1
|
Miao Y, Yu ZQ, Xu S, Yan M. Quinone Methide Based Self-Immobilizing Molecular Fluorescent Probes for In Situ Imaging of Enzymes. Chem Asian J 2024; 19:e202400189. [PMID: 38514393 DOI: 10.1002/asia.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Enzymes play important roles not only in normal physiological processes but in the development of many diseases. In situ imaging of enzymes with high-resolution in living systems would helpful for clinical diagnosis and treatment. However, many molecular fluorescent probes suffer from the drawback of diffusing away from the reaction site of enzymes even out of the cells, losing the in situ information and resulting in poor imaging resolution. Quinone methide (QM) based self-immobilizing probes allow the fluorescent signal to be immobilized near the target for an extended period without deactivating the target enzymes, ensuring that it will provide amplified signals and in situ information of the target with high resolution. In this review, we summarized the recent progress of QM-based self-immobilizing probes including their design strategies, working mechanisms, classifications and applications in in situ enzyme imaging. This review calls for the development of more activatable QM-based probe with the advantages of high stability in the absence of the target but very high labeling efficiency after activation.
Collapse
Affiliation(s)
- Yeru Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhen-Qing Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Shuai Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
2
|
Abstract
A growing theme in chemistry is the joining of multiple organic molecular building blocks to create functional molecules. Diverse derivatizable structures—here termed “scaffolds” comprised of “hubs”—provide the foundation for systematic covalent organization of a rich variety of building blocks. This review encompasses 30 tri- or tetra-armed molecular hubs (e.g., triazine, lysine, arenes, dyes) that are used directly or in combination to give linear, cyclic, or branched scaffolds. Each scaffold is categorized by graph theory into one of 31 trees to express the molecular connectivity and overall architecture. Rational chemistry with exacting numbers of derivatizable sites is emphasized. The incorporation of water-solubilization motifs, robust or self-immolative linkers, enzymatically cleavable groups and functional appendages affords immense (and often late-stage) diversification of the scaffolds. Altogether, 107 target molecules are reviewed along with 19 syntheses to illustrate the distinctive chemistries for creating and derivatizing scaffolds. The review covers the history of the field up through 2020, briefly touching on statistically derivatized carriers employed in immunology as counterpoints to the rationally assembled and derivatized scaffolds here, although most citations are from the past two decades. The scaffolds are used widely in fields ranging from pure chemistry to artificial photosynthesis and biomedical sciences.
Collapse
|
3
|
Wang S, Vigliarolo BG, Chowdhury MA, Nyarko JNK, Mousseau DD, Phenix CP. Design and synthesis of fluorogenic substrate-based probes for detecting Cathepsin B activity. Bioorg Chem 2019; 92:103194. [PMID: 31493706 DOI: 10.1016/j.bioorg.2019.103194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/27/2019] [Accepted: 08/11/2019] [Indexed: 11/18/2022]
Abstract
Cathepsin B plays key roles in tumor progression with its overexpression being associated with invasive and metastatic phenotypes and is a primary target of protease activated antibody-directed prodrug therapy. It therefore represents a potential therapeutic and diagnostic target and effort has been made to develop fluorescent probes to report on Cathepsin B activity in cells and animal models of cancer. We have designed, synthesized, and thoroughly evaluated four novel "turn on" probes that employ a lysosomotropic dansylcadaverine dye to report on Cathepsin B activity. Enzyme activity assays using a recombinant human enzyme and cancer cell lysates coupled with confocal microscopy experiments demonstrated that one of the probes, derivatized with the self-immolative prodrug linker p-aminobenzyl alcohol, can selectively report on Cathepsin B in biological samples including live cells.
Collapse
Affiliation(s)
- Shusheng Wang
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Brady G Vigliarolo
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Morshed A Chowdhury
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Jennifer N K Nyarko
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Christopher P Phenix
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
4
|
Sellars JD, Skipsey M, Sadr-Ul-Shaheed, Gravell S, Abumansour H, Kashtl G, Irfan J, Khot M, Pors K, Patterson LH, Sutton CW. Rational Development of Novel Activity Probes for the Analysis of Human Cytochromes P450. ChemMedChem 2016; 11:1122-8. [PMID: 27154431 DOI: 10.1002/cmdc.201600134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/01/2016] [Indexed: 11/07/2022]
Abstract
The identification and quantification of functional cytochromes P450 (CYPs) in biological samples is proving important for robust analyses of drug efficacy and metabolic disposition. In this study, a novel CYP activity-based probe was rationally designed and synthesised, demonstrating selective binding of CYP isoforms. The dependence of probe binding upon the presence of NADPH permits the selective detection of functionally active CYP. This allows the detection and analysis of these enzymes using biochemical and proteomic methodologies and approaches.
Collapse
Affiliation(s)
- Jonathan D Sellars
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, University Boulevard, Stockton-on-Tees, TS17 6BH, UK.
| | - Mark Skipsey
- School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, University Boulevard, Stockton-on-Tees, TS17 6BH, UK
| | - Sadr-Ul-Shaheed
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Sebastian Gravell
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Hamza Abumansour
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Ghasaq Kashtl
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Jawaria Irfan
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Mohamed Khot
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Klaus Pors
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Laurence H Patterson
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Chris W Sutton
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, UK
| |
Collapse
|
5
|
Abstract
Enzymes are essential for life, especially in the development of disease and on drug effects, but as we cannot yet directly observe the inside interactions and only partially observe biochemical outcomes, tools "translating" these processes into readable information are essential for better understanding of enzymes as well as for developing effective tools to fight against diseases. Therefore, sensitive small molecule probes suitable for direct in vivo monitoring of enzyme activities are ultimately desirable. For fulfilling this desire, two-photon small molecule enzymatic probes (TSMEPs) producing amplified fluorescent signals based on enzymatic conversion with better photophysical properties and deeper penetration in intact tissues and whole animals have been developed and demonstrated to be powerful in addressing the issues described above. Nonetheless, currently available TSMEPs only cover a small portion of enzymes despite the distinct advantages of two-photon fluorescence microscopy. In this Account, we would like to share design principles for TSMEPs as potential indicators of certain pathology-related biomarkers together with their applications in disease models to inspire more elegant work to be done in this area. Highlights will be addressed on how to equip two-photon fluorescent probes with features amenable for direct assessment of enzyme activities in complex pathological environments. We give three recent examples from our laboratory and collaborations in which TSMEPs are applied to visualize the distribution and activity of enzymes at cellular and organism levels. The first example shows that we could distinguish endogenous phosphatase activity in different organelles; the second illustrates that TSMEP is suitable for specific and sensitive detection of a potential Parkinson's disease marker (monoamine oxidase B) in a variety of biological systems from cells to patient samples, and the third identifies that TSMEPs can be applied to other enzyme families (proteases). Indeed, TSMEPs have helped to uncover new biological roles and functions of a series of enzymes; therefore, we hope to encourage more TSMEPs to be developed for diverse enzymes. Meanwhile, improvements in the TSMEP properties (such as new two-photon fluorophores with longer excitation and emission wavelengths and strategies allowing high specificity) are also indispensable for producing high-fidelity information inside biological systems. We are enthusiastic however that, with these efforts and wider applications of TSMEPs in both research studies and further clinical diagnoses, comprehensive knowledge of enzyme contributions to various physiologies will be obtained.
Collapse
Affiliation(s)
- Linghui Qian
- Department
of Chemistry, National University of Singapore 117543, Singapore
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Shao Q. Yao
- Department
of Chemistry, National University of Singapore 117543, Singapore
| |
Collapse
|
6
|
Morimoto K, van der Hoorn RAL. The Increasing Impact of Activity-Based Protein Profiling in Plant Science. PLANT & CELL PHYSIOLOGY 2016; 57:446-61. [PMID: 26872839 DOI: 10.1093/pcp/pcw003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/28/2015] [Indexed: 05/08/2023]
Abstract
The active proteome dictates plant physiology. Yet, active proteins are difficult to predict based on transcript or protein levels, because protein activities are regulated post-translationally in their microenvironments. Over the past 10 years, activity-based protein profiling (ABPP) is increasingly used in plant science. ABPP monitors the activities of hundreds of plant proteins using tagged chemical probes that react with the active site of proteins in a mechanism-dependent manner. Since labeling is covalent and irreversible, labeled proteins can be detected and identified on protein gels and by mass spectrometry using tagged fluorophores and/or biotin. Here, we discuss general concepts, approaches and practical considerations of ABPP, before we summarize the discoveries made using 40 validated probes representing 14 chemotypes that can monitor the active state of >4,500 plant proteins. These discoveries and new opportunities indicate that this emerging functional proteomic technology is a powerful discovery tool that will have an increasing impact on plant science.
Collapse
Affiliation(s)
- Kyoko Morimoto
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
7
|
Polaske NW, Kelly BD, Ashworth-Sharpe J, Bieniarz C. Quinone Methide Signal Amplification: Covalent Reporter Labeling of Cancer Epitopes using Alkaline Phosphatase Substrates. Bioconjug Chem 2016; 27:660-6. [DOI: 10.1021/acs.bioconjchem.5b00652] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan W. Polaske
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| | - Brian D. Kelly
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| | - Julia Ashworth-Sharpe
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| | - Christopher Bieniarz
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| |
Collapse
|
8
|
Ben-Nun Y, Merquiol E, Brandis A, Turk B, Scherz A, Blum G. Photodynamic quenched cathepsin activity based probes for cancer detection and macrophage targeted therapy. Theranostics 2015; 5:847-62. [PMID: 26000057 PMCID: PMC4440442 DOI: 10.7150/thno.10854] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/20/2015] [Indexed: 11/10/2022] Open
Abstract
Elevated cathepsins levels and activities are found in several types of human cancer, making them valuable biomarkers for detection and targeting therapeutics. We designed small molecule quenched activity-based probes (qABPs) that fluoresce upon activity-dependent covalent modification, yielding cell killing by Photodynamic Therapy (PDT). These novel molecules are highly selective theranostic probes that enable both detection and treatment of cancer with minimal side effects. Our qABPs carry a photosensitizer (PS), which is activated by light, resulting in oxidative stress and subsequent cell ablation, and a quencher that when removed by active cathepsins allow the PS to fluoresce and demonstrate PD properties. Our most powerful and stable PS-qABP, YBN14, consists of a selective cathepsin recognition sequence, a QC-1 quencher and a new bacteriochlorin derivative as a PS. YBN14 allowed rapid and selective non-invasive in vivo imaging of subcutaneous tumors and induced specific tumor macrophage apoptosis by light treatment, resulting in a substantial tumor shrinkage in an aggressive breast cancer mouse model. These results demonstrate for the first time that the PS-qABPs technology offers a functional theranostic tool, which can be applied to numerous tumor types and other inflammation-associated diseases.
