1
|
Rajamohan R, Mohandoss S, Ashokkumar S, Choi EH, Madi F, Leila N, Lee YR. Water-soluble inclusion complexes for a novel anti-viral agent with low toxicity; Oseltamivir with the β-cyclodextrins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Rajamohan R, Murugan M, Anitha A, Lee YR, Madi F, Leila N, Viswalingam M. Interaction of chloroquine with 2-(hydroxypropyl)-β-cyclodextrin through the supramolecular assembly for cytotoxicity on breast cancer cell lines. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Rajamohan R, Mohandoss S, Ashokkumar S, Madi F, Leila N, Murugavel K, Lee YR. A novel and water-soluble material for coronavirus inactivation from oseltamivir in the cavity of methyl and sulfated-β-cyclodextrins through inclusion complexation. J Pharm Biomed Anal 2022; 221:115057. [PMID: 36126612 PMCID: PMC9476363 DOI: 10.1016/j.jpba.2022.115057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
A potentially active water-soluble anti-viral with lesser toxic material from the Oseltamivir (OTV) has been produced by the sonication method. The formed material has been further characterized by UV–visible, FT-IR, powder XRD, SEM, TGA/DTA, ROESY, XPS, AFM and etc., The results of DFT calculation have proven that inclusion complexes (ICs) are theoretically and energetically more advantageous models and structures have also been proposed based on the results. Analysis of drug release has been carried out at three pH levels, and it is revealed the analysis is most helpful at acidic pH levels for the ICs with S-CD over H-CD. Over OTV without CDs, OTV:S-CD-ICs exhibited a very less cytotoxic ability on cancer cell lines than ICs with M-CD. ICs enhanced the coronavirus inactivation nature of OTV. This study provides for the first time a full characterization of ICs of OTV with CDs and highlights the impact of complexation on pharmacological activity.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongson 38541, Republic of Korea.
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongson 38541, Republic of Korea
| | - Sekar Ashokkumar
- PBRC Research center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Fatiha Madi
- Laboratory of Computational Chemistry and Nanostructures, Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, University of 8 May 1945, Guelma, Algeria
| | - Neour Leila
- Laboratory of Computational Chemistry and Nanostructures, Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, University of 8 May 1945, Guelma, Algeria
| | - Kuppusamy Murugavel
- PG and Research Department of Chemistry, Government Arts College, Chidambaram 608102, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongson 38541, Republic of Korea.
| |
Collapse
|
4
|
Balbisi M, Horváth RA, Szőri M, Jedlovszky P. Computer simulation investigation of the adsorption of acetamide on low density amorphous ice. An astrochemical perspective. J Chem Phys 2022; 156:184703. [PMID: 35568547 DOI: 10.1063/5.0093561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The adsorption of acetamide on low density amorphous (LDA) ice is investigated by grand canonical Monte Carlo computer simulations at the temperatures 50, 100, and 200 K, characteristic of certain domains of the interstellar medium (ISM). We found that the relative importance of the acetamide-acetamide H-bonds with respect to the acetamide-water ones increases with decreasing temperature. Thus, with decreasing temperature, the existence of the stable monolayer, characterizing the adsorption at 200 K, is gradually replaced by the occurrence of marked multilayer adsorption, preceding even the saturation of the first layer at 50 K. While isolated acetamide molecules prefer to lay parallel to the ice surface to maximize their H-bonding with the surface water molecules, this orientational preference undergoes a marked change upon saturation of the first layer due to increasing competition of the adsorbed molecules for H-bonds with water and to the possibility of their H-bond formation with each other. As a result, molecules stay preferentially perpendicular to the ice surface in the saturated monolayer. The chemical potential value corresponding to the point of condensation is found to decrease linearly with increasing temperature. We provide, in analogy with the Clausius-Clapeyron equation, a thermodynamic explanation of this behavior and estimate the molar entropy of condensed phase acetamide to be 34.0 J/mol K. For the surface concentration of the saturated monolayer, we obtain the value 9.1 ± 0.8 µmol/m2, while the heat of adsorption at infinitely low surface coverage is estimated to be -67.8 ± 3.0 kJ/mol. Our results indicate that the interstellar formation of peptide chains through acetamide molecules, occurring at the surface of LDA ice, might well be a plausible process in the cold (i.e., below 50 K) domains of the ISM; however, it is a rather unlikely scenario in its higher temperature (i.e., 100-200 K) domains.
