1
|
Xu R, Li S, Yu SX, Liu YJ, Xie W, Zhan Q, Zhao Z, Li X. Flow-induced fabrication of ZnO nanostructures in pillar-arrayed microchannels. LAB ON A CHIP 2024; 24:3973-3984. [PMID: 39027967 DOI: 10.1039/d4lc00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The emergence of microfluidic devices integrated with nanostructures enables highly efficient, flexible and controllable biosensing, among which zinc oxide (ZnO) nanostructure-based fluorescence detection has been demonstrated to be a promising methodology due to its high electrical point and unique fluorescence enhancement properties. The optimization of microfluidic synthesis of ZnO nanostructures for biosensing on chip has been in demand due to its low cost and high efficiency, but still the flow-induced growth of ZnO nanostructures is not extensively studied. Here, we report a simple and versatile strategy that could manipulate the local flow field by creating periodically arranged micropillars within a straight microchannel. We have explored the effects of perfusion speed and flow direction of seed solution, localized flow variation of growth solution and growth time on the morphology of nanostructures. This provided a comprehensive understanding which governs nanostructure fabrication controlled by flow. The results demonstrated that localized flow in microfluidic devices was essential for the initiation and growth of zinc oxide crystals, enabling precise control over their properties and morphology. Furthermore, a model protein was used to demonstrate the intrinsic fluorescence enhancement of ZnO nanostructures as an example to reveal the morphology-related enhancement properties.
Collapse
Affiliation(s)
- Ruyi Xu
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Siyu Li
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Sai-Xi Yu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Xie
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Qingfeng Zhan
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Zhenjie Zhao
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Xin Li
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
2
|
Diao Z, Wang X, Zhang J, Ge A, Xu T, Kan L, Li Y, Ji Y, Jing X, Xu J, Ma B. Optical-based microbubble for on-demand droplet release from static droplet array (SDA) for dispensing one droplet into one tube. Biosens Bioelectron 2023; 240:115639. [PMID: 37660461 DOI: 10.1016/j.bios.2023.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Static droplet array (SDA) is a pivotal tool for high-capacity screening assays, yet extraction and collection the target droplets that contain unique analytes or cells from the SDA remains one major technical bottleneck that limits its broader application. Here we present an optical-based on-demand droplet release (OODR) system by incorporating a 1064 nm laser-responsive indium tin oxide (ITO) layer into a chamber array-based droplet microfluidic chip. By focusing the 1064 nm laser onto the ITO layer, microbubbles can be created via local heating to selectively push-out the droplets from the chamber. Then the released droplet is readily exported in a one-droplet-one-tube (ODOT) manner by the inherent capillary force into pipette tip. Releasing of the droplets containing fluorescein sodium demonstrated ∼100% successful rate (9 out of 6400 droplets were successfully released) and low residual (only ∼5% of the droplet volume remains in the chamber). White or fluorescence image-based releasing of single-cell-droplets directly after cell loading or multi-cells-droplets derived from on-chip single-cell cultivation for both E. coli and yeast cells further demonstrated the wide applicability of OODR. The present system is user-friendly and has the potential to be applied in various high-throughput screening assays, including single molecule/cell analysis, drug screening, and phenotype-based cell sorting.
Collapse
Affiliation(s)
- Zhidian Diao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xixian Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Jiaping Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Anle Ge
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Lingyan Kan
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Yuandong Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; Qingdao Single-Cell Biotech., Co., Ltd., Qingdao, China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China.
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China.
| |
Collapse
|
3
|
Agnihotri SN, Ugolini GS, Sullivan MR, Yang Y, De Ganzó A, Lim JW, Konry T. Droplet microfluidics for functional temporal analysis and cell recovery on demand using microvalves: application in immunotherapies for cancer. LAB ON A CHIP 2022; 22:3258-3267. [PMID: 35904070 PMCID: PMC9535857 DOI: 10.1039/d2lc00435f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Most common methods of cellular analysis employ the top-down approach (investigating proteomics or genomics directly), thereby destroying the cell, which does not allow the possibility of using the same cell to correlate genomics with functional assays. Herein we describe an approach for single-cell tools that serve as a bottom-up approach. Our technology allows functional phenotyping to be conducted by observing the cytotoxicity of cells and then probe the underlying biology. We have developed a droplet microfluidic device capable of trapping droplets in the array and releasing the droplet of interest selectively using microvalves. Each droplet in the array encapsulates natural killer cells (NK cells) and tumour cells for real-time monitoring of burst kinetics and spatial coordination during killing by single NK cells. Finally, we use the microvalve actuation to selectively release droplets with the desired functional phenotype such as for fast and serial killing of target tumour cells by NK cells. From this perspective, our device allows for investigating first interactions and real-time monitoring of kinetics and later cell recovery on demand for single-cell omic analysis such as single-cell RNA sequencing (scRNA), which to date, is primarily based on in-depth analyses of the entire transcriptome of a relatively low number of cells.
