1
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Fatema N, Fan C. Studying lysine acetylation of citric acid cycle enzymes by genetic code expansion. Mol Microbiol 2023; 119:551-559. [PMID: 36890576 PMCID: PMC10636775 DOI: 10.1111/mmi.15052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
Lysine acetylation is one of the most abundant post-translational modifications in nature, affecting many key biological pathways in both prokaryotes and eukaryotes. It has not been long since technological advances led to understanding of the roles of acetylation in biological processes. Most of those studies were based on proteomic analyses, which have identified thousands of acetylation sites in a wide range of proteins. However, the specific role of individual acetylation event remains largely unclear, mostly due to the existence of multiple acetylation and dynamic changes of acetylation levels. To solve these problems, the genetic code expansion technique has been applied in protein acetylation studies, facilitating the incorporation of acetyllysine into a specific lysine position to generate a site-specifically acetylated protein. By this method, the effects of acetylation at a specific lysine residue can be characterized with minimal interferences. Here, we summarized the development of the genetic code expansion technique for lysine acetylation and recent studies on lysine acetylation of citrate acid cycle enzymes in bacteria by this approach, providing a practical application of the genetic code expansion technique in protein acetylation studies.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
3
|
Peng T, Das T, Ding K, Hang HC. Functional analysis of protein post-translational modifications using genetic codon expansion. Protein Sci 2023; 32:e4618. [PMID: 36883310 PMCID: PMC10031814 DOI: 10.1002/pro.4618] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Post-translational modifications (PTMs) of proteins not only exponentially increase the diversity of proteoforms, but also contribute to dynamically modulating the localization, stability, activity, and interaction of proteins. Understanding the biological consequences and functions of specific PTMs has been challenging for many reasons, including the dynamic nature of many PTMs and the technical limitations to access homogenously modified proteins. The genetic code expansion technology has emerged to provide unique approaches for studying PTMs. Through site-specific incorporation of unnatural amino acids (UAAs) bearing PTMs or their mimics into proteins, genetic code expansion allows the generation of homogenous proteins with site-specific modifications and atomic resolution both in vitro and in vivo. With this technology, various PTMs and mimics have been precisely introduced into proteins. In this review, we summarize the UAAs and approaches that have been recently developed to site-specifically install PTMs and their mimics into proteins for functional studies of PTMs.
Collapse
Affiliation(s)
- Tao Peng
- State Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhenChina
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Tandrila Das
- Departments of Immunology and Microbiology and ChemistryScripps ResearchLa JollaCaliforniaUSA
| | - Ke Ding
- State Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhenChina
| | - Howard C. Hang
- Departments of Immunology and Microbiology and ChemistryScripps ResearchLa JollaCaliforniaUSA
| |
Collapse
|
4
|
Kuschert S, Stroet M, Chin YKY, Conibear AC, Jia X, Lee T, Bartling CRO, Strømgaard K, Güntert P, Rosengren KJ, Mark AE, Mobli M. Facilitating the structural characterisation of non-canonical amino acids in biomolecular NMR. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:57-72. [PMID: 37904802 PMCID: PMC10583272 DOI: 10.5194/mr-4-57-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2023] [Indexed: 11/01/2023]
Abstract
Peptides and proteins containing non-canonical amino acids (ncAAs) are a large and important class of biopolymers. They include non-ribosomally synthesised peptides, post-translationally modified proteins, expressed or synthesised proteins containing unnatural amino acids, and peptides and proteins that are chemically modified. Here, we describe a general procedure for generating atomic descriptions required to incorporate ncAAs within popular NMR structure determination software such as CYANA, CNS, Xplor-NIH and ARIA. This procedure is made publicly available via the existing Automated Topology Builder (ATB) server (https://atb.uq.edu.au, last access: 17 February 2023) with all submitted ncAAs stored in a dedicated database. The described procedure also includes a general method for linking of side chains of amino acids from CYANA templates. To ensure compatibility with other systems, atom names comply with IUPAC guidelines. In addition to describing the workflow, 3D models of complex natural products generated by CYANA are presented, including vancomycin. In order to demonstrate the manner in which the templates for ncAAs generated by the ATB can be used in practice, we use a combination of CYANA and CNS to solve the structure of a synthetic peptide designed to disrupt Alzheimer-related protein-protein interactions. Automating the generation of structural templates for ncAAs will extend the utility of NMR spectroscopy to studies of more complex biomolecules, with applications in the rapidly growing fields of synthetic biology and chemical biology. The procedures we outline can also be used to standardise the creation of structural templates for any amino acid and thus have the potential to impact structural biology more generally.
Collapse
Affiliation(s)
- Sarah Kuschert
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin Stroet
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yanni Ka-Yan Chin
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anne Claire Conibear
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Getreidemarkt 9/163, Wien 1060, Vienna, Austria
| | - Xinying Jia
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zurich, Switzerland
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Department of Chemistry, Tokyo Metropolitan University, Hachiōji, Tokyo 192-0397, Japan
| | - Karl Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan Edward Mark
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Dean Cho CC, Blankenship LR, Ma X, Xu S, Liu W. The Pyrrolysyl-tRNA Synthetase Activity can be Improved by a P188 Mutation that Stabilizes the Full-Length Enzyme. J Mol Biol 2022; 434:167453. [PMID: 35033561 PMCID: PMC9018550 DOI: 10.1016/j.jmb.2022.167453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/18/2021] [Accepted: 01/09/2022] [Indexed: 11/24/2022]
Abstract
The amber suppression-based noncanonical amino acid (ncAA) mutagenesis technique has been widely used in both basic and applied research. So far more than two hundred ncAAs have been genetically encoded by amber codon in both prokaryotes and eukaryotes using wild-type and engineered pyrrolysyl-tRNA synthetase (PylRS)-tRNAPyl (PylT) pairs. Methanosarcina mazei PylRS (MmPylRS) is arguably one of two most used PylRS variants. However, it contains an unstable N-terminal domain that is usually cleaved from the full-length protein during expression and therefore leads to a low enzyme activity. We discovered that the cleavage takes place after A189 and this cleavage is inhibited when MmPylRS is co-expressed with Ca. Methanomethylophilus alvus tRNAPyl (CmaPylT). In the presence of CmaPylT, MmPylRS is cleaved after an alternative site K110. MmPylRS is active toward CmaPylT. Its combined use with CmaPylT leads to enhanced incorporation of Nε-Boc-lysine (BocK) at amber codon. To prevent MmPylRS from cleavage after A189 in the presence of its cognate M. mazei tRNAPyl (MmPylT), we introduced mutations at P188. Our results indicated that the P188G mutation stabilizes MmPylRS. We showed that the P188G mutation in wild-type MmPylRS or its engineered variants allows enhanced incorporation of BocK and other noncanonical amino acids including Nε-acetyl-lysine when they are co-expressed with MmPylT.
Collapse
Affiliation(s)
- Chia-Chuan Dean Cho
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Lauren R Blankenship
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Xinyu Ma
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Wenshe Liu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
6
|
Ye J, Li J. First proteomic analysis of the role of lysine acetylation in extensive functions in Solenopsis invicta. PLoS One 2020; 15:e0243787. [PMID: 33326466 PMCID: PMC7743978 DOI: 10.1371/journal.pone.0243787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Lysine acetylation (Kac) plays a critical role in the regulation of many important cellular processes. However, little is known about Kac in Solenopsis invicta, which is among the 100 most dangerous invasive species in the world. Kac in S. invicta was evaluated for the first time in this study. Altogether, 2387 Kac sites were tested in 992 proteins. The prediction of subcellular localization indicated that most identified proteins were located in the cytoplasm, mitochondria, and nucleus. Venom allergen Sol i 2, Sol i 3, and Sol i 4 were found to be located in the extracellular. The enriched Kac site motifs included Kac H, Kac Y, Kac G, Kac F, Kac T, and Kac W. H, Y, F, and W frequently occurred at the +1 position, whereas G, Y, and T frequently occurred at the -1 position. In the cellular component, acetylated proteins were enriched in the cytoplasmic part, mitochondrial matrix, and cytosolic ribosome. Furthermore, 25 pathways were detected to have significant enrichment. Interestingly, arginine and proline metabolism, as well as phagosome, which are related to immunity, involved several Kac proteins. Sequence alignment analyses demonstrated that V-type proton ATPase subunit G, tubulin alpha chain, and arginine kinase, the acetylated lysine residues, were evolutionarily conserved among different ant species. In the investigation of the interaction network, diverse interactions were adjusted by Kac. The results indicated that Kac may play an important role in the sensitization, cellular energy metabolism, immune response, nerve signal transduction, and response to biotic and abiotic stress of S. invicta. It may be useful to confirm the functions of Kac target proteins for the design of specific and effective drugs to prevent and control this dangerous invasive species.
Collapse
Affiliation(s)
- Jingwen Ye
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong Province, The People’s Republic of China
| | - Jun Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong Province, The People’s Republic of China
- * E-mail:
| |
Collapse
|
7
|
Ko W, Kumar R, Kim S, Lee HS. Construction of Bacterial Cells with an Active Transport System for Unnatural Amino Acids. ACS Synth Biol 2019; 8:1195-1203. [PMID: 30971082 DOI: 10.1021/acssynbio.9b00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Engineered organisms with an expanded genetic code have attracted much attention in chemical and synthetic biology research. In this work, engineered bacterial organisms with enhanced unnatural amino acid (UAA) uptake abilities were developed by screening periplasmic binding protein (PBP) mutants for recognition of UAAs. A FRET-based assay was used to identify a mutant PBP (LBP-AEL) with excellent binding affinity ( Kd ≈ 500 nM) to multiple UAAs from 37 mutants. Bacterial cells expressing LBP-AEL showed up to 5-fold enhanced uptake of UAAs, which was determined by genetic incorporation of UAAs into a green fluorescent protein and measuring UAA concentration in cell lysates. To the best of our knowledge, this work is the first report of engineering cellular uptake of UAAs and could provide an impetus for designing advanced unnatural organisms with an expanded genetic code, which function with the efficiency comparable to that of natural organisms. The system would be useful to increase mutant protein yield from lower concentrations of UAAs for industrial and large-scale applications. In addition, the techniques used in this report such as the sensor design and the measurement of UAA concentration in cell lysates could be useful for other biochemical applications.
Collapse
Affiliation(s)
- Wooseok Ko
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Rahul Kumar
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| |
Collapse
|
8
|
Stieglitz JT, Kehoe HP, Lei M, Van Deventer JA. A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast. ACS Synth Biol 2018; 7:2256-2269. [PMID: 30139255 PMCID: PMC6214617 DOI: 10.1021/acssynbio.8b00260] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engineering protein translation machinery to incorporate noncanonical amino acids (ncAAs) into proteins has advanced applications ranging from proteomics to single-molecule studies. As applications of ncAAs emerge, efficient ncAA incorporation is crucial to exploiting unique chemistries. We have established a quantitative reporter platform to evaluate ncAA incorporation in response to the TAG (amber) codon in yeast. This yeast display-based reporter utilizes an antibody fragment containing an amber codon at which a ncAA is incorporated when the appropriate orthogonal translation system (OTS) is present. Epitope tags at both termini allow for flow cytometry-based end point readouts of OTS efficiency and fidelity. Using this reporter, we evaluated several factors that influence amber suppression, including the amber codon position and different aminoacyl-tRNA synthetase/tRNA (aaRS/tRNA) pairs. Interestingly, previously described aaRSs that evolved from different parent enzymes to incorporate O-methyl-l-tyrosine exhibit vastly different behavior. Escherichia coli leucyl-tRNA synthetase variants demonstrated efficient incorporation of a range of ncAAs, and we discovered unreported activities of several variants. Compared to a plate reader-based reporter, our assay yields more precise bulk-level measurements while also supporting single-cell readouts compatible with cell sorting. This platform is expected to allow quantitative elucidation of principles dictating efficient stop codon suppression and evolution of next-generation stop codon suppression systems to further enhance genetic code manipulation in eukaryotes. These efforts will improve our understanding of how the genetic code can be further evolved while expanding the range of chemical diversity available in proteins for applications ranging from fundamental epigenetics studies to engineering new classes of therapeutics.
Collapse
Affiliation(s)
- Jessica T. Stieglitz
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Haixing P. Kehoe
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Ming Lei
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
9
|
Wright DE, Altaany Z, Bi Y, Alperstein Z, O'Donoghue P. Acetylation Regulates Thioredoxin Reductase Oligomerization and Activity. Antioxid Redox Signal 2018; 29:377-388. [PMID: 29117711 PMCID: PMC6025699 DOI: 10.1089/ars.2017.7082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIMS Thioredoxin reductase 1 (TrxR1) is a cancer target and essential selenoprotein that defends the cell against reactive oxygen species and regulates cellular signaling and redox pathways. Previous cell-based studies correlated TrxR1 acetylation with modulated cellular reduction activity, yet the function of specific acetylation sites on TrxR1 remains unknown. INNOVATION We produced site-specifically acetylated TrxR1 variants that also contain selenocysteine (Sec). We demonstrated efficient high-fidelity protein synthesis with 22 different amino acids by simultaneous UAG codon reassignment to Nɛ-acetyl-lysine and UGA codon recoding to Sec. RESULTS We characterized TrxR1 variants acetylated at physiologically relevant sites and found that single acetylation sites increased TrxR1 activity, enhancing the apparent catalytic rate up to 2.7-fold. The activity increase in acetylated TrxR1 (acTrxR1) is reversible and is reduced following deacetylation with histone deacetylase. CONCLUSION Here we present a novel mechanism through which acetylation increases TrxR1 activity by destabilizing low-activity TrxR1 multimers, increasing the population of active dimeric TrxR1. Antioxid. Redox Signal. 29, 377-388.
Collapse
Affiliation(s)
- David E Wright
- 1 Department of Biochemistry, The University of Western Ontario , London, Canada
| | - Zaid Altaany
- 1 Department of Biochemistry, The University of Western Ontario , London, Canada .,2 Department of Basic Sciences, Faculty of Medicine, Yarmouk University , Irbid, Jordan
| | - Yumin Bi
- 1 Department of Biochemistry, The University of Western Ontario , London, Canada
| | - Zaccary Alperstein
- 3 Department of Chemistry, The University of Western Ontario , London, Canada
| | - Patrick O'Donoghue
- 1 Department of Biochemistry, The University of Western Ontario , London, Canada .,3 Department of Chemistry, The University of Western Ontario , London, Canada
| |
Collapse
|
10
|
Chen H, Venkat S, McGuire P, Gan Q, Fan C. Recent Development of Genetic Code Expansion for Posttranslational Modification Studies. Molecules 2018; 23:E1662. [PMID: 29986538 PMCID: PMC6100177 DOI: 10.3390/molecules23071662] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022] Open
Abstract
Nowadays advanced mass spectrometry techniques make the identification of protein posttranslational modifications (PTMs) much easier than ever before. A series of proteomic studies have demonstrated that large numbers of proteins in cells are modified by phosphorylation, acetylation and many other types of PTMs. However, only limited studies have been performed to validate or characterize those identified modification targets, mostly because PTMs are very dynamic, undergoing large changes in different growth stages or conditions. To overcome this issue, the genetic code expansion strategy has been introduced into PTM studies to genetically incorporate modified amino acids directly into desired positions of target proteins. Without using modifying enzymes, the genetic code expansion strategy could generate homogeneously modified proteins, thus providing powerful tools for PTM studies. In this review, we summarized recent development of genetic code expansion in PTM studies for research groups in this field.
Collapse
Affiliation(s)
- Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Sumana Venkat
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Paige McGuire
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
11
|
Venkat S, Gregory C, Meng K, Gan Q, Fan C. A Facile Protocol to Generate Site-Specifically Acetylated Proteins in Escherichia Coli. J Vis Exp 2017:57061. [PMID: 29286490 PMCID: PMC5755542 DOI: 10.3791/57061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Post-translational modifications that occur at specific positions of proteins have been shown to play important roles in a variety of cellular processes. Among them, reversible lysine acetylation is one of the most widely distributed in all domains of life. Although numerous mass spectrometry-based acetylome studies have been performed, further characterization of these putative acetylation targets has been limited. One possible reason is that it is difficult to generate purely acetylated proteins at desired positions by most classic biochemical approaches. To overcome this challenge, the genetic code expansion technique has been applied to use the pair of an engineered pyrrolysyl-tRNA synthetase variant, and its cognate tRNA from Methanosarcinaceae species, to direct the cotranslational incorporation of acetyllysine at the specific site in the protein of interest. After first application in the study of histone acetylation, this approach has facilitated acetylation studies on a variety of proteins. In this work, we demonstrated a facile protocol to produce site-specifically acetylated proteins by using the model bacterium Escherichia coli as the host. Malate dehydrogenase was used as a demonstration example in this work.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas; Cell and Molecular Biology Program, University of Arkansas
| | | | | | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas; Cell and Molecular Biology Program, University of Arkansas;
| |
Collapse
|
12
|
Abstract
Pyrrolysine is the 22nd proteinogenic amino acid encoded into proteins in response to amber (TAG) codons in a small number of archaea and bacteria. The incorporation of pyrrolysine is facilitated by a specialized aminoacyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNAPyl). The secondary structure of tRNAPyl contains several unique features not found in canonical tRNAs. Numerous studies have demonstrated that the PylRS/tRNAPyl pair from archaea is orthogonal in E. coli and eukaryotic hosts, which has led to the widespread use of this pair for the genetic incorporation of non-canonical amino acids. In this brief review we examine the work that has been done to elucidate the structure of tRNAPyl, its interaction with PylRS, and survey recent progress on the use of tRNAPyl as a tool for genetic code expansion.
Collapse
Affiliation(s)
- Jeffery M Tharp
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| | - Andreas Ehnbom
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| | - Wenshe R Liu
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| |
Collapse
|
13
|
Xiao H, Schultz PG. At the Interface of Chemical and Biological Synthesis: An Expanded Genetic Code. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023945. [PMID: 27413101 DOI: 10.1101/cshperspect.a023945] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to site-specifically incorporate noncanonical amino acids (ncAAs) with novel structures into proteins in living cells affords a powerful tool to investigate and manipulate protein structure and function. More than 200 ncAAs with diverse biological, chemical, and physical properties have been genetically encoded in response to nonsense or frameshift codons in both prokaryotic and eukaryotic organisms with high fidelity and efficiency. In this review, recent advances in the technology and its application to problems in protein biochemistry, cellular biology, and medicine are highlighted.
Collapse
Affiliation(s)
- Han Xiao
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Peter G Schultz
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037 California Institute for Biomedical Research, La Jolla, California 92037
| |
Collapse
|
14
|
Abstract
Sirtuins are NAD(+)-dependent enzymes universally present in all organisms, where they play central roles in regulating numerous biological processes. Although early studies showed that sirtuins deacetylated lysines in a reaction that consumes NAD(+), more recent studies have revealed that these enzymes can remove a variety of acyl-lysine modifications. The specificities for varied acyl modifications may thus underlie the distinct roles of the different sirtuins within a given organism. This review summarizes the structure, chemistry, and substrate specificity of sirtuins with a focus on how different sirtuins recognize distinct substrates and thus carry out specific functions.
Collapse
Affiliation(s)
- Poonam Bheda
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France.,Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Hui Jing
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185;
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850.,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14850;
| |
Collapse
|
15
|
Haney CM, Wissner RF, Warner JB, Wang YJ, Ferrie JJ, J Covell D, Karpowicz RJ, Lee VMY, Petersson EJ. Comparison of strategies for non-perturbing labeling of α-synuclein to study amyloidogenesis. Org Biomol Chem 2016; 14:1584-92. [PMID: 26695131 PMCID: PMC4733880 DOI: 10.1039/c5ob02329g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Characterization of the amyloidogenic Parkinson's disease protein α-synuclein (αS) has proven difficult due to its structural plasticity. Here, we present a number of complementary methods to site-specifically introduce fluorescent probes to examine αS fibril formation and cellular uptake. By using various combinations of conventional Cys modification, amber codon suppression, transferase mediated N-terminal modification, and native chemical ligation, several variants of singly- and doubly-labeled αS were produced. We validated the nonperturbative nature of the label by a combination of in vitro aggregation kinetics measurements and imaging of the resulting fibrils. The labeled αS can then be used to monitor conformational changes during fibril formation or cellular uptake of αS fibrils in models of disease propagation.
Collapse
Affiliation(s)
- Conor M Haney
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| | - Rebecca F Wissner
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| | - John B Warner
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| | - Yanxin J Wang
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| | - Dustin J Covell
- Center for Neurodegenerative Disease Research, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - Richard J Karpowicz
- Center for Neurodegenerative Disease Research, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Zhang B, Yang Q, Chen J, Wu L, Yao T, Wu Y, Xu H, Zhang L, Xia Q, Zhou D. CRISPRi-Manipulation of Genetic Code Expansion via RF1 for Reassignment of Amber Codon in Bacteria. Sci Rep 2016; 6:20000. [PMID: 26818534 PMCID: PMC4730227 DOI: 10.1038/srep20000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 11/09/2022] Open
Abstract
The precise engineering of proteins in bacteria via the amber codon has been hampered by the poor incorporation of unnatural amino acid (UAA). Here we explored the amber assignment as a sense codon for UAA by CRISPRi targeting release factor 1 (RF1). Scanning of RF1 gene with sgRNAs identified target loci that differentiate RF1 repressions. Quantitation of RF1 repressions versus UAA incorporation indicated an increasing interrelation with the amber reassignment maximized upon RF1 knockdown to ~30%, disclosing the beneficial role of RF1 in amber assignment. However, further RF1 repression reversed this trend resulting from the detrimental effects on host cell growth, disclosing the harmful aspect of RF1 in reassignment of the amber codon. Our data indicate RF1 as a switch manipulating genetic code expansion and pave a direction via CRISPRi for precise engineering and efficient production of proteins in bacteria.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Qi Yang
- Department of Chemical Biology, Peking University, Beijing 100191, China
| | - Jingxian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Ling Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Tianzhuo Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Yiming Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Huan Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| | - Qing Xia
- Department of Chemical Biology, Peking University, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences
| |
Collapse
|
17
|
Lee BS, Shin S, Jeon JY, Jang KS, Lee BY, Choi S, Yoo TH. Incorporation of Unnatural Amino Acids in Response to the AGG Codon. ACS Chem Biol 2015; 10:1648-53. [PMID: 25946114 DOI: 10.1021/acschembio.5b00230] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biological protein synthesis system has been engineered to incorporate unnatural amino acid into proteins, and this has opened up new routes for engineering proteins with novel compositions. While such systems have been successfully applied in research, there remains a need to develop new approaches with respect to the wider application of unnatural amino acids. In this study, we reported a strategy for incorporating unnatural amino acids into proteins by reassigning one of the Arg sense codons, the AGG codon. Using this method, several unnatural amino acids were quantitatively incorporated into the AGG site. Furthermore, we applied the method to multiple AGG sites, and even to tandem AGG sequences. The method developed and described here could be used for engineering proteins with diverse unnatural amino acids, particularly when employed in combination with other methods.
Collapse
Affiliation(s)
| | | | | | - Kyoung-Soon Jang
- Division
of Mass Spectrometry Research, Korea Basic Science Institute, 162
Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju 363-883, Korea
| | | | | | | |
Collapse
|
18
|
Ravikumar Y, Nadarajan SP, Yoo TH, Lee CS, Yun H. Unnatural amino acid mutagenesis-based enzyme engineering. Trends Biotechnol 2015; 33:462-70. [PMID: 26088007 DOI: 10.1016/j.tibtech.2015.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 02/09/2023]
Abstract
Traditional enzyme engineering relies on substituting one amino acid by one of the other 19 natural amino acids to change the functional properties of an enzyme. However, incorporation of unnatural amino acids (UAAs) has been harnessed to engineer efficient enzymes for biocatalysis. Residue-specific and site-specific in vivo incorporation methods are becoming the preferred approach for producing enzymes with altered or improved functions. We describe the contribution of in vivo UAA incorporation methodologies to enzyme engineering as well as the future prospects for the field, including the integration of UAAs with other new advances in enzyme engineering.
Collapse
Affiliation(s)
- Yuvaraj Ravikumar
- School of Biotechnology, Department of Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| | | | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Chong-soon Lee
- School of Biotechnology, Department of Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| | - Hyungdon Yun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
19
|
Wu L, Xu B. Analysis of protein ligand-receptor binding by photoaffinity cross-linking. ACTA ACUST UNITED AC 2015; 79:19.26.1-19.26.14. [PMID: 25640895 DOI: 10.1002/0471140864.ps1926s79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Photoaffinity cross-linking is a rapidly developing technology for studying biomolecular interactions, including protein ligand-receptor binding. This technology provides detailed binding information including receptor contact sites, active conformation of receptor-ligand complexes, global binding surfaces, and binding modes. Advancements in genetic technology have enabled non-natural photoactive amino acid derivatives to be incorporated into designer or target proteins, providing a host of new opportunities for manufacturing protein photo-probes while bypassing the traditional peptide or small protein limits of classical chemical synthesis. This unit provides several protocols for performing basic photoaffinity cross-linking and related analyses for applications in ligand-receptor binding and protein-protein interactions.
Collapse
Affiliation(s)
- Ling Wu
- Department of Biochemistry and Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Bin Xu
- Department of Biochemistry and Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
20
|
Schmidt MJ, Fedoseev A, Summerer D, Drescher M. Genetically Encoded Spin Labels for In Vitro and In-Cell EPR Studies of Native Proteins. Methods Enzymol 2015; 563:483-502. [PMID: 26478496 DOI: 10.1016/bs.mie.2015.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a powerful approach to study the structure, dynamics, and interactions of proteins. The genetic encoding of the noncanonical amino acid spin-labeled lysine 1 (SLK-1) eliminates the need for any chemical labeling steps in SDSL-EPR studies and enables the investigation of native, endogenous proteins with minimal structural perturbation, and without the need to create unique reactive sites for chemical labeling. We report detailed experimental procedures for the efficient synthesis of SLK-1, the expression and purification of SLK-1-containing proteins under conditions that ensure maximal integrity of the nitroxide radical moiety, and procedures for intramolecular EPR distance measurements in proteins by double electron-electron resonance.
Collapse
Affiliation(s)
- M J Schmidt
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - A Fedoseev
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - D Summerer
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - M Drescher
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
21
|
Leisle L, Valiyaveetil F, Mehl RA, Ahern CA. Incorporation of Non-Canonical Amino Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 869:119-51. [PMID: 26381943 DOI: 10.1007/978-1-4939-2845-3_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this chapter we discuss the strengths, caveats and technical considerations of three approaches for reprogramming the chemical composition of selected amino acids within a membrane protein. In vivo nonsense suppression in the Xenopus laevis oocyte, evolved orthogonal tRNA and aminoacyl-tRNA synthetase pairs and protein ligation for biochemical production of semisynthetic proteins have been used successfully for ion channel and receptor studies. The level of difficulty for the application of each approach ranges from trivial to technically demanding, yet all have untapped potential in their application to membrane proteins.
Collapse
Affiliation(s)
- Lilia Leisle
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, 52246, Iowa City, IA, USA
| | - Francis Valiyaveetil
- Department of Physiology and Pharmacology, Oregon Health and Sciences University, 97239, Portland, OR, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University Corvallis, 97331, Corvallis, OR, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, 52246, Iowa City, IA, USA.
| |
Collapse
|
22
|
Pott M, Schmidt MJ, Summerer D. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids. ACS Chem Biol 2014; 9:2815-22. [PMID: 25299570 DOI: 10.1021/cb5006273] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expansion of the genetic code with noncanonical amino acids (ncAA) enables the function of proteins to be tailored with high molecular precision. In this approach, the ncAA is charged to an orthogonal nonsense suppressor tRNA by an aminoacyl-tRNA-synthetase (aaRS) and incorporated into the target protein in vivo by suppression of nonsense codons in the mRNA during ribosomal translation. Compared to sense codon translation, this process occurs with reduced efficiency. However, it is still poorly understood, how the local sequence context of the nonsense codon affects suppression efficiency. Here, we report sequence contexts for highly efficient suppression of the widely used amber codon in E. coli for the orthogonal Methanocaldococcus jannaschii tRNA(Tyr)/TyrRS and Methanosarcina mazei tRNA(Pyl)/PylRS pairs. In vivo selections of sequence context libraries consisting of each two random codons directly up- and downstream of an amber codon afforded contexts with strong preferences for particular mRNA nucleotides and/or amino acids that markedly differed from preferences of contexts obtained in control selections with sense codons. The contexts provided high amber suppression efficiencies with little ncAA-dependence that were transferrable between proteins and resulted in protein expression levels of 70-110% compared to levels of control proteins without amber codon. These sequence contexts represent stable tags for robust and highly efficient incorporation of ncAA into proteins in standard E. coli strains and provide general design rules for the engineering of amber codons into target genes.
Collapse
Affiliation(s)
- Moritz Pott
- Department
of Chemistry,
Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78457, Germany
| | - Moritz Johannes Schmidt
- Department
of Chemistry,
Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78457, Germany
| | - Daniel Summerer
- Department
of Chemistry,
Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
23
|
Wang Y, Kavran JM, Chen Z, Karukurichi KR, Leahy DJ, Cole PA. Regulation of S-adenosylhomocysteine hydrolase by lysine acetylation. J Biol Chem 2014; 289:31361-72. [PMID: 25248746 DOI: 10.1074/jbc.m114.597153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylhomocysteine hydrolase (SAHH) is an NAD(+)-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys(401) and Lys(408) but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys(401) and Lys(408) and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD(+) binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns.
Collapse
Affiliation(s)
- Yun Wang
- From the Deptartments of Pharmacology and Molecular Sciences and
| | - Jennifer M Kavran
- Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Zan Chen
- From the Deptartments of Pharmacology and Molecular Sciences and
| | | | - Daniel J Leahy
- From the Deptartments of Pharmacology and Molecular Sciences and Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Philip A Cole
- From the Deptartments of Pharmacology and Molecular Sciences and
| |
Collapse
|
24
|
Yanagisawa T, Umehara T, Sakamoto K, Yokoyama S. Expanded Genetic Code Technologies for Incorporating Modified Lysine at Multiple Sites. Chembiochem 2014; 15:2181-7. [DOI: 10.1002/cbic.201402266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 01/08/2023]
|
25
|
Yanagisawa T, Takahashi M, Mukai T, Sato S, Wakamori M, Shirouzu M, Sakamoto K, Umehara T, Yokoyama S. Multiple Site-Specific Installations ofNε-Monomethyl-L-Lysine into Histone Proteins by Cell-Based and Cell-Free Protein Synthesis. Chembiochem 2014; 15:1830-8. [DOI: 10.1002/cbic.201402291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Indexed: 12/12/2022]
|
26
|
Zeng Y, Wang W, Liu WR. Towards reassigning the rare AGG codon in Escherichia coli. Chembiochem 2014; 15:1750-4. [PMID: 25044341 DOI: 10.1002/cbic.201400075] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 11/09/2022]
Abstract
The rare AGG codon in Escherichia coli has been reassigned to code non-canonical amino acids (ncAAs) by using the PylRS-tRNA(Pyl)(CCU) pair. When N(ε) -alloc-lysine was used as a PylRS substrate, almost quantitative occupancy of N(ε) -alloc-lysine at an AGG codon site was achieved in minimal medium. ncAAs can be potentially incorporated at the AGG codon with varying efficiencies, depending on their activities towards corresponding enzymes. As AGG is a sense codon, the approach reported here resolves the typical low ncAA incorporation issue that has been associated with ncAA mutagenesis and therefore allows bulk preparation of proteins with site-selectively incorporated ncAAs for applications such as therapeutic protein production.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Chemistry, Texas A&M University, College Station, TX 77843 (USA)
| | | | | |
Collapse
|
27
|
Wan W, Tharp JM, Liu WR. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1059-70. [PMID: 24631543 DOI: 10.1016/j.bbapap.2014.03.002] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 11/16/2022]
Abstract
The genetic incorporation of the 22nd proteinogenic amino acid, pyrrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNA(Pyl). Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNA(Pyl). These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs.
Collapse
Affiliation(s)
- Wei Wan
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA
| | - Jeffery M Tharp
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA
| | - Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
28
|
Schmidt MJ, Summerer D. Genetic code expansion as a tool to study regulatory processes of transcription. Front Chem 2014; 2:7. [PMID: 24790976 PMCID: PMC3982524 DOI: 10.3389/fchem.2014.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/07/2014] [Indexed: 12/19/2022] Open
Abstract
The expansion of the genetic code with non-canonical amino acids (ncAA) enables the chemical and biophysical properties of proteins to be tailored, inside cells, with a previously unattainable level of precision. A wide range of ncAA with functions not found in canonical amino acids have been genetically encoded in recent years and have delivered insights into biological processes that would be difficult to access with traditional approaches of molecular biology. A major field for the development and application of novel ncAA-functions has been transcription and its regulation. This is particularly attractive, since advanced DNA sequencing- and proteomics-techniques continue to deliver vast information on these processes on a global level, but complementing methodologies to study them on a detailed, molecular level and in living cells have been comparably scarce. In a growing number of studies, genetic code expansion has now been applied to precisely control the chemical properties of transcription factors, RNA polymerases and histones, and this has enabled new insights into their interactions, conformational changes, cellular localizations and the functional roles of posttranslational modifications.
Collapse
Affiliation(s)
- Moritz J Schmidt
- Department of Chemistry, Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz Konstanz, Germany
| | - Daniel Summerer
- Department of Chemistry, Zukunftskolleg and Konstanz Research School Chemical Biology, University of Konstanz Konstanz, Germany
| |
Collapse
|
29
|
|
30
|
Making connections--strategies for single molecule fluorescence biophysics. Curr Opin Chem Biol 2013; 17:691-8. [PMID: 23769868 PMCID: PMC3989056 DOI: 10.1016/j.cbpa.2013.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/02/2013] [Accepted: 05/17/2013] [Indexed: 11/28/2022]
Abstract
The single-molecule approach yields exciting insights for many biomolecular applications. There are significant challenges to achieve main-stream single-molecule measurements. New labelling chemistries enable multiple tagged molecules in vitro and in live cells. Single-molecule pull-down expands the toolbox complementing co-immunoprecipitation. Breaking the single-molecule concentration barrier is within reach.
Fluorescence spectroscopy and fluorescence microscopy carried out on the single molecule level are elegant methods to decipher complex biological systems; it can provide a wealth of information that frequently is obscured in the averaging of ensemble measurements. Fluorescence can be used to localise a molecule, study its binding with interaction partners and ligands, or to follow conformational changes in large multicomponent systems. Efficient labelling of proteins and nucleic acids is very important for any fluorescence method, and equally the development of novel fluorophores has been crucial in making biomolecules amenable to single molecule fluorescence methods. In this paper we review novel coupling strategies that permit site-specific and efficient labelling of proteins. Furthermore, we will discuss progressive single molecule approaches that allow the detection of individual molecules and biomolecular complexes even directly isolated from cellular extracts at much higher and much lower concentrations than has been possible so far.
Collapse
|
31
|
Wissner RF, Batjargal S, Fadzen CM, Petersson EJ. Labeling proteins with fluorophore/thioamide Förster resonant energy transfer pairs by combining unnatural amino acid mutagenesis and native chemical ligation. J Am Chem Soc 2013; 135:6529-40. [PMID: 23594264 DOI: 10.1021/ja4005943] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently shown that p-cyanophenylalanine (Cnf) and a thioamide can be used as a minimally perturbing Förster resonant energy transfer (FRET) pair to monitor protein conformation. We have also shown that thioamide analogues of natural amino acids can be incorporated into full-sized proteins through native chemical ligation. For intermolecular studies with Cnf/thioamide FRET pairs, Cnf can be incorporated into proteins expressed in Escherichia coli through unnatural amino acid mutagenesis using a Cnf-specific tRNA synthetase. For intramolecular studies, a Cnf-labeled protein fragment can be expressed in E. coli and then ligated to a thioamide-labeled peptide synthesized on solid phase. This combination of methods allows for rapid access to double-labeled proteins with a minimum of unnecessary chemical synthesis. We demonstrate the utility of this approach by studying the binding of peptides to the protein calmodulin and by determining the orientation of the N- and C-termini in the amyloidogenic protein α-synuclein.
Collapse
Affiliation(s)
- Rebecca F Wissner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | |
Collapse
|
32
|
Schmidt MJ, Summerer D. Durch rotes Licht kontrollierte Protein-RNA-Vernetzung mit einem genetisch kodierten Furan. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Red-Light-Controlled Protein-RNA Crosslinking with a Genetically Encoded Furan. Angew Chem Int Ed Engl 2013; 52:4690-3. [DOI: 10.1002/anie.201300754] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 12/12/2022]
|
34
|
Genetically encoded libraries of nonstandard peptides. J Nucleic Acids 2012; 2012:713510. [PMID: 23097693 PMCID: PMC3477784 DOI: 10.1155/2012/713510] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/12/2012] [Indexed: 11/17/2022] Open
Abstract
The presence of a nonproteinogenic moiety in a nonstandard peptide often improves the biological properties of the peptide. Non-standard peptide libraries are therefore used to obtain valuable molecules for biological, therapeutic, and diagnostic applications. Highly diverse non-standard peptide libraries can be generated by chemically or enzymatically modifying standard peptide libraries synthesized by the ribosomal machinery, using posttranslational modifications. Alternatively, strategies for encoding non-proteinogenic amino acids into the genetic code have been developed for the direct ribosomal synthesis of non-standard peptide libraries. In the strategies for genetic code expansion, non-proteinogenic amino acids are assigned to the nonsense codons or 4-base codons in order to add these amino acids to the universal genetic code. In contrast, in the strategies for genetic code reprogramming, some proteinogenic amino acids are erased from the genetic code and non-proteinogenic amino acids are reassigned to the blank codons. Here, we discuss the generation of genetically encoded non-standard peptide libraries using these strategies and also review recent applications of these libraries to the selection of functional non-standard peptides.
Collapse
|
35
|
Heinemann IU, Rovner AJ, Aerni HR, Rogulina S, Cheng L, Olds W, Fischer JT, Söll D, Isaacs FJ, Rinehart J. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion. FEBS Lett 2012; 586:3716-22. [PMID: 22982858 DOI: 10.1016/j.febslet.2012.08.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
Genetically encoded phosphoserine incorporation programmed by the UAG codon was achieved by addition of engineered elongation factor and an archaeal aminoacyl-tRNA synthetase to the normal Escherichia coli translation machinery (Park et al., 2011) Science 333, 1151). However, protein yield suffers from expression of the orthogonal phosphoserine translation system and competition with release factor 1 (RF-1). In a strain lacking RF-1, phosphoserine phosphatase, and where seven UAG codons residing in essential genes were converted to UAA, phosphoserine incorporation into GFP and WNK4 was significantly elevated, but with an accompanying loss in cellular fitness and viability.
Collapse
Affiliation(s)
- Ilka U Heinemann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8144, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Johnson DBF, Wang C, Xu J, Schultz MD, Schmitz RJ, Ecker JR, Wang L. Release factor one is nonessential in Escherichia coli. ACS Chem Biol 2012; 7:1337-44. [PMID: 22662873 PMCID: PMC3423824 DOI: 10.1021/cb300229q] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recoding a stop codon to an amino acid may afford orthogonal genetic systems for biosynthesizing new protein and organism properties. Although reassignment of stop codons has been found in extant organisms, a model organism is lacking to investigate the reassignment process and to direct code evolution. Complete reassignment of a stop codon is precluded by release factors (RFs), which recognize stop codons to terminate translation. Here we discovered that RF1 could be unconditionally knocked out from various Escherichia coli stains, demonstrating that the reportedly essential RF1 is generally dispensable for the E. coli species. The apparent essentiality of RF1 was found to be caused by the inefficiency of a mutant RF2 in terminating all UAA stop codons; a wild type RF2 was sufficient for RF1 knockout. The RF1-knockout strains were autonomous and unambiguously reassigned UAG to encode natural or unnatural amino acids (Uaas) at multiple sites, affording a previously unavailable model for studying code evolution and a unique host for exploiting Uaas to evolve new biological functions.
Collapse
Affiliation(s)
| | | | | | - Matthew D. Schultz
- Bioinformatics
Program, University of California at San Diego, La Jolla, California
92093, United States
| | | | - Joseph R. Ecker
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland
20815, United States
| | | |
Collapse
|
37
|
Lin H, Su X, He B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem Biol 2012; 7:947-60. [PMID: 22571489 DOI: 10.1021/cb3001793] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the past few years, several new protein post-translational modifications that use intermediates in metabolism have been discovered. These include various acyl lysine modifications (formylation, propionylation, butyrylation, crotonylation, malonylation, succinylation, myristoylation) and cysteine succination. Here, we review the discovery and the current understanding of these modifications. Several of these modifications are regulated by the deacylases, sirtuins, which use nicotinamide adenine dinucleotide (NAD), an important metabolic small molecule. Interestingly, several of these modifications in turn regulate the activity of metabolic enzymes. These new modifications reveal interesting connections between metabolism and protein post-translational modifications and raise many questions for future investigations.
Collapse
Affiliation(s)
- Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| | - Xiaoyang Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| | - Bin He
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| |
Collapse
|
38
|
Luo M. Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem Biol 2012; 7:443-63. [PMID: 22220966 DOI: 10.1021/cb200519y] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein methyltransferases (PMTs) play various physiological and pathological roles through methylating histone and nonhistone targets. However, most PMTs including more than 60 human PMTs remain to be fully characterized. The current approaches to elucidate the functions of PMTs have been diversified by many emerging chemical biology technologies. This review focuses on progress in these aspects and is organized into four discussion modules (assays, substrates, cofactors, and inhibitors) that are important to elucidate biological functions of PMTs. These modules are expected to provide general guidance and present emerging methods for researchers to select and combine suitable PMT-activity assays, well-defined substrates, novel SAM surrogates, and PMT inhibitors to interrogate PMTs.
Collapse
Affiliation(s)
- Minkui Luo
- Molecular Pharmacology
and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New
York 10065, United States
| |
Collapse
|
39
|
Neumann H. Rewiring translation - Genetic code expansion and its applications. FEBS Lett 2012; 586:2057-64. [PMID: 22710184 DOI: 10.1016/j.febslet.2012.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 12/19/2022]
Abstract
With few minor variations, the genetic code is universal to all forms of life on our planet. It is difficult to imagine that one day organisms might exist that use an entirely different code to translate the information of their genome. Recent developments in the field of synthetic biology, however, have opened the gate to their creation. The genetic code of several organisms has been expanded by the heterologous expression of evolved aminoacyl-tRNA synthetase/tRNA(CUA) pairs that mediate the incorporation of unnatural amino acids in response to amber codons. These UAAs introduce exciting new features into proteins, such as spectroscopic probes, UV-inducible crosslinkers, and functional groups for bioorthogonal conjugations or posttranslational modifications. Orthogonal ribosomes provide a parallel translational machinery in Escherichia coli that has lost its evolutionary constraints. Evolved variants of these ribosomes translate amber or quadruplet codons with massively enhanced efficiency. Here, I review these recent developments emphasizing their tremendous potential to facilitate biochemical and cell biological studies.
Collapse
Affiliation(s)
- Heinz Neumann
- Institute for Microbiology and Genetics, Justus-von-Liebig Weg 11, Georg-August University Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
40
|
Biochemical analysis with the expanded genetic lexicon. Anal Bioanal Chem 2012; 403:2089-102. [PMID: 22322380 DOI: 10.1007/s00216-012-5784-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 02/02/2023]
Abstract
The information used to build proteins is stored in the genetic material of every organism. In nature, ribosomes use 20 native amino acids to synthesize proteins in most circumstances. However, laboratory efforts to expand the genetic repertoire of living cells and organisms have successfully encoded more than 80 nonnative amino acids in E. coli, yeast, and other eukaryotic systems. The selectivity, fidelity, and site-specificity provided by the technology have enabled unprecedented flexibility in manipulating protein sequences and functions in cells. Various biophysical probes can be chemically conjugated or directly incorporated at specific residues in proteins, and corresponding analytical techniques can then be used to answer diverse biological questions. This review summarizes the methodology of genetic code expansion and its recent progress, and discusses the applications of commonly used analytical methods.
Collapse
|
41
|
Loscha KV, Herlt AJ, Qi R, Huber T, Ozawa K, Otting G. Multiple-site labeling of proteins with unnatural amino acids. Angew Chem Int Ed Engl 2012; 51:2243-6. [PMID: 22298420 DOI: 10.1002/anie.201108275] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Indexed: 01/11/2023]
Affiliation(s)
- Karin V Loscha
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Loscha KV, Herlt AJ, Qi R, Huber T, Ozawa K, Otting G. Mehrfache Markierung von Proteinen mit nichtnatürlichen Aminosäuren. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Recent advances in genetic code engineering in Escherichia coli. Curr Opin Biotechnol 2012; 23:751-7. [PMID: 22237016 DOI: 10.1016/j.copbio.2011.12.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 02/02/2023]
Abstract
The expansion of the genetic code is gradually becoming a core discipline in Synthetic Biology. It offers the best possible platform for the transfer of numerous chemical reactions and processes from the chemical synthetic laboratory into the biochemistry of living cells. The incorporation of biologically occurring or chemically synthesized non-canonical amino acids into recombinant proteins and even proteomes via reprogrammed protein translation is in the heart of these efforts. Orthogonal pairs consisting of aminoacyl-tRNA synthetase and its cognate tRNA proved to be a general tool for the assignment of certain codons of the genetic code with a maximum degree of chemical liberty. Here, we highlight recent developments that should provide a solid basis for the development of generalist tools enabling a controlled variation of chemical composition in proteins and even proteomes. This will take place in the frame of a greatly expanded genetic code with emancipated codons liberated from the current function or with totally new coding units.
Collapse
|
44
|
Johnson DBF, Xu J, Shen Z, Takimoto JK, Schultz MD, Schmitz RJ, Xiang Z, Ecker JR, Briggs SP, Wang L. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 2011; 7:779-86. [PMID: 21926996 PMCID: PMC3201715 DOI: 10.1038/nchembio.657] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 07/18/2011] [Indexed: 11/09/2022]
Abstract
Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but the efficiency is low possibly due to competition from release factors, limiting the power and scope of this technology. Here we show that the reportedly essential release factor 1 can be knocked out from Escherichia coli by fixing release factor 2. The resultant strain JX33 is stable and independent, and reassigns UAG from a stop signal to an amino acid when a UAG-decoding tRNA/synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving novel protein functions by enabling Uaa incorporation at multiple sites.
Collapse
Affiliation(s)
- David B F Johnson
- The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Weinert BT, Wagner SA, Horn H, Henriksen P, Liu WR, Olsen JV, Jensen LJ, Choudhary C. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 2011; 4:ra48. [PMID: 21791702 DOI: 10.1126/scisignal.2001902] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Posttranslational modification of proteins by acetylation and phosphorylation regulates most cellular processes in living organisms. Surprisingly, the evolutionary conservation of phosphorylated serine and threonine residues is only marginally higher than that of unmodified serines and threonines. With high-resolution mass spectrometry, we identified 1981 lysine acetylation sites in the proteome of Drosophila melanogaster. We used data sets of experimentally identified acetylation and phosphorylation sites in Drosophila and humans to analyze the evolutionary conservation of these modification sites between flies and humans. Site-level conservation analysis revealed that acetylation sites are highly conserved, significantly more so than phosphorylation sites. Furthermore, comparison of lysine conservation in Drosophila and humans with that in nematodes and zebrafish revealed that acetylated lysines were significantly more conserved than were nonacetylated lysines. Bioinformatics analysis using Gene Ontology terms suggested that the proteins with conserved acetylation control cellular processes such as protein translation, protein folding, DNA packaging, and mitochondrial metabolism. We found that acetylation of ubiquitin-conjugating E2 enzymes was evolutionarily conserved, and mutation of a conserved acetylation site impaired the function of the human E2 enzyme UBE2D3. This systems-level analysis of comparative posttranslational modification showed that acetylation is an anciently conserved modification and suggests that phosphorylation sites may have evolved faster than acetylation sites.
Collapse
Affiliation(s)
- Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hoesl MG, Budisa N. In Vivo Incorporation of Multiple Noncanonical Amino Acids into Proteins. Angew Chem Int Ed Engl 2011; 50:2896-902. [DOI: 10.1002/anie.201005680] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Indexed: 11/11/2022]
|
47
|
Hoesl MG, Budisa N. Paralleler In-vivo-Einbau von mehreren nichtkanonischen Aminosäuren in Proteine. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005680] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Wang YS, Russell WK, Wang Z, Wan W, Dodd LE, Pai PJ, Russell DH, Liu WR. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. MOLECULAR BIOSYSTEMS 2011; 7:714-7. [PMID: 21234492 DOI: 10.1039/c0mb00217h] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using evolved pyrrolysyl-tRNA synthetase-tRNA(CUA)(Pyl) pairs, L-phenylalanine, p-iodo-L-phenylalanine and p-bromo-L-phenylalanine have been genetically incorporated into proteins at amber mutation sites in E. coli.
Collapse
Affiliation(s)
- Yane-Shih Wang
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chou C, Uprety R, Davis L, Chin JW, Deiters A. Genetically encoding an aliphatic diazirine for protein photocrosslinking. Chem Sci 2011. [DOI: 10.1039/c0sc00373e] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Liu WR, Wang YS, Wan W. Synthesis of proteins with defined posttranslational modifications using the genetic noncanonical amino acid incorporation approach. MOLECULAR BIOSYSTEMS 2010; 7:38-47. [PMID: 21088799 DOI: 10.1039/c0mb00216j] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Posttranslational modifications modulate the activities of most eukaryotic proteins and play a critical role in all aspects of cellular life. Understanding functional roles of these modifications requires homogeneously modified proteins that are usually difficult to purify from their natural sources. An emerging powerful tool for synthesis of proteins with defined posttranslational modifications is to genetically encode modified amino acids in living cells and incorporate them directly into proteins during the protein translation process. Using this approach, homogenous proteins with tyrosine sulfation, tyrosine phosphorylation mimics, tyrosine nitration, lysine acetylation, lysine methylation, and ubiquitination have been synthesized in large quantities. In this review, we provide a brief introduction to protein posttranslational modifications and the genetic noncanonical amino acid (NAA) incorporation technique, then discuss successful applications of the genetic NAA incorporation approach to produce proteins with defined modifications, and end with challenges and ongoing methodology developments for synthesis of proteins with other modifications.
Collapse
Affiliation(s)
- Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|