Collapse
Affiliation(s)
- Mirjam Balbisi
- Institute of Chemistry, Eötvös Loránd University, Pázmány P. stny. 1/A, H-1117 Budapest, Hungary
| | - Réka A Horváth
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest, Hungary
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka u. 6, H-3300 Eger, Hungary
| |
Collapse
|
5
|
Balbisi M, Horváth RA, Szőri M, Jedlovszky P. Adsorption of acetamide on crystalline and amorphous ice under atmospheric conditions. A grand canonical Monte Carlo simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Honti B, Szőri M, Jedlovszky P. Description of the Interfacial Behavior of Benzonitrile at Icy Surfaces by Grand Canonical Monte Carlo Simulations. J Phys Chem A 2022; 126:1221-1232. [PMID: 35168326 DOI: 10.1021/acs.jpca.1c10749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adsorption of benzonitrile at the surface of crystalline (Ih) and low-density amorphous (LDA) ice has been investigated by grand canonical Monte Carlo simulations at temperatures ranging from 50 to 200 K. It is found that, in spite of its rather large dipole moment of 4.5 D, benzonitrile molecules can only form a highly unsaturated monolayer on LDA ice, reaching not more than 50% of the surface concentration of the saturated monolayer even at the lowest temperature considered, and they practically do not adsorb on Ih ice. In spite of the observed weak ability of the benzonitrile molecules for being adsorbed, the estimated heat of adsorption at an infinitely low surface concentration of -66.8 ± 2.2 kJ/mol is rather large. This value includes the contribution of roughly -30 to -35 kJ/mol of a benzene ring, about -10 kJ/mol of a large molecular dipole moment, and about -20 to -25 kJ/mol of a benzonitrile-water H-bond, as estimated from comparisons with the heat of adsorption values of similar molecules. The surprisingly weak ability of benzonitrile for adsorption is thus attributed to the unusually strong cohesion between the molecules, considerably exceeding their adhesion to ice, as reflected in the 70-80 kJ/mol difference of the lateral and ice contributions to the binding energy of surface benzonitrile molecules in the presence of condensed benzonitrile.
Collapse
Affiliation(s)
- Barbara Honti
- Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka u. 6, H-3300 Eger, Hungary
| |
Collapse
|
7
|
Ranathunga DTS, Shamir A, Dai X, Nielsen SO. Molecular Dynamics Simulations of Water Condensation on Surfaces with Tunable Wettability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7383-7391. [PMID: 32498521 DOI: 10.1021/acs.langmuir.0c00915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Water condensation plays a major role in a wide range of industrial applications. Over the past few years, many studies have shown interest in designing surfaces with enhanced water condensation and removal properties. It is well known that heterogeneous nucleation outperforms homogeneous nucleation in the condensation process. Because heterogeneous nucleation initiates on a surface at a small scale, it is highly desirable to characterize water-surface interactions at the molecular level. Molecular dynamics (MD) simulations can provide direct insight into heterogeneous nucleation and advance surface designs. Existing MD simulations of water condensation on surfaces were conducted by tuning the solid-water van der Waals interaction energy as a substitute for modeling surfaces with different wettabilities. However, this approach cannot reflect the real intermolecular interactions between the surface and water molecules. Here, we report MD simulations of water condensation on realistic surfaces of alkanethiol self-assembled monolayers with different head group chemistries. We show that decreasing surface hydrophobicity significantly increases the electrostatic forces between water molecules and the surface, thus increasing the water condensation rate. We observe a strong correlation between our rate of condensation results and the results from other surface characterization metrics, such as the interfacial thermal conductance, contact angle, and the molecular-scale wettability metric of Garde and co-workers. This work provides insight into the water condensation process at the molecular scale on surfaces with tunable wettability.
