1
|
Stężycka O, Frańska M, Beszterda-Buszczak M. Exploring Glycosylated Soy Isoflavones Affinities toward G-tetrads as Studied by Survival Yield Method. Chemphyschem 2023; 24:e202300056. [PMID: 36861944 DOI: 10.1002/cphc.202300056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Taking soy-based food supplements for menopausal symptoms by women may reduce the risk of cancer. Therefore, the interaction between nucleic acids (or their constituents) and ingredients of the supplements, e. g., isoflavone glucosides, on the molecular level, has been of interest with respect to cancer therapy. In this work, the interaction between isoflavone glucosides and G-tetrads, namely [4G+Na]+ ions (G stands for guanosine or deoxyguanosine), were analyzed by using electrospray ionization-collision induced dissociation-mass spectrometry (ESI-CID-MS) and survival yields method. The strength of isoflavone glucosides-[4G+Na]+ interaction in the gas phase was determined from Ecom50 - the energy required to fragment 50 % of selected precursor ions. Glycitin-[4G+Na]+ interaction was found to be the strongest, and the interaction between isoflavone glucosides and guanosine tetrad was established to be stronger than that between isoflavone glucosides and deoxyguanosine tetrad.
Collapse
Affiliation(s)
- Olga Stężycka
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Monika Beszterda-Buszczak
- Poznań University of Life Sciences, Department of Food Biochemistry and Analysis, Mazowiecka 48, 60-623, Poznań, Poland
| |
Collapse
|
2
|
Yang X, Kemmink J, Rijkers DTS, Liskamp RMJ. Synthesis of a tricyclic hexapeptide -via two consecutive ruthenium-catalyzed macrocyclization steps- with a constrained topology to mimic vancomycin's binding properties toward D-Ala-D-Ala dipeptide. Bioorg Med Chem Lett 2022; 73:128887. [PMID: 35835378 DOI: 10.1016/j.bmcl.2022.128887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
A ring-closing metathesis (RCM) - peptide coupling - ruthenium-catalyzed azide alkyne cycloaddition (RuAAC) strategy was developed to synthesize a tricyclic hexapeptide in which the side chain to side chain connectivity pattern resulted in a mimic with a topology that effectively mimics the bioactivity of vancomycin as a potent binder of the bacterial cell wall D-Ala-D-Ala dipeptide sequence and more importantly being an effective inhibitor of bacterial growth.
Collapse
Affiliation(s)
- Xin Yang
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Johan Kemmink
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Dirk T S Rijkers
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | - Rob M J Liskamp
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands; School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom; Maastricht University, Faculty of Medicine, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
3
|
Kubik S. Synthetic Receptors Based on Abiotic Cyclo(pseudo)peptides. Molecules 2022; 27:2821. [PMID: 35566168 PMCID: PMC9103335 DOI: 10.3390/molecules27092821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Work on the use of cyclic peptides or pseudopeptides as synthetic receptors started even before the field of supramolecular chemistry was firmly established. Research initially focused on the development of synthetic ionophores and involved the use of macrocycles with a repeating sequence of subunits along the ring to facilitate the correlation between structure, conformation, and binding properties. Later, nonnatural amino acids as building blocks were also considered. With growing research in this area, cyclopeptides and related macrocycles developed into an important and structurally diverse receptor family. This review provides an overview of these developments, starting from the early years. The presented systems are classified according to characteristic structural elements present along the ring. Wherever possible, structural aspects are correlated with binding properties to illustrate how natural or nonnatural amino acids affect binding properties.
Collapse
Affiliation(s)
- Stefan Kubik
- Fachbereich Chemie-Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Germany
| |
Collapse
|
4
|
Recent advances in mass spectrometry studies of non-covalent complexes of macrocycles - A review. Anal Chim Acta 2019; 1081:32-50. [DOI: 10.1016/j.aca.2019.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
|
5
|
Faggi E, Luis SV, Alfonso I. Sensing, Transport and Other Potential Biomedical Applications of Pseudopeptides. Curr Med Chem 2018; 26:4065-4097. [PMID: 29493442 DOI: 10.2174/0929867325666180301091040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 11/22/2022]
Abstract
Pseudopeptides are privileged synthetic molecules built from the designed combination of peptide-like and abiotic artificial moieties. Consequently, they are benefited from the advantages of both families of chemical structures: modular synthesis, chemical and functional diversity, tailored three-dimensional structure, usually high stability in biological media and low non-specific toxicity. Accordingly, in the last years, these compounds have been used for different biomedical applications, ranging from bio-sensing, ion transport, the molecular recognition of biologically relevant species, drug delivery or gene transfection. This review highlights a selection of the most remarkable and recent advances in this field.
Collapse
Affiliation(s)
- Enrico Faggi
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Cientificas, Barcelona, Spain
| | - Santiago V Luis
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Castellon, Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Cientificas, Barcelona, Spain
| |
Collapse
|
6
|
Alfonso I. From simplicity to complex systems with bioinspired pseudopeptides. Chem Commun (Camb) 2016; 52:239-50. [DOI: 10.1039/c5cc07596c] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This feature article highlights some of the recent advances in creating complexity from simple pseudopeptidic molecules. The bioinspired approaches discussed here allowed an increase in the structural, chemical and interactional complexity (see figure).
Collapse
Affiliation(s)
- Ignacio Alfonso
- Department of Biological Chemistry and Molecular Modelling
- Institute of Advanced Chemistry of Catalonia
- IQAC-CSIC
- Jordi Girona
- 18-26
| |
Collapse
|
7
|
Faggi E, Vicent C, Luis SV, Alfonso I. Stereoselective recognition of the Ac-Glu-Tyr-OH dipeptide by pseudopeptidic cages. Org Biomol Chem 2015; 13:11721-31. [PMID: 26481115 DOI: 10.1039/c5ob01889g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pseudopeptidic molecular cages are appealing receptors since they can display different polar and non-polar interaction sites in a modular framework and a controlled disposition. Inspired by previous host-guest knowledge, two pseudopeptidic molecular cages based on serine and threonine (CySer and CyThr, respectively) were designed and synthesized as hosts for the binding of the four possible stereoisomers of the Ac-Glu-Tyr-OH dipeptide, a target sequence of tyrosine kinases. The careful NMR titration experiments in aqueous acetonitrile allowed the determination of the binding constants and reflected a difference in the stability of the corresponding diastereomeric host-guest complexes. The CySer cage proved to be slightly more efficient than the CyThr counterpart, although both showed similar stereoselectivity trends: LL > DD ≥ LD > DL. This stereoselective binding was retained in the gas phase, as shown by ESI-MS competition experiments using the enantiomer-labelled method (EL), as well as CID experiments. Thus, the MS-determined discriminations follow the same trends observed by NMR, suggesting that the stereoselectivity observed for these systems must be mainly dictated by the polar host-guest interactions. Despite the stereoselective binding of short peptide sequences in competitive media being a challenging issue in supramolecular chemistry, our results demonstrate the power of pseudopeptidic cages in molecular recognition with foreseen implications in chemical biology.
Collapse
Affiliation(s)
- Enrico Faggi
- Department of Biological Chemistry and Molecular Modeling, IQAC-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| | | | | | | |
Collapse
|
8
|
Faggi E, Gavara R, Bolte M, Fajarí L, Juliá L, Rodríguez L, Alfonso I. Copper(ii) complexes of macrocyclic and open-chain pseudopeptidic ligands: synthesis, characterization and interaction with dicarboxylates. Dalton Trans 2015; 44:12700-10. [DOI: 10.1039/c5dt01496d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu(ii) complexes of pseudopeptides interact with very similar dicarboxylates of biological interest (malate and aspartate) affording strikingly different outcomes.
Collapse
Affiliation(s)
- Enrico Faggi
- Departamento de Química Biológica y Modelización Molecular
- IQAC–CSIC
- E-08034 Barcelona
- Spain
| | - Raquel Gavara
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Michael Bolte
- Institut für Anorganische Chemie
- J.-W.-Goethe-Universität
- D-60438 Frankfurt/Main
- Germany
| | - Lluís Fajarí
- Departamento de Química Biológica y Modelización Molecular
- IQAC–CSIC
- E-08034 Barcelona
- Spain
| | - Luís Juliá
- Departamento de Química Biológica y Modelización Molecular
- IQAC–CSIC
- E-08034 Barcelona
- Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Ignacio Alfonso
- Departamento de Química Biológica y Modelización Molecular
- IQAC–CSIC
- E-08034 Barcelona
- Spain
| |
Collapse
|
9
|
Martí I, Bolte M, Burguete MI, Vicent C, Alfonso I, Luis SV. Tight and Selective Caging of Chloride Ions by a Pseudopeptidic Host. Chemistry 2014; 20:7458-64. [DOI: 10.1002/chem.201303604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/24/2014] [Indexed: 11/12/2022]
|
10
|
Faggi E, Moure A, Bolte M, Vicent C, Luis SV, Alfonso I. Pseudopeptidic Cages as Receptors for N-Protected Dipeptides. J Org Chem 2014; 79:4590-601. [DOI: 10.1021/jo500629d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Enrico Faggi
- Departamento
de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Jordi Girona
18-26, E-08034 Barcelona, Spain
| | - Alejandra Moure
- Departamento
de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Jordi Girona
18-26, E-08034 Barcelona, Spain
| | - Michael Bolte
- Institut
für Anorganische Chemie, J.-W.-Goethe-Universität, Max-von-Laue-Strasse 7, D-60438 Frankfurt/Main, Germany
| | | | | | - Ignacio Alfonso
- Departamento
de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Jordi Girona
18-26, E-08034 Barcelona, Spain
| |
Collapse
|
11
|
Martí-Centelles V, Izquierdo MA, Burguete MI, Galindo F, Luis SV. Recognition of free tryptophan in water by synthetic pseudopeptides: fluorescence and thermodynamic studies. Chemistry 2014; 20:7465-78. [PMID: 24788579 DOI: 10.1002/chem.201304851] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Indexed: 11/10/2022]
Abstract
Pseudopeptidic receptors containing an acridine unit have been prepared and their fluorescence response to a series of amino acids was measured in water. Free amino acids, not protected either at the C or the N terminus, were used for this purpose. The prepared receptors display a selective response to tryptophan (Trp) versus the other assayed amino acids under acidic conditions. The macrocyclic nature of the receptor is important as the fluorescence quenching is higher for the macrocyclic compound than for the related open-chain receptor. Notably, under the experimental acidic conditions used, both the receptor and guest are fully protonated and positively charged; thus, the experimental results suggest the formation of supramolecular species that contain two positively charged organic molecular components in proximity stabilized through aromatic-aromatic interactions and a complex set of cation-anion-cation interactions. The selectivity towards Trp seems to be based on the existence of a strong association between the indole ring of the monocharged amino acid and the acridinium fragment of the triprotonated form of the receptor, which is established to be assisted by the interaction of the cationic moieties with hydrogen sulfate anions.
Collapse
Affiliation(s)
- Vicente Martí-Centelles
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat, s/n, E-12071 Castellón (Spain), Fax: (+34) 964728214
| | | | | | | | | |
Collapse
|
12
|
Abstract
For years researchers have tried to understand the molecular behavior of complex biomolecules through the development of small molecules that can partially mimic their function. Now researchers are implementing the reverse approach: using the structural and mechanistic knowledge obtained from those complex systems to design small molecules with defined properties and for specific applications. One successful strategy for constructing bioinspired, minimalistic molecules is to combine natural building blocks that provide functional elements with abiotic fragments that serve as structural scaffolds. Therefore pseudopeptidic compounds, most of them based on C2 symmetric structures, represent a unique opportunity to explore and evaluate this approach. Some of these molecules are as simple as two amino acids connected by a diamino spacer. The results in this Account show how bioinspired minimalistic pseudopeptides can form ordered structures, participate in the recognition and transcription of information events in molecular devices, and catalyze reactions. This strategy allows researchers to design and prepare a variety of open-chain and macrocyclic compounds leading to systems that can self-aggregate to form hierarchically ordered micro- and nanostructures. In addition, small changes in the molecule or external stimuli can regulate the self-aggregation pattern. In the same way, researchers can also tune the molecular movements of simple pseudopeptides through environmental factors, providing a means to control new molecular devices. In addition, some of the prepared model compounds have shown interesting properties in molecular recognition and even as sensors for several targets of interest. Finally we have observed remarkable catalytic activities from these types of molecules, although those results are still far from the efficiency shown by natural peptides. This family of pseudopeptidic compounds offers the opportunity for the more elaborate design of relatively simple abiotic but bioinspired systems that display specific properties. In addition, the results can provide additional information that will increase the molecular understanding of the basic principles that underlie the extraordinary behavior of natural systems.
Collapse
Affiliation(s)
- Santiago V. Luis
- Department of Inorganic and Organic Chemistry, ESTCE, University Jaume I, Castellón. Spain
| | - I. Alfonso
- Department of Biological Chemistry and Molecular Modeling, IQAC−CSIC, Barcelona, Spain
| |
Collapse
|
13
|
De Zorzi R, Brancatelli G, Melegari M, Pinalli R, Dalcanale E, Geremia S. Selectivity assessment in host–guest complexes from single-crystal X-ray diffraction data: the cavitand–alcohol case. CrystEngComm 2014. [DOI: 10.1039/c4ce01813c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solid-state selectivity of a cavitand receptor towards short alkyl chain alcohols was evaluated by analysis of X-ray diffraction data of isomorphous single crystals grown in competition binding experiments.