Collapse
Affiliation(s)
- Yael Ben-Nun
- 1. The Institute of Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem, The Hebrew University, Jerusalem, Israel
| | - Emmanuelle Merquiol
- 1. The Institute of Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem, The Hebrew University, Jerusalem, Israel
| | - Alexander Brandis
- 2. Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Boris Turk
- 3. Department of Biochemistry and Molecular Biology, J. Stefan Institute, Ljubljana, Slovenia
- 4. Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
- 5. Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia
| | - Avigdor Scherz
- 2. Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Galia Blum
- 1. The Institute of Drug Research, The School of Pharmacy, The Faculty of Medicine, Campus Ein Karem, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
9
|
Pershagen E, Borbas KE. Multiplex Detection of Enzymatic Activity with Responsive Lanthanide-Based Luminescent Probes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Pershagen E, Borbas KE. Multiplex detection of enzymatic activity with responsive lanthanide-based luminescent probes. Angew Chem Int Ed Engl 2014; 54:1787-90. [PMID: 25504579 DOI: 10.1002/anie.201408560] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/21/2014] [Indexed: 11/06/2022]
Abstract
Multiplex analyte detection in complex dynamic systems is desirable for the investigation of cellular communication networks as well as in medical diagnostics. A family of lanthanide-based responsive luminescent probes for multiplex detection is reported. The high modularity of the probe design enabled the rapid assembly of both green and red emitters for a large variety of analytes by the simple exchange of the lanthanide or an analyte-cleavable caging group, respectively. The real-time three-color detection of up to three analytes was demonstrated, thus setting the stage for the non-invasive investigation of interconnected biological processes.
Collapse
Affiliation(s)
- Elias Pershagen
- Department of Chemistry-BMC, Uppsala University, Box 576, Uppsala, 75123 (Sweden)
| | | |
Collapse
|
11
|
Fluorescent probes designed for detecting human serum albumin on the basis of its pseudo-esterase activity. Bioorg Med Chem Lett 2013; 23:2093-7. [DOI: 10.1016/j.bmcl.2013.01.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 01/29/2013] [Indexed: 12/11/2022]
|
12
|
Haedke U, Küttler EV, Vosyka O, Yang Y, Verhelst SHL. Tuning probe selectivity for chemical proteomics applications. Curr Opin Chem Biol 2013; 17:102-9. [DOI: 10.1016/j.cbpa.2012.11.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/05/2012] [Accepted: 11/27/2012] [Indexed: 12/20/2022]
|
13
|
Park HJ, Rhee HW, Hong JI. Activity-based fluorescent probes for monitoring sulfatase activity. Bioorg Med Chem Lett 2012; 22:4939-41. [PMID: 22776266 DOI: 10.1016/j.bmcl.2012.06.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 11/29/2022]
Abstract
A small-molecule probe for sulfatase is developed that shows a significant change in fluorescence upon reaction with sulfatase in an activity-based manner. As this probe is free from interference from background fluorescence caused by an unreacted probe, it could be a simple and efficient tool for the study of sulfatase activity.
Collapse
Affiliation(s)
- Hyun-Joo Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
14
|
Thorn-Seshold O, Vargas-Sanchez M, McKeon S, Hasserodt J. A robust, high-sensitivity stealth probe for peptidases. Chem Commun (Camb) 2012; 48:6253-5. [PMID: 22595966 DOI: 10.1039/c2cc32227g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A robust, modular fluorogenic probe system has been developed which allows the highly sensitive off-ON detection of aminopeptidase activity by releasing an exceptionally photostable, insoluble, phenolic ESIPT fluorophore. The probes generate no false positive signal in over 24 hours, but when activated give a signal within 10 minutes.
Collapse
Affiliation(s)
- Oliver Thorn-Seshold
- Laboratoire de Chimie, CNRS, École Normale Supérieure de Lyon, 46 Allée d'Italie, F-69364 Lyon, France
| | | | | | | |
Collapse
|
15
|
Serim S, Haedke U, Verhelst SHL. Activity-based probes for the study of proteases: recent advances and developments. ChemMedChem 2012; 7:1146-59. [PMID: 22431376 DOI: 10.1002/cmdc.201200057] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/28/2012] [Indexed: 11/11/2022]
Abstract
Proteases are important targets for the treatment of human disease. Several protease inhibitors have failed in clinical trials due to a lack of in vivo specificity, indicating the need for studies of protease function and inhibition in complex, disease-related models. The tight post-translational regulation of protease activity complicates protease analysis by traditional proteomics methods. Activity-based protein profiling is a powerful technique that can resolve this issue. It uses small-molecule tools-activity-based probes-to label and analyze active enzymes in lysates, cells, and whole animals. Over the last twelve years, a wide variety of protease activity-based probes have been developed. These synthetic efforts have enabled techniques ranging from real-time in vivo imaging of protease activity to high-throughput screening of uncharacterized proteases. This Review introduces the general principles of activity-based protein profiling and describes the recent advancements in probe design and analysis techniques, which have increased the knowledge of protease biology and will aid future protease drug discovery.
