• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4611578)   Today's Articles (6963)   Subscriber (49382)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Yadav S, Haas R, Boydas EB, Roemelt M, Happe T, Apfel UP, Stripp ST. Oxygen sensitivity of [FeFe]-hydrogenase: a comparative study of active site mimics inside vs. outside the enzyme. Phys Chem Chem Phys 2024;26:19105-19116. [PMID: 38957092 DOI: 10.1039/d3cp06048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
2
Montgomery CL, Amtawong J, Jordan AM, Kurtz DA, Dempsey JL. Proton transfer kinetics of transition metal hydride complexes and implications for fuel-forming reactions. Chem Soc Rev 2023;52:7137-7169. [PMID: 37750006 DOI: 10.1039/d3cs00355h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
3
Clary KE, Gibson AC, Glass RS, Pyun J, Lichtenberger DL. Natural Assembly of Electroactive Metallopolymers on the Electrode Surface: Enhanced Electrocatalytic Production of Hydrogen by [2Fe-2S] Metallopolymers in Neutral Water. J Am Chem Soc 2023. [PMID: 37315082 DOI: 10.1021/jacs.3c03379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
4
Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
5
Abul-Futouh H, Almazahreh LR, Abaalkhail SJ, Görls H, Stripp ST, Weigand W. Ligand effects on structural, protophilic and reductive features of stannylated dinuclear iron dithiolato complexes. NEW J CHEM 2021. [DOI: 10.1039/d0nj04790b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
6
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021;50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
7
Grimmel SA, Reiher M. The electrostatic potential as a descriptor for the protonation propensity in automated exploration of reaction mechanisms. Faraday Discuss 2020;220:443-463. [PMID: 31528869 DOI: 10.1039/c9fd00061e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
8
Arrigoni F, Bertini L, Breglia R, Greco C, De Gioia L, Zampella G. Catalytic H2 evolution/oxidation in [FeFe]-hydrogenase biomimetics: account from DFT on the interplay of related issues and proposed solutions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03393f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
9
Ghosh S, Rahaman A, Orton G, Gregori G, Bernat M, Kulsume U, Hollingsworth N, Holt KB, Kabir SE, Hogarth G. Synthesis, Molecular Structures and Electrochemical Investigations of [FeFe]‐Hydrogenase Biomimics [Fe 2 (CO) 6‐ n (EPh 3 ) n (µ‐edt)] (E = P, As, Sb; n = 1, 2). Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
10
Unwin DG, Ghosh S, Ridley F, Richmond MG, Holt KB, Hogarth G. Models of the iron-only hydrogenase enzyme: structure, electrochemistry and catalytic activity of Fe2(CO)3(μ-dithiolate)(μ,κ1,κ2-triphos). Dalton Trans 2019;48:6174-6190. [DOI: 10.1039/c9dt00700h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
11
Zhao Y, Yu X, Hu H, Hu X, Raje S, Angamuthu R, Tung CH, Wang W. Synthetic [FeFe]-H2ase models bearing phosphino thioether chelating ligands. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
12
Wang S, Aster A, Mirmohades M, Lomoth R, Hammarström L. Structural and Kinetic Studies of Intermediates of a Biomimetic Diiron Proton-Reduction Catalyst. Inorg Chem 2018;57:768-776. [PMID: 29297686 DOI: 10.1021/acs.inorgchem.7b02687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
13
Biomimetics of the [FeFe]-hydrogenase enzyme: Identification of kinetically favoured apical-basal [Fe2(CO)4(μ-H){κ2-Ph2PC(Me2)PPh2}(μ-pdt)]+ as a proton-reduction catalyst. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2015.09.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
14
Liu YC, Chu KT, Huang YL, Hsu CH, Lee GH, Tseng MC, Chiang MH. Protonation/Reduction of Carbonyl-Rich Diiron Complexes and the Direct Observation of Triprotonated Species: Insights into the Electrocatalytic Mechanism of Hydrogen Formation. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
15
Song LC, Zhu AG, Guo YQ. Synthesis, characterization, and H/D exchange of μ-hydride-containing [FeFe]-hydrogenase subsite models formed by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 (TDT = SCH2SCH2S) with protic acids. Dalton Trans 2016;45:5021-9. [DOI: 10.1039/c5dt04297f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
16
Hunt NT, Wright JA, Pickett C. Detection of Transient Intermediates Generated from Subsite Analogues of [FeFe] Hydrogenases. Inorg Chem 2015;55:399-410. [DOI: 10.1021/acs.inorgchem.5b02477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
17
Raugei S, Helm ML, Hammes-Schiffer S, Appel AM, O’Hagan M, Wiedner ES, Bullock RM. Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen. Inorg Chem 2015;55:445-60. [DOI: 10.1021/acs.inorgchem.5b02262] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
18