Collapse
Affiliation(s)
- Sagar N Agnihotri
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Giovanni Stefano Ugolini
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Matthew Ryan Sullivan
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Yichao Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Agustin De Ganzó
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Ji Won Lim
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Tania Konry
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Zhang Y, Huang Z, Cai Z, Ye Y, Li Z, Qin F, Xiao J, Zhang D, Guo Q, Song Y, Yang J. Magnetic-actuated "capillary container" for versatile three-dimensional fluid interface manipulation. SCIENCE ADVANCES 2021; 7:7/34/eabi7498. [PMID: 34407930 PMCID: PMC8373135 DOI: 10.1126/sciadv.abi7498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 06/01/2023]
Abstract
Fluid interfaces are omnipresent in nature. Engineering the fluid interface is essential to study interfacial processes for basic research and industrial applications. However, it remains challenging to precisely control the fluid interface because of its fluidity and instability. Here, we proposed a magnetic-actuated "capillary container" to realize three-dimensional (3D) fluid interface creation and programmable dynamic manipulation. By wettability modification, 3D fluid interfaces with predesigned sizes and geometries can be constructed in air, water, and oils. Multiple motion modes were realized by adjusting the container's structure and magnetic field. Besides, we demonstrated its feasibility in various fluids by performing selective fluid collection and chemical reaction manipulations. The container can also be encapsulated with an interfacial gelation reaction. Using this process, diverse free-standing 3D membranes were produced, and the dynamic release of riboflavin (vitamin B2) was studied. This versatile capillary container will provide a promising platform for open microfluidics, interfacial chemistry, and biomedical engineering.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Zhandong Huang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada.
| | - Zheren Cai
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuqing Ye
- School of Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Zheng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feifei Qin
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8092, Switzerland
| | - Junfeng Xiao
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Dongxing Zhang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, P. R. China
| | - Qiuquan Guo
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
| | - Jun Yang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada.
| |
Collapse
|
5
|
Han SH, Kim J, Lee D. Static array of droplets and on-demand recovery for biological assays. BIOMICROFLUIDICS 2020; 14:051302. [PMID: 32952764 PMCID: PMC7494362 DOI: 10.1063/5.0022383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/24/2020] [Indexed: 05/28/2023]
Abstract
Microfluidics has revolutionized several research areas by providing compact yet powerful microanalytical devices that in many cases outperform conventional systems. Among different microfluidics technologies, droplet microfluidics has emerged as a powerful platform to enable analyses of biological samples and phenomena because of its simplicity and versatility. Droplet microfluidics enables high-throughput encapsulation, manipulation, and analysis of single cells while drastically reducing the cost and time required by conventional technologies. For many of these microanalysis systems, manipulation of individual droplets is extremely important as it enables multiplexed high dimensional phenotyping of the targets, going beyond surface phenotyping. One of the key manipulation steps that needs to be implemented with high precision is enabling long-term observation of droplets and recovery of a subset of these droplets for further analysis. This Perspective highlights the recent advances and provides an outlook on future developments that will enable highly complex analyses of biological samples.
Collapse
Affiliation(s)
- Syung Hun Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
6
|
Wu J, Xia H, Wang W, Foo Y, Wang Z, Du H. A droplet platform capable of handling dissimilar liquids and its application for separation of bacteria from blood. BIOMICROFLUIDICS 2020; 14:034102. [PMID: 32454926 PMCID: PMC7211087 DOI: 10.1063/5.0006111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
For passive droplet generation, multiple parameters such as the fluid viscosities and flow rates of the continuous and discrete phases correlate to each other, raising relevant control difficulties. In the current study, a droplet platform that is capable of handling dissimilar liquids is proposed. Through combining oscillatory flow and electric charge, synchronized generation and forced coalescence of different droplets can be achieved. Its application for the separation of E. coli from blood is tested, which leads to a high capture efficiency with less sample and within a shorter time than usual.
Collapse
Affiliation(s)
- Jiawei Wu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
| | - Huanming Xia
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, 73 Nanyang drive, Singapore 637662
| | - Yuhao Foo
- Singapore Institute of Manufacturing Technology, 73 Nanyang drive, Singapore 637662
| | - Zhiping Wang
- Singapore Institute of Manufacturing Technology, 73 Nanyang drive, Singapore 637662
| | - Hejun Du
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
7
|
Han SH, Choi Y, Kim J, Lee D. Photoactivated Selective Release of Droplets from Microwell Arrays. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3936-3944. [PMID: 31912738 PMCID: PMC7207024 DOI: 10.1021/acsami.9b17575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Droplet microfluidics has enabled a significant reduction in reaction volume and analysis time, which in turn has led to transformative advances in high-capacity screening and assays. By arranging droplets into a static array, it is possible to monitor dynamic events that occur within these microchambers over an extended period of time, facilitating the identification of rare events and cell types. In many instances, it is highly desirable to recover a small number of droplets that contain unique analytes or cells for further analyses; however, few techniques allow for selective recovery of droplets from such an array without using a complex network of physical valves, which also require a large number of control units external to the microfluidic device. In this report, we present photoactivated selective release of droplets from a static microwell array enabled by a photoresponsive polymer layer integrated into the microfluidic device. This photoresponsive layer is placed in between a microwell array that traps a large number of droplets and a PDMS slab with or without a top flow channel that can be used for recovery. By using focused light, the photoresponsive layer can either be punctured for release-up recovery or induced to create a bubble by local heating to selectively push-down release droplets. We show that the photoresponsive layer is optically transparent within the visible spectrum and thus does not interfere with optical observation of droplets. The type of photoacoustic dye and the physical properties of the photoresponsive layer can be engineered to induce either puncture of the photoresponsive layer or pushing of droplets out of the microwell arrays with low thermal impact on the droplets. We believe that the photoresponsive layer will have a broad impact in the field of soft lithography-based microfluidic devices for various applications including photoresponsive valves as well as high-throughput single-cell sequencing.