Collapse
Affiliation(s)
- Sevnur Serim
- Center for Integrated Protein Science Munich (CIPS(M)), Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | | | | |
Collapse
|
16
|
Di Antonio M, Rodriguez R, Balasubramanian S. Experimental approaches to identify cellular G-quadruplex structures and functions. Methods 2012; 57:84-92. [PMID: 22343041 PMCID: PMC3563962 DOI: 10.1016/j.ymeth.2012.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/27/2012] [Accepted: 01/29/2012] [Indexed: 12/27/2022] Open
Abstract
Guanine-rich nucleic acids can fold into non-canonical DNA secondary structures called G-quadruplexes. The formation of these structures can interfere with the biology that is crucial to sustain cellular homeostases and metabolism via mechanisms that include transcription, translation, splicing, telomere maintenance and DNA recombination. Thus, due to their implication in several biological processes and possible role promoting genomic instability, G-quadruplex forming sequences have emerged as potential therapeutic targets. There has been a growing interest in the development of synthetic molecules and biomolecules for sensing G-quadruplex structures in cellular DNA. In this review, we summarise and discuss recent methods developed for cellular imaging of G-quadruplexes, and the application of experimental genomic approaches to detect G-quadruplexes throughout genomic DNA. In particular, we will discuss the use of engineered small molecules and natural proteins to enable pull-down, ChIP-Seq, ChIP-chip and fluorescence imaging of G-quadruplex structures in cellular DNA.
Collapse
Affiliation(s)
- Marco Di Antonio
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | |
Collapse
|
17
|
Nickel S, Kaschani F, Colby T, van der Hoorn RA, Kaiser M. A para-nitrophenol phosphonate probe labels distinct serine hydrolases of Arabidopsis. Bioorg Med Chem 2012; 20:601-6. [DOI: 10.1016/j.bmc.2011.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/21/2011] [Accepted: 06/14/2011] [Indexed: 01/26/2023]
|
18
|
Hu M, Li L, Wu H, Su Y, Yang PY, Uttamchandani M, Xu QH, Yao SQ. Multicolor, one- and two-photon imaging of enzymatic activities in live cells with fluorescently Quenched Activity-Based Probes (qABPs). J Am Chem Soc 2011; 133:12009-20. [PMID: 21732629 DOI: 10.1021/ja200808y] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorescence imaging provides an indispensable way to locate and monitor biological targets within complex and dynamic intracellular environments. Of the various imaging agents currently available, small molecule-based probes provide a powerful tool for live cell imaging, primarily due to their desirable properties, including cell permeability (as a result of their smaller sizes), chemical tractability (e.g., different molecular structures/designs can be installed), and amenability to imaging a wide variety of biological events. With a few exceptions, most existing small molecule probes are however not suitable for in vivo bioimaging experiments in which high-resolution studies of enzyme activity and localization are necessary. In this article, we reported a new class of fluorescently Quenched Activity-Based Probes (qABPs) which are highly modular, and can sensitively image (through multiple enzyme turnovers leading to fluorescence signal amplification) different types of enzyme activities in live mammalian cells with good spatial and temporal resolution. We have also incorporated two-photon dyes into our modular probe design, enabling for the first time activity-based, fluorogenic two-photon imaging of enzyme activities. This, hence, expands the repertoire of 'smart', responsive probes currently available for live cell bioimaging experiments.
Collapse
Affiliation(s)
- Mingyu Hu
- Department of Chemistry, National University of Singapore, Singapore 117543
| | | | | | | | | | | | | | | |
Collapse
|