Collapse
Affiliation(s)
- Dineli T S Ranathunga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Alexandra Shamir
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Xianming Dai
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
8
|
Ma J, Cahill DG, Miljkovic N. Condensation Induced Blistering as a Measurement Technique for the Adhesion Energy of Nanoscale Polymer Films. NANO LETTERS 2020; 20:3918-3924. [PMID: 32320258 DOI: 10.1021/acs.nanolett.0c01086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymeric coatings having micro-to-nanoscale thickness show immense promise for enhancing thermal transport, catalysis, energy conversion, and water collection. Characterizing the work of adhesion (G) between these coatings and their substrates is key to understanding transport physics as well as mechanical reliability. Here, we demonstrate that water vapor condensation blistering is capable of in situ measurement of work of adhesion at the interface of polymer thin films with micrometer spatial resolution. We use our method to characterize adhesion of interfaces with controlled chemistry such as fluorocarbon/fluorocarbon (CFn/CFm, n, m = 0-3), fluorocarbon/hydrocarbon (CFn/CHm), fluorocarbon/silica (CFn/SiO2), and hydrocarbon/silica (CHn/SiO2) interfaces showing excellent agreement with adhesion energy measured by the contact angle approach. We demonstrate the capability of our condensation blister test to achieve measurement spatial resolutions as low as 10 μm with uncertainties of ∼10%. The outcomes of this work establish a simple tool to study interfacial adhesion.
Collapse
Affiliation(s)
- Jingcheng Ma
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - David G Cahill
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Department of Material Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Luo M, Dommer AC, Schiffer JM, Rez DJ, Mitchell AR, Amaro RE, Grassian VH. Surfactant Charge Modulates Structure and Stability of Lipase-Embedded Monolayers at Marine-Relevant Aerosol Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9050-9060. [PMID: 31188612 DOI: 10.1021/acs.langmuir.9b00689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipases, as well as other enzymes, are present and active within the sea surface microlayer (SSML). Upon bubble bursting, lipases partition into sea spray aerosol (SSA) along with surface-active molecules such as lipids. Lipases are likely to be embedded in the lipid monolayer at the SSA surface and thus have the potential to influence SSA interfacial structure and chemistry. Elucidating the structure of the lipid monolayer at SSA interfaces and how this structure is altered upon interaction with a protein system like lipase is of interest, given the importance of how aerosols interact with sunlight, influence cloud formation, and provide surfaces for chemical reactions. Herein, we report an integrated experimental and computational study of Burkholderia cepacia lipase (BCL) embedded in a lipid monolayer and highlight the important role of electrostatic, rather than hydrophobic, interactions as a driver for monolayer stability. Specifically, we combine Langmuir film experiments and molecular dynamics (MD) simulations to examine the detailed interactions between the zwitterionic dipalmitoylphosphatidylcholine (DPPC) monolayer and BCL. Upon insertion of BCL from the underlying subphase into the lipid monolayer, it is shown that BCL permeates and largely disorders the monolayer while strongly interacting with zwitterionic DPPC molecules, as experimentally observed by Langmuir adsorption curves and infrared reflectance absorbance spectroscopy. Explicitly solvated, all-atom MD is then used to provide insights into inter- and intramolecular interactions that drive these observations, with specific attention to the formation of salt bridges or ionic-bonding interactions. We show that after insertion into the DPPC monolayer, lipase is maintained at high surface pressures and in large BCL concentrations by forming a salt-bridge-stabilized lipase-DPPC complex. In comparison, when embedded in an anionic monolayer at low surface pressures, BCL preferentially forms intramolecular salt bridges, reducing its total favorable interactions with the surfactant and partitioning out of the monolayer shortly after injection. Overall, this study shows that the structure and dynamics of lipase-embedded SSA surfaces vary based on surface charge and pressure and that these variations have the potential to differentially modulate the properties of marine aerosols.
Collapse
Affiliation(s)
- Man Luo
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Abigail C Dommer
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Jamie M Schiffer
- Janssen Pharmaceuticals , 3210 Merryfield Row , San Diego , California 92093 , United States
| | - Donald J Rez
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Andrew R Mitchell
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
- Scripps Institution of Oceanography , University of California , San Diego , California 92037 , United States
| |
Collapse
|
10
|
Kiss B, Picaud S, Szőri M, Jedlovszky P. Adsorption of Formamide at the Surface of Amorphous and Crystalline Ices under Interstellar and Tropospheric Conditions. A Grand Canonical Monte Carlo Simulation Study. J Phys Chem A 2019; 123:2935-2948. [PMID: 30839213 DOI: 10.1021/acs.jpca.9b00850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adsorption of formamide is studied both at the surface of crystalline (Ih) ice at 200 K and at the surface of low density amorphous (LDA) ice in the temperature range of 50-200 K by grand canonical Monte Carlo (GCMC) simulation. These systems are characteristic of the upper troposphere and of the interstellar medium (ISM), respectively. Our results reveal that while no considerable amount of formamide is dissolved in the bulk ice phase in any case, the adsorption of formamide at the ice surface under these conditions is a very strongly preferred process, which has to be taken into account when studying the chemical reactivity in these environments. The adsorption is found to lead to the formation of multimolecular adsorption layer, the occurrence of which somewhat precedes the saturation of the first molecular layer. Due to the strong lateral interaction acting between the adsorbed formamide molecules, the adsorption isotherm does not follow the Langmuir shape. Adsorption is found to be slightly stronger on LDA than Ih ice under identical thermodynamic conditions, due to the larger surface area exposed to the adsorption. Indeed, the monomolecular adsorption capacity of the LDA and Ih ice surfaces is found to be 10.5 ± 0.7 μmol/m2 and 9.4 μmol/m2, respectively. The first layer formamide molecules are very strongly bound to the ice surface, forming typically four hydrogen bonds with each other and the surface water molecules. The heat of adsorption at infinitely low surface coverage is found to be -105.6 kJ/mol on Ih ice at 200 K.
Collapse
Affiliation(s)
- Bálint Kiss
- Institute of Chemistry , University of Miskolc , Egyetemváros A/2 , H-3515 Miskolc , Hungary.,University of Lille, Faculty of Sciences and Technologies, LASIR (UMR CNRS 8516), 59655 Villeneuve d'Ascq , France
| | - Sylvain Picaud
- Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté, 16 Route de Gray , F-25030 Besançon , France
| | - Milán Szőri
- Institute of Chemistry , University of Miskolc , Egyetemváros A/2 , H-3515 Miskolc , Hungary
| | - Pál Jedlovszky
- Department of Chemistry , Eszterházy Károly University , Leányka u. 6 , H-3300 Eger , Hungary
| |
Collapse
|
11
|
Horváth RA, Hantal G, Picaud S, Szőri M, Jedlovszky P. Adsorption of Methylamine on Amorphous Ice under Interstellar Conditions. A Grand Canonical Monte Carlo Simulation Study. J Phys Chem A 2018. [PMID: 29537265 DOI: 10.1021/acs.jpca.8b01591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adsorption of methylamine at the surface of amorphous ice is studied at various temperatures, ranging from 20 to 200 K, by grand canonical Monte Carlo simulations under conditions that are characteristic to the interstellar medium (ISM). The results are also compared with those obtained earlier on crystalline ( Ih) ice. We found that methylamine has a strong ability of being adsorbed on amorphous ice, involving also multilayer adsorption. The decrease of the temperature leads to a substantial increase of this adsorption ability; thus, considerable adsorption is seen at 20-50 K even at bulk gas phase concentrations that are comparable with that of the ISM. Further, methylamine molecules can also be dissolved in the bulk amorphous ice phase. Both the adsorption capacity of amorphous ice and the strength of the adsorption on it are found to be clearly larger than those corresponding to crystalline ( Ih) ice, due to the molecular scale roughness of the amorphous ice surface as well as to the lack of clear orientational preferences of the water molecules at this surface. Thus, the surface density of the saturated adsorption monolayer is estimated to be 12.6 ± 0.4 μmol/m2, 20% larger than the value of 10.35 μmol/m2, obtained earlier for Ih ice, and at low enough surface coverages the adsorbed methylamine molecules are found to easily form up to three hydrogen bonds with the surface water molecules. The estimated heat of adsorption at infinitely low surface coverage is calculated to be -69 ± 5 kJ/mol, being rather close to the estimated heat of solvation in the bulk amorphous ice phase of -74 ± 7 kJ/mol, indicating that there are at least a few positions at the surface where the adsorbed methylamine molecules experience a bulk-like local environment.
