1
|
Shao T, Noroozifar M, Kraatz HB. Divalent metal ion modulation of a simple peptide-based hydrogel: self-assembly and viscoelastic properties. SOFT MATTER 2024; 20:2720-2729. [PMID: 38454905 DOI: 10.1039/d3sm01544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Peptide self-assembly has been highly studied to understand the pathways in forming higher order structures along with the development and application of resulting hydrogel materials. Driven by noncovalent interactions, peptide hydrogels are stimuli-responsive to any addition to its gelling conditions. Here, a Phe-His based peptide, C14-FH(Trt)-OH, was synthesized and characterized with 1H NMR, FT-IR, MS, UV-vis spectroscopies and elemental analysis. Based on SEM imaging, the dipeptide conjugate was capable of forming a nanofibrous, interconnected network encapsulating buffer to produce a supramolecular hydrogel. Through the addition of Zn2+ and Cu2+, there is a clear change in the self-assembled nanostructures characterized through SEM. With this effect on self-assembly follows a change in the viscoelastic properties of the material, as determined through rheological frequency sweeps, with 2 and 3 orders of magnitude decreases in the elastic modulus G' in the presence of Zn2+ and Cu2+ respectively. This highlights the tunability of soft material properties with peptide design and self-assembly, through metal ions and Nδ-directed coordination.
Collapse
Affiliation(s)
- Tsuimy Shao
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
| | - Heinz-Bernhard Kraatz
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
| |
Collapse
|
2
|
Hu X, Chen W, Li S, Sun J, Du K, Xia Q, Feng F. Diiron Dithiolate Complex Induced Helical Structure of Histone and Application in Photochemical Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19691-19699. [PMID: 31117424 DOI: 10.1021/acsami.9b01866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Very-lysine-rich calf thymus histone proteins form disordered structure and hydrophobic interaction-driven aggregates in weakly acidic solution. We reported that the conjugation of diiron dithiolate complex to the lysine residues induced formation of helical conformation and condensed nanoassemblies with a high loading capacity up to 18.7 wt %. The incorporated diiron dithiolate complex showed photocatalytic activity for hydrogen evolution in aqueous solutions, with a turnover number (based on [FeFe] catalyst moiety) up to 359 that was more than 6 times that of the free catalyst. The increase of helical conformation in proteins was well correlated to the increasing enhancement of photocatalytic activity. We demonstrated that the [FeFe]-hydrogenase-mimic biohybrid system based on the photocatalyst-induced protein conformational conversion and reassembly is efficient for hydrogen generation regardless of the relatively large size.
Collapse
Affiliation(s)
- Xiantao Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Weijian Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Shuyi Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jian Sun
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Qiuyu Xia
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
3
|
French-Pacheco L, Cuevas-Velazquez CL, Rivillas-Acevedo L, Covarrubias AA, Amero C. Metal-binding polymorphism in late embryogenesis abundant protein AtLEA4-5, an intrinsically disordered protein. PeerJ 2018; 6:e4930. [PMID: 29892507 PMCID: PMC5994335 DOI: 10.7717/peerj.4930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins accumulate in plants during adverse conditions and their main attributed function is to confer tolerance to stress. One of the deleterious effects of the adverse environment is the accumulation of metal ions to levels that generate reactive oxygen species, compromising the survival of cells. AtLEA4-5, a member of group 4 of LEAs in Arabidopsis, is an intrinsically disordered protein. It has been shown that their N-terminal region is able to undergo transitions to partially folded states and prevent the inactivation of enzymes. We have characterized metal ion binding to AtLEA4-5 by circular dichroism, electronic absorbance spectroscopy (UV–vis), electron paramagnetic resonance, dynamic light scattering, and isothermal titration calorimetry. The data shows that AtLEA4-5 contains a single binding site for Ni(II), while Zn(II) and Cu(II) have multiple binding sites and promote oligomerization. The Cu(II) interacts preferentially with histidine residues mostly located in the C-terminal region with moderate affinity and different coordination modes. These results and the lack of a stable secondary structure formation indicate that an ensemble of conformations remains accessible to the metal for binding, suggesting the formation of a fuzzy complex. Our results support the multifunctionality of LEA proteins and suggest that the C-terminal region of AtLEA4-5 could be responsible for antioxidant activity, scavenging metal ions under stress conditions while the N-terminal could function as a chaperone.
Collapse
Affiliation(s)
- Leidys French-Pacheco
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Cesar L Cuevas-Velazquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lina Rivillas-Acevedo
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Carlos Amero
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Malandrinos G, Panagiotou K, Hadjiliadis N. Effective binding of copper(II) with the peptide acetyl-GYDVEK-amide, model of the globular domain N-terminal of somatic histone H1 variants. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Ryu HW, Lee DH, Won HR, Kim KH, Seong YJ, Kwon SH. Influence of toxicologically relevant metals on human epigenetic regulation. Toxicol Res 2015; 31:1-9. [PMID: 25874027 PMCID: PMC4395649 DOI: 10.5487/tr.2015.31.1.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022] Open
Abstract
Environmental toxicants such as toxic metals can alter epigenetic regulatory features such as DNA methylation, histone modification, and non-coding RNA expression. Heavy metals influence gene expression by epigenetic mechanisms and by directly binding to various metal response elements in the target gene promoters. Given the role of epigenetic alterations in regulating genes, there is potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. Here, we focus on recent advances in understanding epigenetic changes, gene expression, and biological effects induced by toxic metals.
Collapse
Affiliation(s)
- Hyun-Wook Ryu
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Hye-Rim Won
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Kyeong Hwan Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Yun Jeong Seong
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| |
Collapse
|
6
|
Wang Y, Wang Y, Zhan Y, Zhang J, Liang W, Fang X, Yu D, Feng Y. DNA binding ability of histone-like protein HPhA is negatively affected by interaction with Pb2+. Biometals 2015; 28:207-17. [DOI: 10.1007/s10534-014-9816-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/20/2014] [Indexed: 11/28/2022]
|
7
|
Wezynfeld NE, