly relevant for bacteriocin producers and need to be considered for the future development of effective microbiome editing strategies.
Collapse
|
8
|
Keikha M, Kamali H, Ghazvini K, Karbalaei M. Antimicrobial peptides: natural or synthetic defense peptides against HBV and HCV infections. Virusdisease 2022; 33:445-455. [PMID: 36447811 PMCID: PMC9701303 DOI: 10.1007/s13337-022-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
According to the literature, treatment of HCV and HBV infections faces challenges due to problems such as the emergence of drug-resistant mutants, the high cost of treatment, and the side effects of current antiviral therapy. Antimicrobial peptides (AMPs), a group of small peptides, are a part of the immune system and are considered as an alternative treatment for microbial infections. These peptides are water-soluble with amphiphilic (hydrophilic and hydrophobic surfaces) characteristics. AMPs are produced by a wide range of organisms including both prokaryotic and eukaryotic cells. The antiviral mechanisms of AMPs include inhibiting virus entry, inhibiting intracellular virus replication, inhibiting intracellular viral packaging, and inducing immune responses. In addition, AMPs are a new generation of antiviral biomolecules that have very low toxicity for human host cells, particularly liver cell lines. AMPs can be considered as one of the most important strategies for developing new adjuvant drugs in the treatment of HBV and HCV infections. In the present study, several groups of AMPs (with a net positive charge) such as Human cathelicidin, Claudin-1, Defensins, Hepcidin, Lactoferrin, Casein, Plectasin, Micrococcin P1, Scorpion venom, and Synthetic peptides were reviewed with antiviral properties against HBV and HCV.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
9
|
Kukade M, Pol U, Kagne R, Chandane W, Bodake A, Prashanth M, Kumar KY, Raghu M. Microwave assisted solvent-free synthesis of N-phenyl-4-(pyridin-4-yl)thiazoles and their drug-likeness studies. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Liu Y, Liu Q, Zhao L, Dickey SW, Wang H, Xu R, Chen T, Jian Y, Wang X, Lv H, Otto M, Li M. Essential role of membrane vesicles for biological activity of the bacteriocin micrococcin P1. J Extracell Vesicles 2022; 11:e12212. [PMID: 35384360 PMCID: PMC8982634 DOI: 10.1002/jev2.12212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/17/2022] [Accepted: 03/19/2022] [Indexed: 11/12/2022] Open
Abstract
Bacterial membrane vesicles (MVs) have recently gained much attention and have been shown to carry a wide diversity of secreted bacterial components. However, it is poorly understood whether MV carriage is an indispensable requirement for a cargo's function. Bacteriocins as weapons of bacterial warfare shape the composition of microbial communities. Many bacteriocins have pronounced hydrophobicity that is imposed by their mechanism of action, but how they diffuse through aqueous environments to reach their target competitors is not known. Here we show that antimicrobial competitive activity of an exemplary hydrophobic bacteriocin of the thiopeptide antibiotic family, micrococcin P1 (MP1), is dependent on incorporation into MVs, which were found to carry MP1 at high concentrations. In contrast, MP1 without MV association was poorly active due to low solubility. Furthermore, we provide previously unavailable evidence that MVs fuse with a Gram-positive bacterium's cytoplasmic membrane, in this case to deliver a bacteriocin to its intracellular target. Our findings demonstrate how bacteria overcome the problem associated with secreting hydrophobic small molecules and delivering them to their target and show that MVs have a key function in bacterial warfare. Furthermore, our study provides hitherto rare evidence that MVs provide an essential rather than merely accessory function in bacterial physiology.
Collapse
Affiliation(s)
- Yao Liu
- Department of Laboratory MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qian Liu
- Department of Laboratory MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lu Zhao
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Seth W. Dickey
- Pathogen Molecular Genetics SectionLaboratory of BacteriologyNational Institute of Allergy and Infectious DiseasesU.S. National Institutes of HealthBethesdaMarylandUSA
| | - Hua Wang
- Department of Laboratory MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rui Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineState Key Laboratory of Oncogenes and Related GenesRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianchi Chen
- Department of Laboratory MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ying Jian
- Department of Laboratory MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xi Wang
- Department of Laboratory MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huiying Lv
- Department of Laboratory MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Michael Otto
- Pathogen Molecular Genetics SectionLaboratory of BacteriologyNational Institute of Allergy and Infectious DiseasesU.S. National Institutes of HealthBethesdaMarylandUSA
| | - Min Li
- Department of Laboratory MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Faculty of Medical LaboratoryScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
11
|
Hwang HJ, Son YJ, Kim D, Lee J, Shin YJ, Kwon Y, Ciufolini MA. Diversity-oriented routes to thiopeptide antibiotics: total synthesis and biological evaluation of micrococcin P2. Org Biomol Chem 2022; 20:1893-1899. [PMID: 34908070 DOI: 10.1039/d1ob02145a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report the first total synthesis of micrococcin P2 (MP2, 1) by a diversity-oriented route that incorporates a number of refinements relative to earlier syntheses. Biological data regarding the activity of 1 against a range of human pathogens are also provided. Furthermore, we disclose a chemical property of MP2 that greatly facilitates medicinal chemistry work in the micrococcin area and describe a method to obtain MP2 by fermentation in B. subtilis.