Collapse
Affiliation(s)
- Rita De Zorzi
- Centro di Eccellenza in Biocristallografia
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Trieste
- 34127 Trieste, Italy
| | - Giovanna Brancatelli
- Centro di Eccellenza in Biocristallografia
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Trieste
- 34127 Trieste, Italy
| | - Monica Melegari
- Dipartimento di Chimica
- Università degli Studi di Parma and INSTM Udr Parma
- 43124 Parma, Italy
| | - Roberta Pinalli
- Dipartimento di Chimica
- Università degli Studi di Parma and INSTM Udr Parma
- 43124 Parma, Italy
| | - Enrico Dalcanale
- Dipartimento di Chimica
- Università degli Studi di Parma and INSTM Udr Parma
- 43124 Parma, Italy
| | - Silvano Geremia
- Centro di Eccellenza in Biocristallografia
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Trieste
- 34127 Trieste, Italy
| |
Collapse
|
14
|
Nour HF, Golon A, Islam T, Fernández-Lahore M, Kuhnert N. Synthesis of novel chiral bis-N-substituted-hydrazinecarboxamide receptors and probing their solution-phase recognition to chiral carboxylic guests by ESI-TOF/MS and tandem ESI-MS. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Altava B, Isabel Burguete M, Carbó N, Luis SV, Martí-Centelles V, Vicent C. Bis(amino amides) derived from natural amino acids as chiral receptors for N-protected dicarboxylic amino acids. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.10.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Karakaplan M, Ak D, Çolak M, Kocakaya ŞÖ, Hoşgören H, Pirinççioğlu N. Synthesis of new diaza-18-crown-6 ethers derived from trans-(R,R)-1,2-diaminocyclohexane and investigation of their enantiomeric discrimination ability with amino acid ester salts. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Faggi E, Luis SV, Alfonso I. Minimalistic amino amides as models to study N–H⋯π interactions and their implication in the side chain folding of pseudopeptidic molecules. RSC Adv 2013. [DOI: 10.1039/c3ra41843j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Martí I, Rubio J, Bolte M, Burguete MI, Vicent C, Quesada R, Alfonso I, Luis SV. Tuning Chloride Binding, Encapsulation, and Transport by Peripheral Substitution of Pseudopeptidic Tripodal Small Cages. Chemistry 2012; 18:16728-41. [DOI: 10.1002/chem.201202182] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Indexed: 11/05/2022]
|
19
|
Moure A, Luis SV, Alfonso I. Efficient Synthesis of Pseudopeptidic Molecular Cages. Chemistry 2012; 18:5496-500. [DOI: 10.1002/chem.201104045] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/24/2012] [Indexed: 11/11/2022]
|
20
|
Merlino A, Benitez D, Campillo NE, Páez JA, Tinoco LW, González M, Cerecetto H. Amidines bearing benzofuroxan or benzimidazole 1,3-dioxide core scaffolds as Trypanosoma cruzi-inhibitors: structural basis for their interactions with cruzipain. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00223f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Martí-Centelles V, Burguete MI, Galindo F, Izquierdo MA, Kumar DK, White AJP, Luis SV, Vilar R. Fluorescent acridine-based receptors for H2PO4(-). J Org Chem 2011; 77:490-500. [PMID: 22077800 DOI: 10.1021/jo202077v] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two new pseudopeptidic molecules (one macrocyclic and one open chain) containing an acridine unit have been prepared. The fluorescence response of these receptors to a series of acids was measured in CHCl(3). Receptors are selective to H(2)PO(4)(-) versus HSO(4)(-), and an even higher selectivity is found over other anions such as Cl(-), Br(-), CH(3)COO(-), and CF(3)COO(-). We show that the macrocyclic receptor is more selective for H(2)PO(4)(-) than the related open chain receptor. The supramolecular interactions of triprotonated receptors with different anions have been modeled in silico and have been studied by different experimental techniques. Optimized geometries obtained by computational calculations agree well with experimental data, in particular fluorescence experiments, suggesting that the selective supramolecular interaction takes places through coordination of the anions to the triprotonated form of the receptor.
Collapse
Affiliation(s)
- Vicente Martí-Centelles
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, E-12070 Castellón, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Crystal Structure of the N-Benzyloxycarbonyl-alanyl-phenylalanyl-methyl Ester: The Importance of the H-Bonding Pattern. CRYSTALS 2011. [DOI: 10.3390/cryst1030163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Rubio J, Alfonso I, Bru M, Burguete MI, Luis SV. Gemini amphiphilic pseudopeptides: synthesis and preliminary study of their self-assembling properties. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.07.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Busto E, González-Álvarez A, Gotor-Fernández V, Alfonso I, Gotor V. Optically active macrocyclic hexaazapyridinophanes decorated at the periphery: synthesis and applications in the NMR enantiodiscrimination of carboxylic acids. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|