Collapse
Affiliation(s)
- Syung Hun Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yongwon Choi
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Authors (J.K.)., (D.L.)
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Authors (J.K.)., (D.L.)
| |
Collapse
|
8
|
Sun D, Cao F, Xu W, Chen Q, Shi W, Xu S. Ultrasensitive and Simultaneous Detection of Two Cytokines Secreted by Single Cell in Microfluidic Droplets via Magnetic-Field Amplified SERS. Anal Chem 2019; 91:2551-2558. [DOI: 10.1021/acs.analchem.8b05892] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dan Sun
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, PR China
| | - Fanghao Cao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, PR China
- School of Chemical Engineering and New Energy Materials, Zhuhai College, Jilin University, Zhuhai 519041, PR China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, PR China
| | - Qidan Chen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, PR China
- School of Chemical Engineering and New Energy Materials, Zhuhai College, Jilin University, Zhuhai 519041, PR China
| | - Wei Shi
- Key Lab for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130012, PR China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, PR China
| |
Collapse
|
9
|
Rambach RW, Biswas P, Yadav A, Garstecki P, Franke T. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles. Analyst 2018; 143:843-849. [PMID: 29234760 DOI: 10.1039/c7an01100h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The selective manipulation and incubation of individual picoliter drops in high-throughput droplet based microfluidic devices still remains challenging. We used a surface acoustic wave (SAW) to induce a bubble in a 3D designed multi-trap polydimethylsiloxane (PDMS) device to manipulate multiple droplets and demonstrate the selection, incubation and on-demand release of aqueous droplets from a continuous oil flow. By controlling the position of the acoustic actuation, individual droplets are addressed and selectively released from a droplet stream of 460 drops per s. A complete trapping and releasing cycle can be as short as 70 ms and has no upper limit for incubation time. We characterize the fluidic function of the hybrid device in terms of electric power, pulse duration and acoustic path.
Collapse
Affiliation(s)
- Richard W Rambach
- Soft Matter and Biological Physics Group, Universität Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | | | | | | | | |
Collapse
|
10
|
Dhar P. Thermofluidic Transport in Droplets under Electromagnetic Stimulus: A Comprehensive Review. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0088-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Rambach RW, Linder K, Heymann M, Franke T. Droplet trapping and fast acoustic release in a multi-height device with steady-state flow. LAB ON A CHIP 2017; 17:3422-3430. [PMID: 28792054 DOI: 10.1039/c7lc00378a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We demonstrate a novel multilayer polydimethylsiloxane (PDMS) device for selective storage and release of single emulsion droplets. Drops are captured in a microchannel cavity and can be released on-demand through a triggered surface acoustic wave pulse. The surface acoustic wave (SAW) is excited by a tapered interdigital transducer (TIDT) deposited on a piezoelectric lithium niobate (LiNbO3) substrate and inverts the pressure difference across the cavity trap to push a drop out of the trap and back into the main flow channel. Droplet capture and release does not require a flow rate change, flow interruption, flow inversion or valve action and can be achieved in as fast as 20 ms. This allows both on-demand droplet capture for analysis and monitoring over arbitrary time scales, and continuous device operation with a high droplet rate of 620 drops per s. We hence decouple long-term droplet interrogation from other operations on the chip. This will ease integration with other microfluidic droplet operations and functional components.
Collapse
Affiliation(s)
- Richard W Rambach
- Soft Matter and Biological Physics Group, Universität Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | | | | | | |
Collapse
|
12
|
Ding Y, Choo J, deMello AJ. From single-molecule detection to next-generation sequencing: microfluidic droplets for high-throughput nucleic acid analysis. MICROFLUIDICS AND NANOFLUIDICS 2017; 21:58. [PMID: 32214953 PMCID: PMC7087872 DOI: 10.1007/s10404-017-1889-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/22/2017] [Indexed: 05/27/2023]
Abstract
Droplet-based microfluidic technologies have proved themselves to be of significant utility in the performance of high-throughput chemical and biological experiments. By encapsulating and isolating reagents within femtoliter-nanoliter droplet, millions of (bio) chemical reactions can be processed in a parallel fashion and on ultra-short timescales. Recent applications of such technologies to genetic analysis have suggested significant utility in low-cost, efficient and rapid workflows for DNA amplification, rare mutation detection, antibody screening and next-generation sequencing. To this end, we describe and highlight some of the most interesting recent developments and applications of droplet-based microfluidics in the broad area of nucleic acid analysis. In addition, we also present a cursory description of some of the most essential functional components, which allow the creation of integrated and complex workflows based on flowing streams of droplets.
Collapse
Affiliation(s)
- Yun Ding
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland
| | - Jaebum Choo
- Department of Bionano Technology, Hanyang University, Ansan, 15588 Republic of Korea
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Jung JH, Destgeer G, Park J, Ahmed H, Park K, Sung HJ. On-Demand Droplet Capture and Release Using Microwell-Assisted Surface Acoustic Waves. Anal Chem 2017; 89:2211-2215. [DOI: 10.1021/acs.analchem.6b04542] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jin Ho Jung
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Ghulam Destgeer
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Jinsoo Park
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Husnain Ahmed
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Kwangseok Park
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| | - Hyung Jin Sung
- Department of Mechanical
Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
14
|
Jeong HH, Lee B, Jin SH, Jeong SG, Lee CS. A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution. LAB ON A CHIP 2016; 16:1698-707. [PMID: 27075732 DOI: 10.1039/c6lc00212a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Droplet-based microfluidics enabling exquisite liquid-handling has been developed for diagnosis, drug discovery and quantitative biology. Compartmentalization of samples into a large number of tiny droplets is a great approach to perform multiplex assays and to improve reliability and accuracy using a limited volume of samples. Despite significant advances in microfluidic technology, individual droplet handling in pico-volume resolution is still a challenge in obtaining more efficient and varying multiplex assays. We present a highly addressable static droplet array (SDA) enabling individual digital manipulation of a single droplet using a microvalve system. In a conventional single-layer microvalve system, the number of microvalves required is dictated by the number of operation objects; thus, individual trap-and-release on a large-scale 2D array format is highly challenging. By integrating double-layer microvalves, we achieve a "balloon" valve that preserves the pressure-on state under released pressure; this valve can allow the selective releasing and trapping of 7200 multiplexed pico-droplets using only 1 μL of sample without volume loss. This selectivity and addressability completely arranged only single-cell encapsulated droplets from a mixture of droplet compositions via repetitive selective trapping and releasing. Thus, it will be useful for efficient handling of miniscule volumes of rare or clinical samples in multiplex or combinatory assays, and the selective collection of samples.
Collapse
Affiliation(s)
- Heon-Ho Jeong
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Byungjin Lee
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Si Hyung Jin
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Seong-Geun Jeong
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Chang-Soo Lee
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
15
|
Ahn MM, Im DJ, Yoo BS, Kang IS. Characterization of electrode alignment for optimal droplet charging and actuation in droplet-based microfluidic system. Electrophoresis 2015; 36:2086-93. [DOI: 10.1002/elps.201500141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Myung Mo Ahn
- Department of Chemical Engineering; Pohang University of Science and Technology; Pohang South Korea
| | - Do Jin Im
- Department of Chemical Engineering; Pukyong National University; Nam-Gu. Busan South Korea
| | - Byeong Sun Yoo
- Department of Chemical Engineering; Pohang University of Science and Technology; Pohang South Korea
| | - In Seok Kang
- Department of Chemical Engineering; Pohang University of Science and Technology; Pohang South Korea
| |
Collapse
|
16
|
Im DJ, Jeong SN, Yoo BS, Kim B, Kim DP, Jeong WJ, Kang IS. Digital Microfluidic Approach for Efficient Electroporation with High Productivity: Transgene Expression of Microalgae without Cell Wall Removal. Anal Chem 2015; 87:6592-9. [DOI: 10.1021/acs.analchem.5b00725] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Do Jin Im
- Department
of Chemical Engineering, Pukyong National University, 365 Sinseon-ro, Nam-gu, Busan 608-739, South Korea
| | | | | | | | | | - Won-Joong Jeong
- Sustainable Bioresource
Research Center, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), 125 Gawhak-ro, Yuseong-gu, DaeJeon 305-806, South Korea
| | | |
Collapse
|
17
|
|
18
|
Miralles V, Huerre A, Williams H, Fournié B, Jullien MC. A versatile technology for droplet-based microfluidics: thermomechanical actuation. LAB ON A CHIP 2015; 15:2133-9. [PMID: 25849442 DOI: 10.1039/c5lc00110b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report on a versatile technique for microfluidic droplet manipulation that proves effective at every step: from droplet generation to propulsion to sorting, rearrangement or break-up. Non-wetting droplets are thermomechanically actuated in a microfluidic chip using local heating resistors. Controlled temperature variation induces local dilation of the PDMS wall above the resistor, which drives the droplet away from the hot (i.e. constricted) region (B. Selva, I. Cantat and M.-C. Jullien, Phys. Fluids, 2011, 23, 052002). Adapted placing and actuation of such resistors thus allow us to push forward, stop, store and release, or even break up droplets, at the price of low electric power consumption (<150 mW). We believe this technically accessible method to provide a useful tool for droplet microfluidics.
Collapse
Affiliation(s)
- Vincent Miralles
- MMN, UMR CNRS Gulliver 7083, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, Paris 75005, France.
| | | | | | | | | |
Collapse
|
19
|
Mhatre S, Vivacqua V, Ghadiri M, Abdullah A, Al-Marri M, Hassanpour A, Hewakandamby B, Azzopardi B, Kermani B. Electrostatic phase separation: A review. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.02.012] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Stationary nanoliter droplet array with a substrate of choice for single adherent/nonadherent cell incubation and analysis. Proc Natl Acad Sci U S A 2014; 111:11293-8. [PMID: 25053808 DOI: 10.1073/pnas.1404472111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microfluidic water-in-oil droplets that serve as separate, chemically isolated compartments can be applied for single-cell analysis; however, to investigate encapsulated cells effectively over prolonged time periods, an array of droplets must remain stationary on a versatile substrate for optimal cell compatibility. We present here a platform of unique geometry and substrate versatility that generates a stationary nanodroplet array by using wells branching off a main microfluidic channel. These droplets are confined by multiple sides of a nanowell and are in direct contact with a biocompatible substrate of choice. The device is operated by a unique and reversed loading procedure that eliminates the need for fine pressure control or external tubing. Fluorocarbon oil isolates the droplets and provides soluble oxygen for the cells. By using this approach, the metabolic activity of single adherent cells was monitored continuously over time, and the concentration of viable pathogens in blood-derived samples was determined directly by measuring the number of colony-formed droplets. The method is simple to operate, requires a few microliters of reagent volume, is portable, is reusable, and allows for cell retrieval. This technology may be particularly useful for multiplexed assays for which prolonged and simultaneous visual inspection of many isolated single adherent or nonadherent cells is required.
Collapse
|
21
|
Wang X, Liu Y, Zhang Y. Velocity Difference of Aqueous Drop Bouncing Between Parallel Electrodes. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2014.938161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Jeong HH, Noh YM, Jang SC, Lee CS. Droplet-based Microfluidic Device for High-throughput Screening. KOREAN CHEMICAL ENGINEERING RESEARCH 2014. [DOI: 10.9713/kcer.2014.52.2.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
de Ruiter R, Pit AM, de Oliveira VM, Duits MHG, van den Ende D, Mugele F. Electrostatic potential wells for on-demand drop manipulation in microchannels. LAB ON A CHIP 2014; 14:883-91. [PMID: 24394887 DOI: 10.1039/c3lc51121a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Precise control and manipulation of individual drops are crucial in many lab-on-a-chip applications. We present a novel hybrid concept for channel-based discrete microfluidics with integrated electrowetting functionality by incorporating co-planar electrodes (separated by a narrow gap) in one of the microchannel walls. By combining the high throughput of channel-based microfluidics with the individual drop control achieved using electrical actuation, we acquire the strengths of both worlds. The tunable strength of the electrostatic forces enables a wide range of drop manipulations, such as on-demand trapping and release, guiding, and sorting of drops in the microchannel. In each of these scenarios, the retaining electrostatic force competes with the hydrodynamic drag force. The conditions for trapping can be predicted using a simple model that balances these forces.
Collapse
Affiliation(s)
- Riëlle de Ruiter
- Physics of Complex Fluids and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Zheng XT, Yu L, Li P, Dong H, Wang Y, Liu Y, Li CM. On-chip investigation of cell-drug interactions. Adv Drug Deliv Rev 2013; 65:1556-74. [PMID: 23428898 DOI: 10.1016/j.addr.2013.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/23/2013] [Accepted: 02/06/2013] [Indexed: 12/17/2022]
Abstract
Investigation of cell-drug interaction is of great importance in drug discovery but continues to pose significant challenges to develop robust, fast and high-throughput methods for pharmacologically profiling of potential drugs. Recently, cell chips have emerged as a promising technology for drug discovery/delivery, and their miniaturization and flow-through operation significantly reduce sample consumption while dramatically improving the throughput, reliability, resolution and sensitivity. Herein we review various types of miniaturized cell chips used in investigation of cell-drug interactions. The design and fabrication of cell chips including material selection, surface modification, cell trapping/patterning, concentration gradient generation and mimicking of in vivo environment are presented. Recent advances of on-chip investigations of cell-drug interactions, in particular the high-throughput screening, cell sorting, cytotoxicity testing, drug resistance analysis and pharmacological profiling are examined and discussed. It is expected that this survey can provide thoughtful basics and important applications of on-chip investigations of cell-drug interactions, thus greatly promoting research and development interests in this area.
Collapse
|
25
|
Churski K, Nowacki M, Korczyk PM, Garstecki P. Simple modular systems for generation of droplets on demand. LAB ON A CHIP 2013; 13:3689-97. [PMID: 23868204 DOI: 10.1039/c3lc50340b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This report provides practical guidelines for the use of inexpensive electromagnetic valves characterized by large dead volumes (tens to hundreds of μL) for the generation of small (nL) droplets on demand in microfluidic chips. We analyze the role of the ratio of resistances and of the elastic capacitance of the fluidic connectors between the reservoir of the liquid, the valve and the microfluidic chip in the reliable and precise formation of micro droplets on demand. We also demonstrate and examine the use of conventional electromagnetic squeeze valves in the generation of small droplets on demand with a similar set of design rules.
Collapse
Affiliation(s)
- Krzysztof Churski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
26
|
Yu L, Ng SR, Xu Y, Dong H, Wang YJ, Li CM. Advances of lab-on-a-chip in isolation, detection and post-processing of circulating tumour cells. LAB ON A CHIP 2013; 13:3163-82. [PMID: 23771017 DOI: 10.1039/c3lc00052d] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Circulating tumour cells (CTCs) are shed by primary tumours and are found in the peripheral blood of patients with metastatic cancers. Recent studies have shown that the number of CTCs corresponds with disease severity and prognosis. Therefore, detection and further functional analysis of CTCs are important for biomedical science, early diagnosis of cancer metastasis and tracking treatment efficacy in cancer patients, especially in point-of-care applications. Over the last few years, there has been an increasing shift towards not only capturing and detecting these rare cells, but also ensuring their viability for post-processing, such as cell culture and genetic analysis. High throughput lab-on-a-chip (LOC) has been fuelled up to process and analyse heterogeneous real patient samples while gaining profound insights for cancer biology. In this review, we highlight how miniaturisation strategies together with nanotechnologies have been used to advance LOC for capturing, separating, enriching and detecting different CTCs efficiently, while meeting the challenges of cell viability, high throughput multiplex or single-cell detection and post-processing. We begin this survey with an introduction to CTC biology, followed by description of the use of various materials, microstructures and nanostructures for design of LOC to achieve miniaturisation, as well as how various CTC capture or separation strategies can enhance cell capture and enrichment efficiencies, purity and viability. The significant progress of various nanotechnologies-based detection techniques to achieve high sensitivities and low detection limits for viable CTCs and/or to enable CTC post-processing are presented and the fundamental insights are also discussed. Finally, the challenges and perspectives of the technologies are enumerated.
Collapse
Affiliation(s)
- Ling Yu
- Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, China
| | | | | | | | | | | |
Collapse
|
27
|
Kadivar E, Herminghaus S, Brinkmann M. Droplet sorting in a loop of flat microfluidic channels. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:285102. [PMID: 23751984 DOI: 10.1088/0953-8984/25/28/285102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Motivated by recent experiments, we numerically study the droplet traffic in microfluidic channels forming an asymmetric loop with a long and a short arm. The loop is connected to an inlet and an outlet channel by two right angled T-junctions. Assuming flat channels, we employ the boundary element method (BEM) to numerically solve the two-dimensional Darcy equation that governs two phase flow in the Hele-Shaw limit. The occurrence of different sorting regimes is summarized in sorting diagrams in terms of droplet size, distance between consecutive droplets in the inlet channel, and loop asymmetry for mobility ratios of the liquid phases larger and smaller than one. For large droplet distances, the traffic is regulated by the ratio of the total hydraulic resistances of the long and short arms. At high droplet densities and below a critical droplet size, droplet-droplet collisions are observed for both mobility ratios.
Collapse
Affiliation(s)
- Erfan Kadivar
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
28
|
Im DJ, Yoo BS, Ahn MM, Moon D, Kang IS. Digital Electrophoresis of Charged Droplets. Anal Chem 2013; 85:4038-44. [DOI: 10.1021/ac303778j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Do Jin Im
- Department of Chemical Engineering, Pohang University of Science and Technology, San31 Hyoja-dong,
Nam-Gu, Pohang, Gyeongbuk, 790-784, South Korea
| | - Byeong Sun Yoo
- Department of Chemical Engineering, Pohang University of Science and Technology, San31 Hyoja-dong,
Nam-Gu, Pohang, Gyeongbuk, 790-784, South Korea
| | - Myung Mo Ahn
- Department of Chemical Engineering, Pohang University of Science and Technology, San31 Hyoja-dong,
Nam-Gu, Pohang, Gyeongbuk, 790-784, South Korea
| | - Dustin Moon
- Department of Chemical Engineering, Pohang University of Science and Technology, San31 Hyoja-dong,
Nam-Gu, Pohang, Gyeongbuk, 790-784, South Korea
| | - In Seok Kang
- Department of Chemical Engineering, Pohang University of Science and Technology, San31 Hyoja-dong,
Nam-Gu, Pohang, Gyeongbuk, 790-784, South Korea
| |
Collapse
|
29
|
Zhou H, Yao S. Electrostatic charging and control of droplets in microfluidic devices. LAB ON A CHIP 2013; 13:962-9. [PMID: 23338121 DOI: 10.1039/c2lc41060e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Precharged droplets can facilitate manipulation and control of low-volume liquids in droplet-based microfluidics. In this paper, we demonstrate non-contact electrostatic charging of droplets by polarizing a neutral droplet and splitting it into two oppositely charged daughter droplets in a T-junction microchannel. We performed numerical simulation to analyze the non-contact charging process and proposed a new design with a notch at the T-junction in aid of droplet splitting for more efficient charging. We experimentally characterized the induced charge in droplets in microfabricated devices. The experimental results agreed well with the simulation. Finally, we demonstrated highly effective droplet manipulation in a path selection unit appending to the droplet charging. We expect our work could enable precision manipulation of droplets for more complex liquid handling in microfluidics and promote electric-force based manipulation in 'lab-on-a-chip' systems.
Collapse
Affiliation(s)
- Hongbo Zhou
- Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | | |
Collapse
|
30
|
Ahn MM, Im DJ, Kang IS. Geometric characterization of optimal electrode designs for improved droplet charging and actuation. Analyst 2013; 138:7362-8. [DOI: 10.1039/c3an01623d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
|
32
|
Im DJ, Ahn MM, Yoo BS, Moon D, Lee DW, Kang IS. Discrete electrostatic charge transfer by the electrophoresis of a charged droplet in a dielectric liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:11656-11661. [PMID: 22846106 DOI: 10.1021/la3014392] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We have experimentally investigated the electrostatic charging of a water droplet on an electrified electrode surface to explain the detailed inductive charging processes and use them for the detection of droplet position in a lab-on-a-chip system. The periodic bouncing motion of a droplet between two planar electrodes has been examined by using a high-resolution electrometer and an image analysis method. We have found that this charging process consists of three steps. The first step is inductive charge accumulation on the opposite electrode by the charge of a droplet. This induction process occurs while the droplet approaches the electrode, and it produces an induction current signal at the electrometer. The second step is the discharging of the droplet by the accumulated induced charge at the moment of contact. For this second step, there is no charge-transfer detection at the electrometer. The third step is the charging of the neutralized droplet to a certain charged state while the droplet is in contact with the electrode. The charge transfer of the third step is detected as the pulse-type signal of an electrometer. The second and third steps occur simultaneously and rapidly. We have found that the induction current by the movement of a charged droplet can be accurately used to measure the charge of the droplet and can also be used to monitor the position of a droplet under actuation. The implications of the current findings for understanding and measuring the charging process are discussed.
Collapse
Affiliation(s)
- Do Jin Im
- Department of Chemical Engineering, Pohang University of Science and Technology, San31 Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea.
| | | | | | | | | | | |
Collapse
|
33
|
Chen C, Zhuang L, Li X, Dong J, Lu J. A many-body dissipative particle dynamics study of forced water-oil displacement in capillary. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1330-1336. [PMID: 22133087 DOI: 10.1021/la204207s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications.
Collapse
Affiliation(s)
- Chen Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
34
|
Seemann R, Brinkmann M, Pfohl T, Herminghaus S. Droplet based microfluidics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:016601. [PMID: 22790308 DOI: 10.1088/0034-4885/75/1/016601] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.
Collapse
Affiliation(s)
- Ralf Seemann
- Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany.
| | | | | | | |
Collapse
|
35
|
Xiang X, Chen L, Zhuang Q, Ji X, He Z. Real-time luminescence-based colorimetric determination of double-strand DNA in droplet on demand. Biosens Bioelectron 2011; 32:43-9. [PMID: 22196878 DOI: 10.1016/j.bios.2011.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 10/17/2011] [Accepted: 11/08/2011] [Indexed: 12/16/2022]
Abstract
We have developed a new luminescence-based colorimetric droplet platform for the determination of double-stranded DNAs (dsDNA). This colorimetric sensor was realized via choosing a fluorescent ensemble probe comprising water-soluble N-acetylcysteine-capped CdTe quantum dots (QDs) and Ru(bpy)(2)(dppx)(2+) (Ru). To provide a convenient and low cost droplet platform for colorimetry, the microvalve technique was adapted to adjust droplet size precisely, achieve the desired fusion of multiple droplets and trap droplets on demand, as well as implement concentration gradients of DNA on a single chip. In the colorimetric sensor, Ru served as both an effective quencher for QDs and a reporter for dsDNA. With increasing concentration of dsDNA, a gradually enhanced color response was observed because of the competition of dsDNA with QDs for Ru. Under the optimum conditions, this biosensing system exhibited not only good sensitivity and specificity for calf thymus DNA with the detection limit of 1.0 pg, but also coincident performances in diluted human serum with the detection limit of 0.9 pg. The droplet biosensor provides a highly efficient, rapid and visual method for dsDNA analysis. The colorimetric droplet platform could be useful as a simple research tool for the study of limited and precious regents such as protein and virus samples, etc.
Collapse
Affiliation(s)
- Xia Xiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | |
Collapse
|
36
|
Im DJ, Noh J, Yi NW, Park J, Kang IS. Influences of electric field on living cells in a charged water-in-oil droplet under electrophoretic actuation. BIOMICROFLUIDICS 2011; 5:44112-4411210. [PMID: 22662063 PMCID: PMC3364810 DOI: 10.1063/1.3665222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/11/2011] [Indexed: 05/11/2023]
Abstract
We experimentally investigate the effects of high electric field on living cells inside a charged droplet under electrophoretic actuation. When an aqueous droplet suspended in a dielectric liquid contacts with electrified electrode, the droplet acquires charge. This charged droplet undergoes electrophoretic motion under strong electric field (1-3 kV/cm), which can be used as a droplet manipulation method in biomicrofluidic applications. However, because strong electric field and use of dielectric oil can be a harmful environment for living cells, the biological feasibilities have been tested. Trypan blue test and cell growth test have been performed to check the viability and proliferation of cells in a droplet under various electric field strengths and actuation times. We have not observed any noticeable influence of electric field and silicone oil on the viability and proliferation of cells, which indicates that electrophoresis could be safely used as a manipulation method for a droplet containing living biological system.