Collapse
Affiliation(s)
- Réka A Horváth
- Apáczai Csere János School of the ELTE University , Papnövelde u. 4 , H-1053 Budapest , Hungary
| | - György Hantal
- Faculty of Physics , University of Vienna , Boltzmanngasse 5, A-1090 Vienna , Austria
| | - Sylvain Picaud
- Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté , 16 Route de Gray , F-25030 Besançon , France
| | - Milán Szőri
- Institute of Chemistry , University of Miskolc , Egyetemváros A/2 , H-3515 Miskolc , Hungary
| | - Pál Jedlovszky
- Department of Chemistry , Eszterházy Károly University , Leányka u. 6 , H-3300 Eger , Hungary
| |
Collapse
|
12
|
Igari T, Yamaguchi K. 2-Nitrobenzylcarbamate-bearing Alkylphosphonic Acid Derivative Forms Photodegradable Self-assembled Monolayer That Enables Fabrication of a Patterned Amine Surface. CHEM LETT 2017. [DOI: 10.1246/cl.170280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takuma Igari
- Department of Chemistry, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293
| | - Kazuo Yamaguchi
- Department of Chemistry, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293
- Research Institute for Photofunctionalized Materials, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293
| |
Collapse
|
13
|
Guo P, Tu Y, Yang J, Wang C, Sheng N, Fang H. Water-COOH Composite Structure with Enhanced Hydrophobicity Formed by Water Molecules Embedded into Carboxyl-Terminated Self-Assembled Monolayers. PHYSICAL REVIEW LETTERS 2015; 115:186101. [PMID: 26565476 DOI: 10.1103/physrevlett.115.186101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 06/05/2023]
Abstract
By combining molecular dynamics simulations and quantum mechanics calculations, we show the formation of a composite structure composed of embedded water molecules and the COOH matrix on carboxyl-terminated self-assembled monolayers (COOH SAMs) with appropriate packing densities. This composite structure with an integrated hydrogen bond network inside reduces the hydrogen bonds with the water above. This explains the seeming contradiction on the stability of the surface water on COOH SAMs observed in experiments. The existence of the composite structure at appropriate packing densities results in the two-step distribution of contact angles of water droplets on COOH SAMs, around 0° and 35°, which compares favorably to the experimental measurements of contact angles collected from forty research articles over the past 25 years. These findings provide a molecular-level understanding of water on surfaces (including surfaces on biomolecules) with hydrophilic functional groups.
Collapse
Affiliation(s)
- Pan Guo
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jinrong Yang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlei Wang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Nan Sheng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Haiping Fang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
14
|
Lin W, Clark AJ, Paesani F. Effects of surface pressure on the properties of Langmuir monolayers and interfacial water at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2147-2156. [PMID: 25642579 DOI: 10.1021/la504603s] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effects of surface pressure on the physical properties of Langmuir monolayers of palmitic acid (PA) and dipalmitoylphosphatidic acid (DPPA) at the air/water interface are investigated through molecular dynamics simulations with atomistic force fields. The structure and dynamics of both monolayers and interfacial water are compared across the range of surface pressures at which stable monolayers can form. For PA monolayers at T = 300 K, the untilted condensed phase with a hexagonal lattice structure is found at high surface pressure, while the uniformly tilted condensed phase with a centered rectangular lattice structure is observed at low surface pressure, in agreement with the available experimental data. A state with uniform chain tilt but no periodic spatial ordering is observed for DPPA monolayers on a Na(+)/water subphase at both high and low surface pressures. The hydrophobic acyl chains of both monolayers pack efficiently at all surface pressures, resulting in a very small number of gauche defects. The analysis of the hydrogen-bonding structure/dynamics at the monolayer/water interface indicates that water molecules hydrogen-bonded to the DPPA head groups reorient more slowly than those hydrogen-bonded to the PA head groups, with the orientational dynamics becoming significantly slower at high surface pressure. Possible implications for physicochemical processes taking place on marine aerosols in the atmosphere are discussed.
Collapse
Affiliation(s)
- Wei Lin
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | | | | |
Collapse
|
15
|
Nishino N, Hollingsworth SA, Stern AC, Roeselová M, Tobias DJ, Finlayson-Pitts BJ. Interactions of gaseous HNO3 and water with individual and mixed alkyl self-assembled monolayers at room temperature. Phys Chem Chem Phys 2014; 16:2358-67. [PMID: 24352159 PMCID: PMC4000124 DOI: 10.1039/c3cp54118e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major removal processes for gaseous nitric acid (HNO3) in the atmosphere are dry and wet deposition onto various surfaces. The surface in the boundary layer is often covered with organic films, but the interaction of gaseous HNO3 with them is not well understood. To better understand the factors controlling the uptake of gaseous nitric acid and its dissociation in organic films, studies were carried out using single component and mixtures of C8 and C18 alkyl self-assembled monolayers (SAMs) attached to a germanium (Ge) attenuated total reflectance (ATR) crystal upon which a thin layer of SiOx had been deposited. For comparison, diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) studies were also carried out using a C18 SAM attached to the native oxide layer on the surface of silicon powder. These studies show that the alkyl chain length and order/disorder of the SAMs does not significantly affect the uptake or dissociation/recombination of molecular HNO3. Thus, independent of the nature of the SAM, molecular HNO3 is observed up to 70-90% relative humidity. After dissociation, molecular HNO3 is regenerated on all SAM surfaces when water is removed. Results of molecular dynamics simulations are consistent with experiments and show that defects and pores on the surfaces control the uptake, dissociation and recombination of molecular HNO3. Organic films on surfaces in the boundary layer will certainly be more irregular and less ordered than SAMs studied here, therefore undissociated HNO3 may be present on surfaces in the boundary layer to a greater extent than previously thought. The combination of this observation with the results of recent studies showing enhanced photolysis of nitric acid on surfaces suggests that renoxification of deposited nitric acid may need to be taken into account in atmospheric models.
Collapse
Affiliation(s)
- Noriko Nishino
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | - Scott A. Hollingsworth
- Department of Molecular Biology and Biochemistry, University of California Irvine, CA, 92697-2025, USA
| | - Abraham C. Stern
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | - Martina Roeselová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Douglas J. Tobias
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | | |
Collapse
|
16
|
Kang B, Lee WH, Choi HH, Park YD, Cho K. Built-in water resistance in organic transistors modified with self-assembled monolayers. RSC Adv 2014. [DOI: 10.1039/c4ra07227h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We systematically investigated the effects of a self-assembled monolayer (SAM), prepared on the gate dielectric, on the performances of bottom-gate organic field-effect transistor (OFET) devices under various humid environments.
Collapse
Affiliation(s)
- Boseok Kang
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH) and Center for Advanced Soft Electronics (CASE)
- Pohang 790-784, Korea
| | - Wi Hyoung Lee
- Department of Organic and Nano System Engineering
- Konkuk University
- Seoul 143-701, Korea
| | - Hyun Ho Choi
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH) and Center for Advanced Soft Electronics (CASE)
- Pohang 790-784, Korea
| | - Yeong Don Park
- Department of Energy and Chemical Engineering
- Incheon National University
- Incheon 406-772, Korea
| | - Kilwon Cho
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH) and Center for Advanced Soft Electronics (CASE)
- Pohang 790-784, Korea
| |
Collapse
|
17
|
Darvas M, Picaud S, Jedlovszky P. Molecular dynamics simulations of the water adsorption around malonic acid aerosol models. Phys Chem Chem Phys 2013; 15:10942-51. [DOI: 10.1039/c3cp50608h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Pertsin A, Grunze M. Computer simulation of adhesion between hydrophilic and hydrophobic self-assembled monolayers in water. J Chem Phys 2012; 137:054701. [PMID: 22894365 DOI: 10.1063/1.4739745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The grand canonical Monte Carlo technique and atomistic force fields are used to calculate the force-distance relations and free energies of adhesion between carboxyl and methyl terminated alkanethiolate self-assembled monolayers (SAMs) in water. Both symmetric and asymmetric confinements are considered, as formed by like and unlike SAMs, respectively. As the confinement is increased, water confined by the hydrophobic methyl terminated SAMs experiences capillary evaporation. As a consequence, the adhesion energy is determined by the direct interaction between bare SAMs. In the asymmetric system, an incomplete capillary evaporation is observed, with the number of water molecules dropped by more than an order of magnitude. The remaining water molecules are all adsorbed on the hydrophilic SAM, while the hydrophobic SAM is separated from the rest of the system by a thin vapor layer. The calculated free energies of adhesion are in acceptable agreement with experiment.
Collapse
Affiliation(s)
- Alexander Pertsin
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| | | |
Collapse
|
19
|
Wang S, Tu Y, Wan R, Fang H. Evaporation of Tiny Water Aggregation on Solid Surfaces with Different Wetting Properties. J Phys Chem B 2012; 116:13863-7. [DOI: 10.1021/jp302142s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shen Wang
- Shanghai Institute of Applied
Physics, Chinese Academy of Sciences, P.O.
Box 800-204, Shanghai, 201800, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100080,
China
| | - Yusong Tu
- Institute of Systems
Biology, Shanghai University, Shanghai,
200444, China
| | - Rongzheng Wan
- Shanghai Institute of Applied
Physics, Chinese Academy of Sciences, P.O.
Box 800-204, Shanghai, 201800, China
| | - Haiping Fang
- Shanghai Institute of Applied
Physics, Chinese Academy of Sciences, P.O.
Box 800-204, Shanghai, 201800, China
| |
Collapse
|
20
|
Hung SW, Hsiao PY, Lu MC, Chieng CC. Thermodynamic Investigations Using Molecular Dynamics Simulations with Potential of Mean Force Calculations for Cardiotoxin Protein Adsorption on Mixed Self-Assembled Monolayers. J Phys Chem B 2012; 116:12661-8. [DOI: 10.1021/jp304695w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shih-Wei Hung
- Department of Engineering
and
System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pai-Yi Hsiao
- Department of Engineering
and
System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Chang Lu
- Department
of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Chang Chieng
- Department of Engineering
and
System Science, National Tsing Hua University, Hsinchu, Taiwan
- Department
of Mechanical and Biomedical
Engineering, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
21
|
James M, Ciampi S, Darwish TA, Hanley TL, Sylvester SO, Gooding JJ. Nanoscale water condensation on click-functionalized self-assembled monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10753-10762. [PMID: 21780835 DOI: 10.1021/la202359c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have examined the nanoscale adsorption of molecular water under ambient conditions onto a series of well-characterized functionalized surfaces produced by Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC or "click") reactions on alkyne-terminated self-assembled monolayers on silicon. Water contact angle (CA) measurements reveal a range of macroscopic hydrophilicity that does not correlate with the tendency of these surfaces to adsorb water at the molecular level. X-ray reflectometry has been used to follow the kinetics of water adsorption on these "click"-functionalized surfaces, and also shows that dense continuous molecular water layers are formed over 30 h. For example, a highly hydrophilic surface, functionalized by an oligo(ethylene glycol) moiety (with a CA = 34°) showed 2.9 Å of adsorbed water after 30 h, while the almost hydrophobic underlying alkyne-terminated monolayer (CA = 84°) showed 5.6 Å of adsorbed water over the same period. While this study highlights the capacity of X-ray reflectometry to study the structure of adsorbed water on these surfaces, it should also serve as a warning for those intending to characterize self-assembled monolayers and functionalized surfaces to avoid contamination by even trace amounts of water vapor. Moreover, contact angle measurements alone cannot be relied upon to predict the likely degree of moisture uptake on such surfaces.
Collapse
Affiliation(s)
- Michael James
- Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC NSW 2232, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Xu Z, Song K, Yuan SL, Liu CB. Microscopic wetting of self-assembled monolayers with different surfaces: a combined molecular dynamics and quantum mechanics study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8611-8620. [PMID: 21639099 DOI: 10.1021/la201328y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Molecular dynamics simulations are used to study the micronature of the organization of water molecules on the flat surface of well-ordered self-assembled monolayers (SAMs) of 18-carbon alkanethiolate chains bound to a silicon (111) substrate. Six different headgroups (-CH(3), -C═C, -OCH(3), -CN, -NH(2), -COOH) are used to tune the character of the surface from hydrophobic to hydrophilic, while the level of hydration is consistent on all six SAM surfaces. Quantum mechanics calculations are employed to optimize each alkyl chain of the different SAMs with one water molecule and to investigate changes in the configuration of each headgroup under hydration. We report the changes of the structure of the six SAMs with different surfaces in the presence of water, and the area of the wetted surface of each SAM, depending on the terminal group. Our results suggest that a corrugated and hydrophobic surface will be formed if the headgroups of SAM surface are not able to form H-bonds either with water molecules or between adjacent groups. In contrast, the formation of hydrogen bonds not only among polar heads but also between polar heads and water may enhance the SAM surface hydrophilicity and corrugation. We explicitly discuss the micromechanisms for the hydration of three hydrophilic SAM (CN-, NH(2)- and COOH-terminated) surfaces, which is helpful to superhydrophilic surface design of SAM in biomimetic materials.
Collapse
Affiliation(s)
- Zhen Xu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
23
|
Knopf DA, Forrester SM, Slade JH. Heterogeneous oxidation kinetics of organic biomass burning aerosol surrogates by O3, NO2, N2O5, and NO3. Phys Chem Chem Phys 2011; 13:21050-62. [DOI: 10.1039/c1cp22478f] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Petitjean M, Hantal G, Chauvin C, Mirabel P, Le Calvé S, Hoang PNM, Picaud S, Jedlovszky P. Adsorption of benzaldehyde at the surface of ice, studied by experimental method and computer simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9596-9606. [PMID: 20329716 DOI: 10.1021/la100169h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Adsorption study of benzaldehyde on ice surfaces is performed by combining experimental and theoretical approaches. The experiments are conducted over the temperature range 233-253 K using a coated wall flow tube coupled to a mass spectrometric detector. Besides the experimental way, the adsorption isotherm is also determined by performing a set of grand canonical Monte Carlo simulations at 233 K. The experimental and calculated adsorption isotherms show a very good agreement within the corresponding errors. Besides, both experimental and theoretical studies permit us to derive the enthalpy of adsorption of benzaldehyde on ice surfaces DeltaH(ads), which are in excellent agreement: DeltaH(ads) = -61.4 +/- 9.7 kJ/mol (experimental) and DeltaH(ads) = -59.4 +/- 5.1 kJ/mol (simulation). The obtained results indicate a much stronger ability of benzaldehyde of being adsorbed at the surface of ice than that of small aliphatic aldehydes, such as formaldehyde or acetaldehyde. At low surface coverages the adsorbed molecules exclusively lie parallel with the ice surface. With increasing surface coverage, however, the increasing competition of the adsorbed molecules for the surface area to be occupied leads to the appearance of two different perpendicular orientations relative to the surface. In the first orientation, the benzaldehyde molecule turns its aldehyde group toward the ice phase, and, similarly to the molecules in the lying orientation, forms a hydrogen bond with a surface water molecule. In the other perpendicular orientation the aldehyde group turns to the vapor phase, and its O atom interacts with the delocalized pi system of the benzene ring of a nearby lying benzaldehyde molecule of the second molecular layer. In accordance with this observed scenario, the saturated adsorption layer, being stable in a roughly 1 kJ/mol broad range of chemical potentials, contains, besides the first molecular layer, also traces of the second molecular layer of adsorbed benzaldehyde.
Collapse
Affiliation(s)
- Mélanie Petitjean
- Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse (LMSPC, UMR 7515 CNRS/UdS), 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | | | | | | | | | | | | | | |
Collapse
|