Collapse
Affiliation(s)
- Hee-Jong Hwang
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6 K 1Z1, Canada.
| | - Young-Jin Son
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dahyun Kim
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea.
| | - Jusuk Lee
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea.
| | - Yun-Jeong Shin
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yonghoon Kwon
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Marco A Ciufolini
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6 K 1Z1, Canada.
| |
Collapse
|
12
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
13
|
Genome-based characterization of a plasmid-associated micrococcin P1 biosynthetic gene cluster and virulence factors in Mammaliicoccus sciuri IMDO-S72. Appl Environ Microbiol 2021; 88:e0208821. [PMID: 34936836 DOI: 10.1128/aem.02088-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the de novo assembled genome of Mammaliicoccus sciuri IMDO-S72 revealed the genetically encoded machinery behind its earlier reported antibacterial phenotype and gave further insight into the repertoire of putative virulence factors of this recently reclassified species. A plasmid-encoded biosynthetic gene cluster was held responsible for the antimicrobial activity of M. sciuri IMDO-S72, comprising genes involved in thiopeptide production. The compound encoded by this gene cluster was structurally identified as micrococcin P1. Further examination of its genome highlighted the ubiquitous presence of innate virulence factors mainly involved in surface colonization. Determinants contributing to aggressive virulence were generally absent, with exception of a plasmid-associated ica cluster. The native antibiotic resistance genes sal(A) and mecA were detected within the genome, amongst others, but were not consistently linked with a resistant phenotype. While mobile genetic elements were identified within the genome, such as an untypeable SCC element, they proved to be generally free of virulence- and antibiotic-related genes. These results further suggest a commensal lifestyle of M. sciuri and indicate the association of antibiotic resistance determinants with mobile genetic elements, as an important factor in conferring antibiotic resistance, in addition to their unilateral annotation. Importance Mammaliicoccus sciuri has been put forward as an important carrier of virulence and antibiotic resistance genes, which can be transmitted to clinically important staphylococcal species such as Staphylococcus aureus. As a common inhabitant of mammal skin, this species is believed to have a predominant commensal lifestyle although it has been reported as an opportunistic pathogen in some cases. This study provides an extensive genome-wide description of its putative virulence potential taking into consideration the genomic context in which these genes appear, an aspect that is often overlooked during virulence analysis. Additional genome and biochemical analysis linked M. sciuri with the production of micrococcin P1, gaining further insight to which extent these biosynthetic gene cluster are distributed amongst different related species. The frequent plasmid-associated character hints that these traits can be horizontally transferred and might confer a competitive advantage to its recipient within its ecological niche.
Collapse
|
14
|
O'Neill AM, Worthing KA, Kulkarni N, Li F, Nakatsuji T, McGrosso D, Mills RH, Kalla G, Cheng JY, Norris JM, Pogliano K, Pogliano J, Gonzalez DJ, Gallo RL. Antimicrobials from a feline commensal bacterium inhibit skin infection by drug-resistant S. pseudintermedius. eLife 2021; 10:66793. [PMID: 34664551 PMCID: PMC8592530 DOI: 10.7554/elife.66793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an important emerging zoonotic pathogen that causes severe skin infections. To combat infections from drug-resistant bacteria, the transplantation of commensal antimicrobial bacteria as a therapeutic has shown clinical promise. We screened a collection of diverse staphylococcus species from domestic dogs and cats for antimicrobial activity against MRSP. A unique strain (S. felis C4) was isolated from feline skin that inhibited MRSP and multiple gram-positive pathogens. Whole genome sequencing and mass spectrometry revealed several secreted antimicrobials including a thiopeptide bacteriocin micrococcin P1 and phenol-soluble modulin beta (PSMβ) peptides that exhibited antimicrobial and anti-inflammatory activity. Fluorescence and electron microscopy revealed that S. felis antimicrobials inhibited translation and disrupted bacterial but not eukaryotic cell membranes. Competition experiments in mice showed that S. felis significantly reduced MRSP skin colonization and an antimicrobial extract from S. felis significantly reduced necrotic skin injury from MRSP infection. These findings indicate a feline commensal bacterium that could be utilized in bacteriotherapy against difficult-to-treat animal and human skin infections.
Collapse
Affiliation(s)
- Alan M O'Neill
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Kate A Worthing
- College of Veterinary Medicine, University of Arizona, Oro Valley, United States
| | - Nikhil Kulkarni
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Dominic McGrosso
- Department of Pharmacology, University of California, San Diego, San Diego, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, United States
| | - Robert H Mills
- Department of Pharmacology, University of California, San Diego, San Diego, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, United States
| | - Gayathri Kalla
- Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Joyce Y Cheng
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Jacqueline M Norris
- Sydney School of Veterinary Science, University of Sydney, Sydney, Australia
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, San Diego, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, United States
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, San Diego, United States
| |
Collapse
|
15
|
Han J, Liu X, Zhang L, Quinn RJ, Feng Y. Anti-mycobacterial natural products and mechanisms of action. Nat Prod Rep 2021; 39:77-89. [PMID: 34226909 DOI: 10.1039/d1np00011j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to June, 2020Tuberculosis (TB) continues to be a major disease with high mortality and morbidity globally. Drug resistance and long duration of treatment make antituberculosis drug discovery more challenging. In this review, we summarize recent advances on anti-TB natural products (NPs) and their potential molecular targets in cell wall synthesis, protein production, energy generation, nucleic acid synthesis and other emerging areas. We highlight compounds with activity against drug-resistant TB, and reveal several novel targets including Mtb biotin synthase, ATP synthase, 1,4-dihydroxy-2-naphthoate prenyltransferase and biofilms. These anti-TB NPs and their targets could facilitate target-based screening and accelerate TB drug discovery.
Collapse
Affiliation(s)
- Jianying Han
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
16
|
Kranjec C, Kristensen SS, Bartkiewicz KT, Brønner M, Cavanagh JP, Srikantam A, Mathiesen G, Diep DB. A bacteriocin-based treatment option for Staphylococcus haemolyticus biofilms. Sci Rep 2021; 11:13909. [PMID: 34230527 PMCID: PMC8260761 DOI: 10.1038/s41598-021-93158-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteriocins are ribosomally-synthesized antimicrobial peptides, showing great potential as novel treatment options for multidrug-resistant pathogens. In this study, we designed a novel hybrid bacteriocin, Hybrid 1 (H1), by combing the N-terminal part and the C-terminal part of the related bacteriocins enterocin K1 (K1) and enterocin EJ97 (EJ97), respectively. Like the parental bacteriocins, H1 used the membrane-bound protease RseP as receptor, however, it differed from the others in the inhibition spectrum. Most notably, H1 showed a superior antimicrobial effect towards Staphylococcus haemolyticus—an important nosocomial pathogen. To avoid strain-dependency, we further evaluated H1 against 27 clinical and commensal S. haemolyticus strains, with H1 indeed showing high activity towards all strains. To curtail the rise of resistant mutants and further explore the potential of H1 as a therapeutic agent, we designed a bacteriocin-based formulation where H1 was used in combination with the broad-spectrum bacteriocins micrococcin P1 and garvicin KS. Unlike the individual bacteriocins, the three-component combination was highly effective against planktonic cells and completely eradicated biofilm-associated S. haemolyticus cells in vitro. Most importantly, the formulation efficiently prevented development of resistant mutants as well. These findings indicate the potential of a bacteriocins-based formulation as a treatment option for S. haemolyticus.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sofie S Kristensen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Karolina T Bartkiewicz
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Mikkel Brønner
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn P Cavanagh
- Pediatric Infections Group, Department of Pediatrics, University Hospital of North Norway, Tromsö, Norway.,Pediatric Infections Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsö, Norway
| | - Aparna Srikantam
- Blue Peter Public Health and Research Centre, LEPRA Society, Hyderabad, India
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
17
|
Kranjec C, Morales Angeles D, Torrissen Mårli M, Fernández L, García P, Kjos M, Diep DB. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics (Basel) 2021; 10:131. [PMID: 33573022 PMCID: PMC7911828 DOI: 10.3390/antibiotics10020131] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococci, like Staphylococcus aureus and S. epidermidis, are common colonizers of the human microbiota. While being harmless in many cases, many virulence factors result in them being opportunistic pathogens and one of the major causes of hospital-acquired infections worldwide. One of these virulence factors is the ability to form biofilms-three-dimensional communities of microorganisms embedded in an extracellular polymeric matrix (EPS). The EPS is composed of polysaccharides, proteins and extracellular DNA, and is finely regulated in response to environmental conditions. This structured environment protects the embedded bacteria from the human immune system and decreases their susceptibility to antimicrobials, making infections caused by staphylococci particularly difficult to treat. With the rise of antibiotic-resistant staphylococci, together with difficulty in removing biofilms, there is a great need for new treatment strategies. The purpose of this review is to provide an overview of our current knowledge of the stages of biofilm development and what difficulties may arise when trying to eradicate staphylococcal biofilms. Furthermore, we look into promising targets and therapeutic methods, including bacteriocins and phage-derived antibiofilm approaches.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Lucía Fernández
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pilar García
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| |
Collapse
|
18
|
A bacteriocin-based antimicrobial formulation to effectively disrupt the cell viability of methicillin-resistant Staphylococcus aureus (MRSA) biofilms. NPJ Biofilms Microbiomes 2020; 6:58. [PMID: 33268776 PMCID: PMC7710749 DOI: 10.1038/s41522-020-00166-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-resistant and biofilm-associated infections brought about by methicillin-resistant Staphylococcus aureus (MRSA) strains is a pressing issue both inside as well as outside nosocomial environments worldwide. Here, we show that a combination of two bacteriocins with distinct structural and functional characteristics, garvicin KS, and micrococcin P1, showed a synergetic antibacterial activity against biofilms produced in vitro by S. aureus, including several MRSA strains. In addition, this bacteriocin-based antimicrobial combination showed the ability to restore the sensitivity of the highly resilient MRSA strain ATCC 33591 to the β-lactam antibiotic penicillin G. By using a combination of bacterial cell metabolic assays, confocal and scanning electron microscopy, we show that the combination between garvicin KS, micrococcin P1, and penicillin G potently inhibit cell viability within S. aureus biofilms by causing severe cell damage. Together these data indicate that bacteriocins can be valuable therapeutic tools in the fight against biofilm-associated MRSA infections.
Collapse
|
19
|
Successful Development of Bacteriocins into Therapeutic Formulation for Treatment of MRSA Skin Infection in a Murine Model. Antimicrob Agents Chemother 2020; 64:AAC.00829-20. [PMID: 32958719 PMCID: PMC7674055 DOI: 10.1128/aac.00829-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of antibiotic-resistant pathogens has caused a serious worldwide problem in infection treatment in recent years. One of the pathogens is methicillin-resistant Staphylococcus aureus (MRSA), which is a major cause of skin and soft tissue infections. Alternative strategies and novel sources of antimicrobials to solve antibiotic resistance problems are urgently needed. In this study, we explored the potential of two broad-spectrum bacteriocins, garvicin KS and micrococcin P1, in skin infection treatments. The emergence of antibiotic-resistant pathogens has caused a serious worldwide problem in infection treatment in recent years. One of the pathogens is methicillin-resistant Staphylococcus aureus (MRSA), which is a major cause of skin and soft tissue infections. Alternative strategies and novel sources of antimicrobials to solve antibiotic resistance problems are urgently needed. In this study, we explored the potential of two broad-spectrum bacteriocins, garvicin KS and micrococcin P1, in skin infection treatments. The two bacteriocins acted synergistically with each other and with penicillin G in killing MRSA in vitro. The MICs of the antimicrobials in the three-component mixture were 40 ng/ml for micrococcin P1 and 2 μg/ml for garvicin KS and penicillin G, which were 62, 16, and at least 1,250 times lower than their MICs when assessed individually. To assess its therapeutic potential further, we challenged the three-component formulation in a murine skin infection model with the multidrug-resistant luciferase-tagged MRSA Xen31, a strain derived from the clinical isolate S. aureus ATCC 33591. Using the tagged-luciferase activity as a reporter for the presence of Xen31 in wounds, we demonstrated that the three-component formulation was efficient in eradicating the pathogen from treated wounds. Furthermore, compared to Fucidin cream, which is an antibiotic commonly used in skin infection treatments, our formulation was also superior in terms of preventing resistance development.
Collapse
|
20
|
de Freire Bastos MDC, Miceli de Farias F, Carlin Fagundes P, Varella Coelho ML. Staphylococcins: an update on antimicrobial peptides produced by staphylococci and their diverse potential applications. Appl Microbiol Biotechnol 2020; 104:10339-10368. [PMID: 33128614 DOI: 10.1007/s00253-020-10946-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
Staphylococcins are antimicrobial peptides or proteins produced by staphylococci. They can be separated into different classes, depending on their amino acid composition, structural complexity, and steps involved in their production. In this review, an overview of the current knowledge on staphylococcins will be presented with emphasis on the information collected in the last decade, including a brief description of new peptides. Most staphylococcins characterized to date are either lantibiotics or linear class II bacteriocins. Recently, gene clusters coding for production of circular bacteriocins, sactipeptides, and thiopeptides have been mined from the genome of staphylococcal isolates. In contrast to class II bacteriocins, lantibiotics, sactipeptides, and thiopeptides undergo post-translational modifications that can be quite extensive, depending on the peptide. Few staphylococcins inhibit only some staphylococcal species, but most of them have proven to target pathogens belonging to different genera and involved in a variety of infectious diseases of clinical or agronomic importance. Therefore, these peptides exhibit potential application as anti-infective drugs in different areas. This review will also cover this diverse and remarkable potential. To be commercialized, however, staphylococcin production should be cost-effective and result in high bacteriocin yields, which are not generally achieved from the culture supernatant of their native producers. Such low yields make their production quite costly and not suitable at large industrial scale. Efforts already made to overcome this limitation, minimizing costs and time of production of some staphylococcins and employing either chemical synthesis or in vivo biosynthesis, will be addressed in this review as well. KEY POINTS: • Staphylococci produce a variety of antimicrobial peptides known as staphylococcins. • Most staphylococcins are post-translationally modified peptides. • Staphylococcins exhibit potential biotechnological applications. Graphical abstract.
Collapse
Affiliation(s)
- Maria do Carmo de Freire Bastos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Felipe Miceli de Farias
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patrícia Carlin Fagundes
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcus Lívio Varella Coelho
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,Instituto Nacional da Propriedade Industrial, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
A New Thiopeptide Antibiotic, Micrococcin P3, from a Marine-Derived Strain of the Bacterium Bacillus stratosphericus. Molecules 2020; 25:molecules25194383. [PMID: 32987657 PMCID: PMC7582574 DOI: 10.3390/molecules25194383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
A new thiopeptide (micrococcin P3, 1) and a known one (micrococcin P1, 2) were isolated from the culture broth of a marine-derived strain of Bacillus stratosphericus. The structures of both compounds were elucidated using spectroscopic methods, including extensive 1D and 2D NMR analysis, high resolution mass spectrometry (HRMS), and tandem mass spectrometry. Both compounds exhibited potent antibacterial activities against Gram-positive strains with minimum inhibitory concentration (MIC) values of 0.05−0.8 μg/mL and did not show cytotoxicity in the MTT assay up to a concentration of 10 μM. This study adds a new promising member, micrococcin P3, to the family of thiopeptide antibiotics, which shows potential for the development of new antibiotics targeting Gram-positive bacteria.
Collapse
|
22
|
Kulyk OG, Biloborodov DA, Cherevatenko MA, Shyriakin YY, Lyapunov AY, Mazepa AV, Vashchenko VV, Orlov VD, Kolosov MA. Versatile approaches to a library of building blocks based on 5-acylthiazole skeleton. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1808224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Olesia G. Kulyk
- School of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | | | | | - Yevhen Y. Shyriakin
- School of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | | | - Alexander V. Mazepa
- A.V. Bogatsky Physico-Chemical Institute of the NAS of Ukraine, Odesa, Ukraine
| | - Valerii V. Vashchenko
- Department of Technology of Organic Materials, State Scientific Institution, Institute for Single Crystals, NAS of Ukraine, Kharkiv, Ukraine
| | - Valeriy D. Orlov
- School of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Maksim A. Kolosov
- School of Chemistry, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
23
|
Chen H, Farizyan M, Gemmeren M. Regioselective Olefination of 3‐Substituted Five‐Membered Heteroarenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hao Chen
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Mirxan Farizyan
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Manuel Gemmeren
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
24
|
Bhattarai K, Bastola R, Baral B. Antibiotic drug discovery: Challenges and perspectives in the light of emerging antibiotic resistance. ADVANCES IN GENETICS 2020; 105:229-292. [PMID: 32560788 DOI: 10.1016/bs.adgen.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amid a rising threat of antimicrobial resistance in a global scenario, our huge investments and high-throughput technologies injected for rejuvenating the key therapeutic scaffolds to suppress these rising superbugs has been diminishing severely. This has grasped world-wide attention, with increased consideration being given to the discovery of new chemical entities. Research has now proven that the relatively tiny and simpler microbes possess enhanced capability of generating novel and diverse chemical constituents with huge therapeutic leads. The usage of these beneficial organisms could help in producing new chemical scaffolds that govern the power to suppress the spread of obnoxious superbugs. Here in this review, we have explicitly focused on several appealing strategies employed for the generation of new chemical scaffolds. Also, efforts on providing novel insights on some of the unresolved questions in the production of metabolites, metabolic profiling and also the serendipity of getting "hit molecules" have been rigorously discussed. However, we are highly aware that biosynthetic pathway of different classes of secondary metabolites and their biosynthetic route is a vast topic, thus we have avoided discussion on this topic.
Collapse
Affiliation(s)
- Keshab Bhattarai
- University of Tübingen, Tübingen, Germany; Center for Natural and Applied Sciences (CENAS), Kathmandu, Nepal
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal.
| |
Collapse
|
25
|
Christy MP, Johnson T, McNerlin CD, Woodard J, Nelson AT, Lim B, Hamilton TL, Freiberg KM, Siegel D. Total Synthesis of Micrococcin P1 through Scalable Thiazole Forming Reactions of Cysteine Derivatives and Nitriles. Org Lett 2020; 22:2365-2370. [DOI: 10.1021/acs.orglett.0c00202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mitchell P. Christy
- Department of Chemistry & Biochemistry, University of California—San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Trevor Johnson
- Department of Chemistry & Biochemistry, University of California—San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Clare D. McNerlin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States
| | - John Woodard
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States
| | - Andrew T. Nelson
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, A5300, Austin, Texas 78712-1224, United States
- School of Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Bryant Lim
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States
| | - Tiffany L. Hamilton
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States
| | - Kaitlyn M. Freiberg
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0934, United States
| |
Collapse
|
26
|
A novel metal-free synthesis of thiazole-substituted α-hydroxy carbonyl compounds and 2-alkenylthiazoles from thiazole N-oxides and olefins. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Majnooni S, Duffield J, Price J, Khosropour AR, Zali-Boeini H, Beyzavi H. Aryliodoazide Synthons: A Different Approach for Diversified Synthesis of 2-Aminothiazole, 1,3-Thiazole, and 1,3-Selenazole Scaffolds. ACS COMBINATORIAL SCIENCE 2019; 21:516-521. [PMID: 31243975 DOI: 10.1021/acscombsci.9b00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several straightforward and practical processes have been established for the construction of 2-aminothiazoles, 1,3-thiazoles and 1,3-selenazoles from aryliodoazides. These strategies successfully proceed with a wide spectrum of substituted thioamides and its derivatives producing the resulting five-membered heterocycles obtained in satisfactory yields. The unique features of these protocols are operational simplicity and highly functional group tolerance, which make them convenient and practical routes for the preparation of various libraries of 2-aminothiazoles, 1,3-thiazoles, and 1,3-selenazoles.
Collapse
Affiliation(s)
- Sahar Majnooni
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Joseph Duffield
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jessica Price
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Ahmad Reza Khosropour
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hassan Zali-Boeini
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Hudson Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
28
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
29
|
Achar TK, Biswas JP, Porey S, Pal T, Ramakrishna K, Maiti S, Maiti D. Palladium-Catalyzed Template Directed C-5 Selective Olefination of Thiazoles. J Org Chem 2019; 84:8315-8321. [DOI: 10.1021/acs.joc.9b01074] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tapas Kumar Achar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tapas Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kankanala Ramakrishna
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Siddhartha Maiti
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
30
|
Akasapu S, Hinds AB, Powell WC, Walczak MA. Total synthesis of micrococcin P1 and thiocillin I enabled by Mo(vi) catalyst. Chem Sci 2019; 10:1971-1975. [PMID: 30881626 PMCID: PMC6383332 DOI: 10.1039/c8sc04885a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/03/2018] [Indexed: 12/05/2022] Open
Abstract
Thiopeptides are a class of potent antibiotics with promising therapeutic potential. We developed a novel Mo(vi)-oxide/picolinic acid catalyst for the cyclodehydration of cysteine peptides to form thiazoline heterocycles. With this powerful tool in hand, we completed the total syntheses of two representative thiopeptide antibiotics: micrococcin P1 and thiocillin I. These two concise syntheses (15 steps, longest linear sequence) feature a C-H activation strategy to install the trisubstituted pyridine core and thiazole groups. The synthetic material displays promising antimicrobial properties measured against a series of Gram-positive bacteria.
Collapse
Affiliation(s)
- Siddhartha Akasapu
- Department of Chemistry , University of Colorado , Boulder , CO 80309 , USA .
| | - Aaron B Hinds
- Department of Chemistry , University of Colorado , Boulder , CO 80309 , USA .
| | - Wyatt C Powell
- Department of Chemistry , University of Colorado , Boulder , CO 80309 , USA .
| | - Maciej A Walczak
- Department of Chemistry , University of Colorado , Boulder , CO 80309 , USA .
| |
Collapse
|
31
|
Wever WJ, Bogart JW, Bowers AA. Identification of Pyridine Synthase Recognition Sequences Allows a Modular Solid-Phase Route to Thiopeptide Variants. J Am Chem Soc 2016; 138:13461-13464. [PMID: 27575591 DOI: 10.1021/jacs.6b05389] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thiopeptides are structurally complex, bioactive natural products derived from ribosomally synthesized and post-translationally modified peptides. A remarkable set of enzymes were recently revealed to catalyze the formation of the core trithiazolylpyridine of thiopeptides via a formal [4 + 2] cycloaddition. These pyridine synthases typically act late in thiopeptide biosynthesis to affect macrocyclization and cleavage of the N-terminal leader peptide, making them potentially useful biocatalysts for preparation of new thiopeptide variants. Herein we investigate the leader peptide requirements for TclM from thiocillin biosynthesis in Bacillus cereus ATCC 14579. Through a series of truncations, we define a minimum recognition sequence (RS) that is necessary and sufficient for TclM activity. This RS can be readily synthesized and ligated to linear thiopeptide cores prepared via solid-phase peptide synthesis (SPPS), giving an efficient and modular route to thiopeptide variants. We exploit this strategy to define C-terminal core peptide requirements and explore the differences in promiscuity of two pyridine synthases, TclM and TbtD, ultimately examining their ability to access new structural variants.
Collapse
Affiliation(s)
- Walter J Wever
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy , Chapel Hill, North Carolina 27599, United States
| | - Jonathan W Bogart
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy , Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
32
|
Reconstitution and Minimization of a Micrococcin Biosynthetic Pathway in Bacillus subtilis. J Bacteriol 2016; 198:2431-8. [PMID: 27381911 DOI: 10.1128/jb.00396-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/24/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Thiopeptides represent one of several families of highly modified peptide antibiotics that hold great promise for natural product engineering. These macrocyclic peptides are produced by a combination of ribosomal synthesis and extensive posttranslational modification by dedicated processing enzymes. We previously identified a compact, plasmid-borne gene cluster for the biosynthesis of micrococcin P1 (MP1), an archetypal thiopeptide antibiotic. In an effort to genetically dissect this pathway, we have reconstituted it in Bacillus subtilis Successful MP1 production required promoter engineering and the reassembly of essential biosynthetic genes in a modular plasmid. The resulting system allows for rapid pathway manipulation, including protein tagging and gene deletion. We find that 8 processing proteins are sufficient for the production of MP1 and that the tailoring enzyme TclS catalyzes a C-terminal reduction step that distinguishes MP1 from its sister compound micrococcin P2. IMPORTANCE The emergence of antibiotic resistance is one of the most urgent human health concerns of our day. A crucial component in an integrated strategy for countering antibiotic resistance is the ability to engineer pathways for the biosynthesis of natural and derivatized antimicrobial compounds. In this study, the model organism B. subtilis was employed to reconstitute and genetically modularize a 9-gene system for the biosynthesis of micrococcin, the founding member of a growing family of thiopeptide antibiotics.
Collapse
|
33
|
Lee M, Yang J, Park S, Jo E, Kim HY, Bae YS, Windisch MP. Micrococcin P1, a naturally occurring macrocyclic peptide inhibiting hepatitis C virus entry in a pan-genotypic manner. Antiviral Res 2016; 132:287-95. [PMID: 27387825 DOI: 10.1016/j.antiviral.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) is considered a major public health concern worldwide. Despite recent advances in curing chronic hepatitis C, unmet medical needs still remain, especially due to the high economic burden of therapies. Accordingly, our study aimed to identify affordable novel HCV inhibitors by screening of natural product compound libraries. We identified micrococcin P1, a macrocyclic peptide antibiotic, inhibiting HCV entry in a pan-genotypic manner with an EC50 range of 0.1-0.5 μM. Micrococcin P1 interfered with HCV entry at an attachment step. Furthermore, micrococcin P1 efficiently inhibited HCV spread by blocking cell-free infection as well as cell-to-cell transmission, without affecting the secretion of infectious virions. Interestingly, the putative molecular target of micrococcin P1 is glycoprotein E2 (IIe-630-Thr), as revealed by selection for viral drug resistance. In addition, micrococcin P1 inhibited sofosbuvir-resistant HCV strains and showed synergy in combination with selected HCV drugs, suggesting an alternative treatment paradigm for patients. In conclusion, we identified micrococcin P1 as specifically inhibiting entry of all HCV genotypes and demonstrated that micrococcin P1 potentially could add value to therapies in combination with current HCV interventions.
Collapse
Affiliation(s)
- Myungeun Lee
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea; Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Jaewon Yang
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Sanghyun Park
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Eunji Jo
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Hee-Young Kim
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Yong-Soo Bae
- Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Marc P Windisch
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea.
| |
Collapse
|
34
|
Joule JA. Natural Products Containing Nitrogen Heterocycles—Some Highlights 1990–2015. ADVANCES IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1016/bs.aihch.2015.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Hwang HJ, Ciufolini MA. A route to the heterocyclic cluster of the E-series of thiopeptide antibiotics. J Org Chem 2015; 80:4184-8. [PMID: 25836570 DOI: 10.1021/acs.joc.5b00315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A concise route to the 3-hydroxypyridine core of thiopeptide antibiotics such as nocathiacin is described. Key phases of the sequence involve a modified Hantzsch pyridine construction and a chemoselective Peng deprotection of a phenolic MOM ether.
Collapse
Affiliation(s)
- Hee-Jong Hwang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Marco A Ciufolini
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
36
|
Wever WJ, Bogart JW, Baccile JA, Chan AN, Schroeder FC, Bowers AA. Chemoenzymatic synthesis of thiazolyl peptide natural products featuring an enzyme-catalyzed formal [4 + 2] cycloaddition. J Am Chem Soc 2015; 137:3494-7. [PMID: 25742119 PMCID: PMC4425689 DOI: 10.1021/jacs.5b00940] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thiocillins from Bacillus cereus ATCC 14579 are members of the well-known thiazolyl peptide class of natural product antibiotics, the biosynthesis of which has recently been shown to proceed via post-translational modification of ribosomally encoded precursor peptides. It has long been hypothesized that the final step of thiazolyl peptide biosynthesis involves a formal [4 + 2] cycloaddition between two dehydroalanines, a unique transformation that had eluded enzymatic characterization. Here we demonstrate that TclM, a single enzyme from the thiocillin biosynthetic pathway, catalyzes this transformation. To facilitate characterization of this new class of enzyme, we have developed a combined chemical and biological route to the complex peptide substrate, relying on chemical synthesis of a modified C-terminal fragment and coupling to a 38-residue leader peptide by means of native chemical ligation (NCL). This strategy, combined with active enzyme, provides a new chemoenzymatic route to this promising class of antibiotics.
Collapse
Affiliation(s)
- Walter J. Wever
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan W. Bogart
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joshua A. Baccile
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Andrew N. Chan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
37
|
|
38
|
Rouf A, Tanyeli C. Bioactive thiazole and benzothiazole derivatives. Eur J Med Chem 2014; 97:911-27. [PMID: 25455640 DOI: 10.1016/j.ejmech.2014.10.058] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/30/2014] [Accepted: 10/20/2014] [Indexed: 01/13/2023]
Abstract
The heterocycles are the versatile compounds existing in almost all natural products and synthetic organic compounds, usually associated with one or the other biological activity. Among the heterocycles the thiazoles and benzothiazoles occupy a prominent position. They possess a broad range of biological activities and are found in many potent biologically active molecules and drugs such as vitamin thiamine, sulfathiazol (antimicrobial drug), ritonavir (antiretroviral drug), abafungin (antifungal drug) and tiazofurin (antineoplastic drug). The thiazole moiety is abundantly found in natural products while benzothiazole moiety is rare. In this review we disclose the literature reports of thiazoles and benzothiazoles possessing different biological activities.
Collapse
Affiliation(s)
- Abdul Rouf
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Cihangir Tanyeli
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey.
| |
Collapse
|
39
|
Characterization of a novel plasmid-borne thiopeptide gene cluster in Staphylococcus epidermidis strain 115. J Bacteriol 2014; 196:4344-50. [PMID: 25313391 DOI: 10.1128/jb.02243-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thiopeptides are small (12- to 17-amino-acid), heavily modified peptides of bacterial origin. This antibiotic family, with more than 100 known members, is characterized by the presence of sulfur-containing heterocyclic rings and dehydrated residues within a macrocyclic peptide structure. Thiopeptides, including micrococcin P1, have garnered significant attention in recent years for their potent antimicrobial activity against bacteria, fungi, and even protozoa. Micrococcin P1 is known to target the ribosome; however, like those of other thiopeptides, its biosynthesis and mechanisms of self-immunity are poorly characterized. We have discovered an isolate of Staphylococcus epidermidis harboring the genes for thiopeptide production and self-protection on a 24-kb plasmid. Here we report the characterization of this plasmid, identify the antimicrobial peptide that it encodes, and provide evidence of a target replacement-mediated mechanism of self-immunity.
Collapse
|
40
|
Liu W, Yu X, Kuang C. Palladium-Catalyzed C-2 Selective Olefination of Thiazoles. Org Lett 2014; 16:1798-801. [DOI: 10.1021/ol500542j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Liu
- Department of Chemistry, Tongji University, Siping Road
1239, Shanghai 200092, P. R. China and Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Siping Road 1239, Shanghai 200092, P. R. China
| | - Xin Yu
- Department of Chemistry, Tongji University, Siping Road
1239, Shanghai 200092, P. R. China and Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Siping Road 1239, Shanghai 200092, P. R. China
| | - Chunxiang Kuang
- Department of Chemistry, Tongji University, Siping Road
1239, Shanghai 200092, P. R. China and Key Laboratory
of Yangtze River Water Environment, Ministry of Education, Siping Road 1239, Shanghai 200092, P. R. China
| |
Collapse
|
41
|
Abstract
This paper highlights ongoing efforts toward Erythrina alkaloids, himandrine, tetrodotoxin, and thiopeptide antibiotics such as nosiheptide and describes representative spinoffs in biomedicine that emanated from the author’s research in synthetic organic chemistry.
Collapse
Affiliation(s)
- Marco A. Ciufolini
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
42
|
Kuranaga T, Sesoko Y, Inoue M. Cu-mediated enamide formation in the total synthesis of complex peptide natural products. Nat Prod Rep 2014; 31:514-32. [PMID: 24567066 DOI: 10.1039/c3np70103d] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu-mediated C(sp(2))-N bond formation has received intense interest recently, and has been applied to the total synthesis of a wide variety of structurally complex natural products. This review covers the synthetic assembly of peptide natural products in which Cu-mediated enamide formation is the key transformation. The total syntheses of cyclopeptide alkaloids, pacidamycin D, and yaku'amide A exemplify the versatility of the Cu-catalyzed cross-coupling reaction in comparison to other synthetic methods.
Collapse
Affiliation(s)
- Takefumi Kuranaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
43
|
Thiopeptide antibiotics: retrospective and recent advances. Mar Drugs 2014; 12:317-51. [PMID: 24445304 PMCID: PMC3917276 DOI: 10.3390/md12010317] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023] Open
Abstract
Thiopeptides, or thiazolyl peptides, are a relatively new family of antibiotics that already counts with more than one hundred different entities. Although they are mainly isolated from soil bacteria, during the last decade, new members have been isolated from marine samples. Far from being limited to their innate antibacterial activity, thiopeptides have been found to possess a wide range of biological properties, including anticancer, antiplasmodial, immunosuppressive, etc. In spite of their ribosomal origin, these highly posttranslationally processed peptides have posed a fascinating synthetic challenge, prompting the development of various methodologies and strategies. Regardless of their limited solubility, intensive investigations are bringing thiopeptide derivatives closer to the clinic, where they are likely to show their veritable therapeutic potential.
Collapse
|
44
|
Gross S, Nguyen F, Bierschenk M, Sohmen D, Menzel T, Antes I, Wilson DN, Bach T. Amythiamicin D and related thiopeptides as inhibitors of the bacterial elongation factor EF-Tu: modification of the amino acid at carbon atom C2 of ring C dramatically influences activity. ChemMedChem 2013; 8:1954-62. [PMID: 24106106 DOI: 10.1002/cmdc.201300323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Indexed: 11/12/2022]
Abstract
Three analogues of amythiamicin D, which differ in the substitution pattern at the methine group adjacent to C2 of the thiazole ring C, were prepared by de novo total synthesis. In amythiamicin D, this carbon atom is (S)-isopropyl substituted. Two of the new analogues carry a hydroxymethyl in place of the isopropyl group, one at an S- (compound 3 a) and the other at an R-configured stereogenic center (3 b). The third analogue, 3 c, contains a benzyloxymethyl group at an S-configured stereogenic center. Compounds 3 b and 3 c showed no inhibitory effect toward various bacterial strains, nor did they influence the translation of firefly luciferase. In stark contrast, compound 3 a inhibited the growth of Gram-positive bacteria Staphylococcus aureus (strains NCTC and Mu50) and Listeria monocytogenes EGD. In the firefly luciferase assay it proved more potent than amythiamicin D, and rescue experiments provided evidence that translation inhibition is due to binding to the bacterial elongation factor Tu (EF-Tu). The results were rationalized by structural investigations and by molecular dynamics simulations of the free compounds in solution and bound to the EF-Tu binding site. The low affinity of compound 3 b was attributed to the absence of a critical hydrogen bond, which stabilizes the conformation required for binding to EF-Tu. Compound 3 c was shown not to comply with the binding properties of the binding site.
Collapse
Affiliation(s)
- Stefan Gross
- Lehrstuhl für Organische Chemie I, Technische Universität München, Lichtenbergstr. 4, 85747 Garching (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Fu XP, Xuan QQ, Liu L, Wang D, Chen YJ, Li CJ. Dual C–H activations of electron-deficient heteroarenes: palladium-catalyzed oxidative cross coupling of thiazoles with azine N-oxides. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.10.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Aulakh VS, Ciufolini MA. Total synthesis and complete structural assignment of thiocillin I. J Am Chem Soc 2011; 133:5900-4. [PMID: 21446660 PMCID: PMC3077036 DOI: 10.1021/ja110166x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Indexed: 11/30/2022]
Abstract
The total synthesis of the thiopeptide antibiotic, thiocillin I, is described. This work unequivocally defines the full structure (constitution and configuration) of the natural product as 1.
Collapse
Affiliation(s)
| | - Marco A. Ciufolini
- Department of Chemistry, The University of British Columbia, 2036 Main Mall Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
47
|
|
48
|
|
49
|
Dondoni A. Heterocycles in organic synthesis: thiazoles and triazoles as exemplar cases of synthetic auxiliaries. Org Biomol Chem 2010; 8:3366-85. [PMID: 20505853 DOI: 10.1039/c002586k] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Perspective article illustrates the key role of thiazole and triazole in the work carried out in the author's laboratory over three decades and deals with the synthesis of carbohydrate-based bioactive molecules. The first part reports on the development of synthetic strategies exploiting the use of various thiazole-based reagents and the ready conversion of thiazole into the formyl group. After describing the chain elongation of monosaccharides into higher-carbon homologues, the synthesis of target natural and non-natural carbohydrates, or their ultimate precursors, is presented. These include some sphingoids, neuraminic and destomic acids, lincosamine, various 3-deoxy-2-ulosonic acids (KDO, KDN, iso-Neu4Ac), iminosugars (nojirimycin, mannojirimycin, galactostatin) and homoazasugars. Also prepared were the disaccharide subunit of bleomycin A(2) and the side-chain of taxol and taxotere.((R)) The use of 1,2,3-triazole is discussed in the second part of the paper. The service of this heterocycle that is easily formed by the Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) is considered in light of its use as a robust linker (a sort of keystone) of complex and diverse molecular architectures. Thus, the assembly of triazole-linked glycosyl amino acids, non-natural nucleotides, 1,6-oligomannosides, sialoside clusters on calixarene platfom via CuAAC is described and the biological relevance of these compounds is discussed in brief.
Collapse
Affiliation(s)
- Alessandro Dondoni
- Dipartimento di Chimica, Laboratorio di Chimica Organica, Università di Ferrara, Via L. Borsari 46, I-44100 Ferrara, Italy.
| |
Collapse
|