Collapse
|
37
|
Shemesh J, Nir A, Bransky A, Levenberg S. Coalescence-assisted generation of single nanoliter droplets with predefined composition. LAB ON A CHIP 2011; 11:3225-3230. [PMID: 21826345 DOI: 10.1039/c0lc00730g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We demonstrate the generation of highly accurate nanoliter droplets with a predefined composition. This composition control over a single droplet is achieved by merging two droplets with known concentrations and defined volumes. A forced coalescence is accomplished by synchronizing two piezoelectric-based active droplet generators. A microscope-mounted CCD camera is used to record, quantify and monitor the process to assure its high fidelity. The device is disposable, surfactant free, simple to operate and does not require microelectrode fabrication. It delivers a single on-demand droplet with adjustable high resolution mixing ratios up to 9 at a volume range of 1-10 nanoliters. The presented platform offers, for the first time, a means to perform droplet-based high-throughput screening in the nanoliter range.
Collapse
Affiliation(s)
- Jonathan Shemesh
- Russell Berrie Nanotechnology Institute, Technion, Haifa, Israel 32000
| | | | | | | |
Collapse
|
38
|
Zhang K, Liang Q, Ai X, Hu P, Wang Y, Luo G. Comprehensive Two-Dimensional Manipulations of Picoliter Microfluidic Droplets Sampled from Nanoliter Samples. Anal Chem 2011; 83:8029-34. [DOI: 10.1021/ac2017458] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kai Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaoni Ai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ping Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiming Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Guoan Luo
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Design of a model-based feedback controller for active sorting and synchronization of droplets in a microfluidic loop. AIChE J 2011. [DOI: 10.1002/aic.12740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Collier CP, Simpson ML. Micro/nanofabricated environments for synthetic biology. Curr Opin Biotechnol 2011; 22:516-26. [PMID: 21636262 DOI: 10.1016/j.copbio.2011.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/06/2011] [Indexed: 11/17/2022]
Abstract
A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of microfabricated and nanofabricated topological constraints.
Collapse
Affiliation(s)
- C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | |
Collapse
|
41
|
Zhang K, Liang Q, Ai X, Hu P, Wang Y, Luo G. On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase. LAB ON A CHIP 2011; 11:1271-5. [PMID: 21327251 DOI: 10.1039/c0lc00484g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Multiple essential microdroplet operation units, including splitting, dispensing, oil-phase exchange, trapping, release and demulsification, were successfully implemented by combining hydrophobic ferrofluid with microfluidic chips.
Collapse
Affiliation(s)
- Kai Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | |
Collapse
|
42
|
Konry T, Dominguez-Villar M, Baecher-Allan C, Hafler DA, Yarmush ML. Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosens Bioelectron 2011; 26:2707-10. [PMID: 20888750 PMCID: PMC3141325 DOI: 10.1016/j.bios.2010.09.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 08/24/2010] [Accepted: 09/02/2010] [Indexed: 11/30/2022]
Abstract
Here we present a microfluidic method for the analysis of single cell secretions. The method co-encapsulates cells with microspheres conjugated with capture antibodies and detection fluorescence-labeled antibodies. The secreted substance captured on the microsphere surface and detected via detection antibodies generating a localized fluorescent signal on a microsphere surface. Using this method, CD4+CD25+ regulatory T cells were encapsulated and assayed to detect IL-10 secreting cell in population.
Collapse
Affiliation(s)
- Tania Konry
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 51 Blossom St., Boston, MA, USA.
| | | | | | | | | |
Collapse
|
43
|
Jung SY, Retterer ST, Collier CP. Interfacial tension controlled fusion of individual femtolitre droplets and triggering of confined chemical reactions on demand. LAB ON A CHIP 2010; 10:3373-3376. [PMID: 20976357 DOI: 10.1039/c0lc00376j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This paper describes stepwise on-demand generation and fusion of femtolitre aqueous droplets based on interfacial tension. Sub-millisecond reaction times from droplet fusion were demonstrated, as well as a reversible chemical toggle switch based on alternating fusion of droplets containing acidic or basic solution, monitored with the pH-dependent emission of fluorescein.
Collapse
Affiliation(s)
- Seung-Yong Jung
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | |
Collapse
|
44
|
Teshima T, Ishihara H, Iwai K, Adachi A, Takeuchi S. A dynamic microarray device for paired bead-based analysis. LAB ON A CHIP 2010; 10:2443-8. [PMID: 20697655 DOI: 10.1039/c004986g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, we have developed a meander-shaped dynamic microfluidic technology that allows us to pair two different types of microbeads in a trapping site. The dynamic microfluidic technology comprises implemented modifications of a conventional dynamic microarray design such as: (i) the combination of a meander-shaped by-pass channel and a trapping channel with a hydrodynamic trapping site and (ii) line-symmetrical formation of the by-pass and trapping channels. Using these modifications, we have successfully trapped different types of sample in one trapping site, and constructed an array of paired beads of different type such as polystyrene beads or hydrogel beads made of agarose, collagen or alginate. We found that this meander-shaped dynamic microfluidic technology is applicable for the observation of interactions between the paired beads such as molecular diffusion.
Collapse
Affiliation(s)
- Tetsuhiko Teshima
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Japan
| | | | | | | | | |
Collapse
|