Weber K, Weyhermüller T, Bill E, Erdem ÖF, Lubitz W. Design and Characterization of Phosphine Iron Hydrides: Toward Hydrogen-Producing Catalysts. Inorg Chem 2015;54:6928-37. [DOI: 10.1021/acs.inorgchem.5b00911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
19
Goy R, Bertini L, Görls H, De Gioia L, Talarmin J, Zampella G, Schollhammer P, Weigand W. Silicon-Heteroaromatic [FeFe] Hydrogenase Model Complexes: Insight into Protonation, Electrochemical Properties, and Molecular Structures. Chemistry 2015;21:5061-73. [DOI: 10.1002/chem.201406087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 11/10/2022]
20
Jablonskytė A, Webster LR, Simmons TR, Wright JA, Pickett CJ. Electronic Control of the Protonation Rates of Fe–Fe Bonds. J Am Chem Soc 2014;136:13038-44. [DOI: 10.1021/ja506693m] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
21
Manor BC, Ringenberg MR, Rauchfuss TB. Borane-protected cyanides as surrogates of H-bonded cyanides in [FeFe]-hydrogenase active site models. Inorg Chem 2014;53:7241-7. [PMID: 24992155 PMCID: PMC4364604 DOI: 10.1021/ic500470z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
22
Lubitz W, Ogata H, Rüdiger O, Reijerse E. Hydrogenases. Chem Rev 2014;114:4081-148. [DOI: 10.1021/cr4005814] [Citation(s) in RCA: 1399] [Impact Index Per Article: 139.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
23
Finkelmann AR, Stiebritz MT, Reiher M. Inaccessibility of the μ-hydride species in [FeFe] hydrogenases. Chem Sci 2014. [DOI: 10.1039/c3sc51700d] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
24
Orthaber A, Karnahl M, Tschierlei S, Streich D, Stein M, Ott S. Coordination and conformational isomers in mononuclear iron complexes with pertinence to the [FeFe] hydrogenase active site. Dalton Trans 2014;43:4537-49. [DOI: 10.1039/c3dt53268b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Ridley F, Ghosh S, Hogarth G, Hollingsworth N, Holt KB, Unwin DG. Fluorinated models of the iron-only hydrogenase: An electrochemical study of the influence of an electron-withdrawing bridge on the proton reduction overpotential and catalyst stability. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
26
Manor BC, Rauchfuss TB. Hydrogen activation by biomimetic [NiFe]-hydrogenase model containing protected cyanide cofactors. J Am Chem Soc 2013;135:11895-900. [PMID: 23899049 DOI: 10.1021/ja404580r] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
27
Wang W, Nilges MJ, Rauchfuss TB, Stein M. Isolation of a Mixed Valence Diiron Hydride: Evidence for a Spectator Hydride in Hydrogen Evolution Catalysis. J Am Chem Soc 2013;135:3633-9. [DOI: 10.1021/ja312458f] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
28
Structural effects upon the durability of hydrogenase-inspired hydrogen-producing electrocatalysts: Variations in the (μ-edt)[Fe2(CO)6] system. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2012.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
29
Ghosh S, Hogarth G, Hollingsworth N, Holt KB, Richards I, Richmond MG, Sanchez BE, Unwin D. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Dalton Trans 2013;42:6775-92. [DOI: 10.1039/c3dt50147g] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
30
Leidel N, Hsieh CH, Chernev P, Sigfridsson KGV, Darensbourg MY, Haumann M. Bridging-hydride influence on the electronic structure of an [FeFe] hydrogenase active-site model complex revealed by XAES-DFT. Dalton Trans 2013;42:7539-54. [DOI: 10.1039/c3dt33042g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
31
Zaffaroni R, Rauchfuss TB, Fuller A, De Gioia L, Zampella G. Contrasting Protonation Behavior of Diphosphido vs Dithiolato Diiron(I) Carbonyl Complexes. Organometallics 2012. [DOI: 10.1021/om300997s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
32
Zaffaroni R, Rauchfuss TB, Gray DL. Terminal vs bridging hydrides of diiron dithiolates: protonation of Fe2(dithiolate)(CO)2(PMe3)4. J Am Chem Soc 2012;134:19260-9. [PMID: 23095145 PMCID: PMC3518320 DOI: 10.1021/ja3094394] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
33
Durgaprasad G, Das SK. 1,2-Ene dithiolate bridged diiron carbonyl-phosphine and -phosphite complexes in relevance to the active site of [FeFe]-hydrogenases: Synthesis, characterization and electrocatalysis. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
34
Leidel N, Chernev P, Havelius KGV, Schwartz L, Ott S, Haumann M. Electronic Structure of an [FeFe] Hydrogenase Model Complex in Solution Revealed by X-ray Absorption Spectroscopy Using Narrow-Band Emission Detection. J Am Chem Soc 2012;134:14142-57. [DOI: 10.1021/ja304970p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
35
Kinney RA, Saouma CT, Peters JC, Hoffman BM. Modeling the signatures of hydrides in metalloenzymes: ENDOR analysis of a Di-iron Fe(μ-NH)(μ-H)Fe core. J Am Chem Soc 2012;134:12637-47. [PMID: 22823933 PMCID: PMC3433054 DOI: 10.1021/ja303739g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
36
Hsieh CH, Erdem ÖF, Harman SD, Singleton ML, Reijerse E, Lubitz W, Popescu CV, Reibenspies JH, Brothers SM, Hall MB, Darensbourg MY. Structural and Spectroscopic Features of Mixed Valent FeIIFeI Complexes and Factors Related to the Rotated Configuration of Diiron Hydrogenase. J Am Chem Soc 2012;134:13089-102. [DOI: 10.1021/ja304866r] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
37
Olsen MT, Rauchfuss TB, Zaffaroni R. Reaction of Aryl Diazonium Salts and Diiron(I) Dithiolato Carbonyls: Evidence for Radical Intermediates. Organometallics 2012;31:3447-3450. [PMID: 22962513 DOI: 10.1021/om300107s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
38
Kania R, Frederix PWJM, Wright JA, Ulijn RV, Pickett CJ, Hunt NT. Solution-phase photochemistry of a [FeFe]hydrogenase model compound: Evidence of photoinduced isomerisation. J Chem Phys 2012;136:044521. [DOI: 10.1063/1.3679387] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
39
Wright RJ, Zhang W, Yang X, Fasulo M, Tilley TD. Isolation, observation, and computational modeling of proposed intermediates in catalyticprotonreductions with the hydrogenase mimic Fe2(CO)6S2C6H4. Dalton Trans 2012;41:73-82. [DOI: 10.1039/c1dt11428j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
40
Frederix PWJM, Kania R, Wright JA, Lamprou DA, Ulijn RV, Pickett CJ, Hunt NT. Encapsulating [FeFe]-hydrogenase model compounds in peptide hydrogels dramatically modifies stability and photochemistry. Dalton Trans 2012;41:13112-9. [DOI: 10.1039/c2dt30307h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
41
Knörzer P, Silakov A, Foster CE, Armstrong FA, Lubitz W, Happe T. Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases. J Biol Chem 2011;287:1489-99. [PMID: 22110126 DOI: 10.1074/jbc.m111.305797] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
42
Jablonskytė A, Wright JA, Fairhurst SA, Peck JNT, Ibrahim SK, Oganesyan VS, Pickett CJ. Paramagnetic Bridging Hydrides of Relevance to Catalytic Hydrogen Evolution at Metallosulfur Centers. J Am Chem Soc 2011;133:18606-9. [DOI: 10.1021/ja2087536] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
43
Galinato MGI, Whaley CM, Roberts D, Wang P, Lehnert N. Favorable Protonation of the (μ-edt)[Fe(2)(PMe(3))(4)(CO)(2)(H-terminal)](+) Hydrogenase Model Complex Over Its Bridging μ-H Counterpart: A Spectroscopic and DFT Study. Eur J Inorg Chem 2011;2011:1147-1154. [PMID: 23162378 PMCID: PMC3498055 DOI: 10.1002/ejic.201001037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Indexed: 11/11/2022]
44
Liu C, Peck JNT, Wright JA, Pickett CJ, Hall MB. Density Functional Calculations on Protonation of the [FeFe]-Hydrogenase Model Complex Fe2(μ-pdt)(CO)4(PMe3)2 and Subsequent Isomerization Pathways. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001085] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
45
Wright JA, Webster L, Jablonskytė A, Woi PM, Ibrahim SK, Pickett CJ. Protonation of [FeFe]-hydrogenase sub-site analogues: revealing mechanism using FTIR stopped-flow techniques. Faraday Discuss 2011;148:359-71; discussion 421-41. [DOI: 10.1039/c004692b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
46
Kaziannis S, Wright JA, Candelaresi M, Kania R, Greetham GM, Parker AW, Pickett CJ, Hunt NT. The role of CN and CO ligands in the vibrational relaxation dynamics of model compounds of the [FeFe]-hydrogenase enzyme. Phys Chem Chem Phys 2011;13:10295-305. [DOI: 10.1039/c1cp20589g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
47
Olsen MT, Gray DL, Rauchfuss TB, Gioia LD, Zampella G. Stereochemistry of electrophilic attack at 34e− dimetallic complexes: the case of diiron dithiolato carbonyls + MeS+. Chem Commun (Camb) 2011;47:6554-6. [DOI: 10.1039/c1cc10858a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
48
Xiao Z, Wei Z, Long L, Wang Y, Evans DJ, Liu X. Diiron carbonyl complexes possessing a {Fe(ii)Fe(ii)} core: synthesis, characterisation, and electrochemical investigation. Dalton Trans 2011;40:4291-9. [DOI: 10.1039/c0dt01465f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
49
Roy S, Shinde S, Hamilton GA, Hartnett HE, Jones AK. Artificial [FeFe]-Hydrogenase: On Resin Modification of an Amino Acid to Anchor a Hexacarbonyldiiron Cluster in a Peptide Framework. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201000979] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
50
Aušra Jablonskytė, Wright JA, Pickett CJ. [FeFe]-Hydrogenase Models: Unexpected Variation in Protonation Rate between Dithiolate Bridge Analogues. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201001072] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA