1
|
Liu M, Qin X, Ye XS. Glycan Assembly Strategy: From Concept to Application. CHEM REC 2021; 21:3256-3277. [PMID: 34498347 DOI: 10.1002/tcr.202100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Glycans have been hot topics in recent years due to their exhibition of numerous biological activities. However, the heterogeneity of their natural source and the complexity of their chemical synthesis impede the progress in their biological research. Thus, the development of glycan assembly strategies to acquire plenty of structurally well-defined glycans is an important issue in carbohydrate chemistry. In this review, the latest advances in glycan assembly strategies from concepts to their applications in carbohydrate synthesis, including chemical and enzymatic/chemo-enzymatic approaches, as well as solution-phase and solid-phase/tag-assisted synthesis, are summarized. Furthermore, the automated glycan assembly techniques are also outlined.
Collapse
Affiliation(s)
- Mingli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
2
|
Convenient synthesis of long alkyl-chain triazolylglycosides using ionic liquid as dual promoter-solvent: Readily access to non-ionic triazolylglycoside surfactants for evaluation of cytotoxic activity. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Mong KKT, Cheng KC, Lu IC, Pan CW, Wang YF, Shen LC. Cascade In Situ Phosphorylation and One-Pot Glycosylation for Rapid Synthesis of Heptose-Containing Oligosaccharides. J Org Chem 2020; 85:16060-16071. [PMID: 33236906 DOI: 10.1021/acs.joc.0c01828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a one-pot glycosylation strategy for achieving rapid syntheses of heptose (Hep)-containing oligosaccharides. The reported procedure was designed to incorporate an in situ phosphorylation step into an orthogonal one-pot glycosylation. Hep-containing oligosaccharides were assembled directly from building blocks with minimal effort expended on manipulation of protecting and aglycone leaving groups. The utility of our one-pot procedure was illustrated by synthesizing partial core oligosaccharide structure present in the lipopolysaccharide of Ralstonia solanacearum.
Collapse
Affiliation(s)
- Kwok-Kong Tony Mong
- Applied Chemistry Department, National Chiao Tung University 1001 University Road, Hsinchu City, Taiwan 30010, ROC
| | - Kuang-Chun Cheng
- Applied Chemistry Department, National Chiao Tung University 1001 University Road, Hsinchu City, Taiwan 30010, ROC
| | - I-Chen Lu
- Applied Chemistry Department, National Chiao Tung University 1001 University Road, Hsinchu City, Taiwan 30010, ROC
| | - Chia-Wei Pan
- Applied Chemistry Department, National Chiao Tung University 1001 University Road, Hsinchu City, Taiwan 30010, ROC
| | - Yi-Fang Wang
- Applied Chemistry Department, National Chiao Tung University 1001 University Road, Hsinchu City, Taiwan 30010, ROC
| | - Li-Ching Shen
- Applied Chemistry Department, National Chiao Tung University 1001 University Road, Hsinchu City, Taiwan 30010, ROC
| |
Collapse
|
4
|
Abronina PI, Malysheva NN, Zinin AI, Kolotyrkina NG, Stepanova EV, Kononov LO. Catalyst-free regioselective acetylation of primary hydroxy groups in partially protected and unprotected thioglycosides with acetic acid. RSC Adv 2020; 10:36836-36842. [PMID: 35517942 PMCID: PMC9057154 DOI: 10.1039/d0ra07360a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Highly regioselective acetylation of primary hydroxy groups in thioglycoside derivatives with gluco- and galacto-configurations was achieved by treatment with aqueous or anhydrous acetic acid (60–100% AcOH) at elevated temperatures (80–118 °C), avoiding complex, costly and time-consuming manipulations with protective groups. Acetylation of both 4,6-O-benzylidene acetals and the corresponding diols as well as the unprotected tetraol with AcOH was shown to lead selectively to formation of 6-O-acetyl derivatives. For example, the treatment of phenyl 1-thio-β-d-glucopyranoside with anhydrous AcOH at 80 °C for 24 h gave the corresponding 6-O-acetylated derivative in 47% yield (71% based on the reacted starting material) and unreacted starting tetraol in 34% yield, which can easily be recovered by silica gel chromatography and reused in further acetylation. Highly regioselective acetylation of primary hydroxy groups in thioglycoside derivatives was achieved by treatment with aqueous or anhydrous acetic acid (60–100%) at elevated temperatures (80–118 °C), avoiding manipulations with protective groups.![]()
Collapse
Affiliation(s)
- Polina I. Abronina
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Nelly N. Malysheva
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Alexander I. Zinin
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Natalya G. Kolotyrkina
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Elena V. Stepanova
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
- Research School of Chemistry and Applied Biomedical Sciences
| | - Leonid O. Kononov
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| |
Collapse
|
5
|
Abstract
Deoxy-sugars often play a critical role in modulating the potency of many bioactive natural products. Accordingly, there has been sustained interest in methods for their synthesis over the past several decades. The focus of much of this work has been on developing new glycosylation reactions that permit the mild and selective construction of deoxyglycosides. This Review covers classical approaches to deoxyglycoside synthesis, as well as more recently developed chemistry that aims to control the selectivity of the reaction through rational design of the promoter. Where relevant, the application of this chemistry to natural product synthesis will also be described.
Collapse
Affiliation(s)
- Clay S. Bennett
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - M. Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
6
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
7
|
Podilapu AR, Kulkarni SS. Total Synthesis of Repeating Unit of O-Polysaccharide of Providencia alcalifaciens O22 via One-Pot Glycosylation. Org Lett 2017; 19:5466-5469. [DOI: 10.1021/acs.orglett.7b02791] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ananda Rao Podilapu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
8
|
Affiliation(s)
- Ryan Williams
- School of Chemistry; University of Bristol; Cantock's Close BS8 1TS Bristol U.K
| | - M. Carmen Galan
- School of Chemistry; University of Bristol; Cantock's Close BS8 1TS Bristol U.K
| |
Collapse
|
9
|
Abstract
The development of glycobiology relies on the sources of particular oligosaccharides in their purest forms. As the isolation of the oligosaccharide structures from natural sources is not a reliable option for providing samples with homogeneity, chemical means become pertinent. The growing demand for diverse oligosaccharide structures has prompted the advancement of chemical strategies to stitch sugar molecules with precise stereo- and regioselectivity through the formation of glycosidic bonds. This Review will focus on the key developments towards chemical O-glycosylations in the current century. Synthesis of novel glycosyl donors and acceptors and their unique activation for successful glycosylation are discussed. This Review concludes with a summary of recent developments and comments on future prospects.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| | - Balaram Mukhopadhyay
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| |
Collapse
|
10
|
Henderson AS, Bower JF, Galan MC. Carbohydrates as enantioinduction components in stereoselective catalysis. Org Biomol Chem 2016; 14:4008-17. [PMID: 27064817 PMCID: PMC5048738 DOI: 10.1039/c6ob00368k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/31/2016] [Indexed: 01/17/2023]
Abstract
Carbohydrate derivatives are readily available chiral molecules, yet they are infrequently employed as enantioinduction components in stereoselective catalysis. In this review, synthetic approaches to carbohydrate-based ligands and catalysts are outlined, along with example applications in enantioselective catalysis. A wide range of carbohydrate-based functionality is covered, and key trends and future opportunities are identified.
Collapse
Affiliation(s)
| | - John F Bower
- School of Chemistry, University of Bristol, Cantock's Close, Bristol. BS8 1TS, UK.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol. BS8 1TS, UK.
| |
Collapse
|
11
|
Medina S, Henderson AS, Bower JF, Galan MC. Stereoselective synthesis of glycosides using (salen)Co catalysts as promoters. Chem Commun (Camb) 2016; 51:8939-41. [PMID: 25925803 DOI: 10.1039/c5cc02552d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The use of (salen)Co catalysts as a new class of bench-stable stereoselective glycosylation promoters of trichloroacetimidate glycosyl donors at room temperature is described. The conditions are practical and do not require the use of molecular sieves with products being isolated in good to high yields.
Collapse
Affiliation(s)
- Sandra Medina
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | | | | | |
Collapse
|
12
|
Zulueta MML, Janreddy D, Hung SC. One-Pot Methods for the Protection and Assembly of Sugars. Isr J Chem 2015. [DOI: 10.1002/ijch.201400171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Cui Y, Xu M, Yao W, Mao J. Room-temperature ionic liquids enhanced green synthesis of β-glycosyl 1-ester. Carbohydr Res 2015; 407:51-4. [PMID: 25704198 DOI: 10.1016/j.carres.2015.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 01/17/2015] [Accepted: 01/21/2015] [Indexed: 11/18/2022]
Abstract
We herein report an efficient synthesis of β-glycosyl 1-ester in room-temperature ionic liquids (RTILs) promoted via silver salt and quaternary ammonium salt (PTC) with good or excellent yields. All products were isolated exclusively as the β-anomers. Four different RTILs, eight metal salts and four quaternary ammonium salts were screened in the glycosylation reaction. The synergistic effect of C6mim·OTf, Ag2O and tetrabutylammonium iodine gave the best results. Their promotion to the system was integral. Thorough study provided insight into the catalytic activity of ionic liquid structure, metal salts and quaternary ammonium salt to these reactions. It is worth mentioning that the yield of aliphatic compound 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl butyrate (3l) was highly improved when using C6mim·OTf as solvent compared with the normal volatile solvents under the same catalysts. This green approach has been proved to be practical and compatible with a wide range from aliphatic to aromatic substrates.
Collapse
Affiliation(s)
- Yanli Cui
- Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China.
| | - Minghan Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Weirong Yao
- Carbohydrate Chemistry and Biotechnology Jiangnan University Key Laboratory of Ministry of Education, Wuxi 214122, PR China
| | - Jianwei Mao
- Zhejiang Provincial Key Lab for Chem. & Bio. Processing Technology of Farm Produces, Hangzhou 310023, PR China
| |
Collapse
|
14
|
Kumar V, Taxak N, Jangir R, Bharatam PV, Kartha KPR. In(III) triflate-mediated solvent-free synthesis and activation of thioglycosides by ball milling and structural analysis of long chain alkyl thioglycosides by TEM and quantum chemical methods. J Org Chem 2014; 79:3427-39. [PMID: 24669760 DOI: 10.1021/jo5001753] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conventional solution-phase synthesis of thioglycosides from glycosyl acetates and thiols in the presence of In(III) triflate as reported for benzyl thioglucoside failed when applied to the synthesis of phenolic and alkyl thioglycosides. But, it was achieved in high efficiency and diastereospecificity with ease by solvent-free grinding in a ball mill. The acetates in turn were also obtained by the homogenization of free sugars with stoichiometric amounts of acetic anhydride and catalytic In(OTf)3 in the mill as neat products. Per-O-benzylated thioglycosides on grinding with an acceptor sugar in the presence of In(OTf)3 yield the corresponding O-glycosides efficiently. The latter in the case of a difficult secondary alcohol was nearly exclusive (>98%) in 1,2-cis-selectivity. In contrast, the conventional methods for this purpose require use of a coreagent such as NIS along with the Lewis acid to help generate the electrophilic species that actually is responsible for the activation of the thioglycoside donor in situ. The distinctly different self-assembling features of the peracetylated octadecyl 1-thio-α- and β-D-galactopyranosides observed by TEM could be rationalized by molecular modeling.
Collapse
Affiliation(s)
- Vajinder Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research , S.A.S. Nagar, Punjab 160062, India
| | | | | | | | | |
Collapse
|
15
|
Galan MC, Jones RA, Tran AT. Recent developments of ionic liquids in oligosaccharide synthesis: the sweet side of ionic liquids. Carbohydr Res 2013; 375:35-46. [DOI: 10.1016/j.carres.2013.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 11/29/2022]
|
16
|
Sittel I, Tran AT, Benito-Alifonso D, Galan MC. Combinatorial ionic catch-and-release oligosaccharide synthesis (combi-ICROS). Chem Commun (Camb) 2013; 49:4217-9. [DOI: 10.1039/c2cc37164b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Kumar A, Geng Y, Schmidt RR. Silicon Fluorides for Acid-Base Catalysis in Glycosidations. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100933] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Galan MC, Tran AT, Bromfield K, Rabbani S, Ernst B. Ionic-liquid-based MS probes for the chemo-enzymatic synthesis of oligosaccharides. Org Biomol Chem 2012; 10:7091-7. [DOI: 10.1039/c2ob25855b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Galan MC, Tran AT, Boisson J, Benito D, Butts C, Eastoe J, Brown P. [R4N] [AOT]: A Surfactant Ionic Liquid as a Mild Glycosylation Promoter. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.609626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- M. Carmen Galan
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Anh Tuan Tran
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Julien Boisson
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - David Benito
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Craig Butts
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Julian Eastoe
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Paul Brown
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| |
Collapse
|
20
|
Chen Y, Zhao Y, Chen J, Zhuo K, Wang J. Aggregation behavior of a model ionic liquid surfactant in monosaccharide+water solutions. J Colloid Interface Sci 2011; 364:388-94. [DOI: 10.1016/j.jcis.2011.08.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/08/2011] [Accepted: 08/22/2011] [Indexed: 11/30/2022]
|
21
|
Hsu CH, Hung SC, Wu CY, Wong CH. Toward automated oligosaccharide synthesis. Angew Chem Int Ed Engl 2011; 50:11872-923. [PMID: 22127846 DOI: 10.1002/anie.201100125] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Indexed: 12/16/2022]
Abstract
Carbohydrates have been shown to play important roles in biological processes. The pace of development in carbohydrate research is, however, relatively slow due to the problems associated with the complexity of carbohydrate structures and the lack of general synthetic methods and tools available for the study of this class of biomolecules. Recent advances in synthesis have demonstrated that many of these problems can be circumvented. In this Review, we describe the methods developed to tackle the problems of carbohydrate-mediated biological processes, with particular focus on the issue related to the development of the automated synthesis of oligosaccharides. Further applications of carbohydrate microarrays and vaccines to human diseases are also highlighted.
Collapse
Affiliation(s)
- Che-Hsiung Hsu
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
22
|
Hsu CH, Hung SC, Wu CY, Wong CH. Auf dem Weg zur automatisierten Oligosaccharid- Synthese. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100125] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Tran AT, Jones RA, Pastor J, Boisson J, Smith N, Galan MC. Copper(II) Triflate: A Versatile Catalyst for the One-Pot Preparation of Orthogonally Protected Glycosides. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100228] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Ionic liquids in oligosaccharide synthesis: towards mucin-type glycan probes. Biochem Soc Trans 2011; 38:1368-73. [PMID: 20863315 DOI: 10.1042/bst0381368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present article provides an overview on mucins and their role in biological processes, while aiming to familiarize readers with the current tools available for the synthesis of structurally defined mucin-type glycan probes including the advantages and potential applications of using ionic liquids in the synthesis of this important class of oligosaccharides. Furthermore, we also highlight recent developments in glycoarray technology that can enable high-sensitivity and high-throughput analysis of this important class of protein-carbohydrate interactions.
Collapse
|
25
|
Tran AT, Burden R, Racys DT, Carmen Galan M. Ionic catch and release oligosaccharide synthesis (ICROS). Chem Commun (Camb) 2011; 47:4526-8. [DOI: 10.1039/c0cc05580h] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Jones RA, Davidson R, Tran AT, Smith N, Carmen Galan M. Iodine-catalyzed one-pot acetalation–esterification reaction for the preparation of orthogonally protected glycosides. Carbohydr Res 2010; 345:1842-5. [DOI: 10.1016/j.carres.2010.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/17/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
|
27
|
Shang Y, Wang T, Han X, Peng C, Liu H. Effect of Ionic Liquids CnmimBr on Properties of Gemini Surfactant 12-3-12 Aqueous Solution. Ind Eng Chem Res 2010. [DOI: 10.1021/ie100896z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yazhuo Shang
- State Key laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Tengfang Wang
- State Key laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Han
- State Key laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Changjun Peng
- State Key laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- State Key laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Galan MC, Tran AT, Bernard C. Ionic-liquid-based catch and release mass spectroscopy tags for enzyme monitoring. Chem Commun (Camb) 2010; 46:8968-70. [DOI: 10.1039/c0cc04224b] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|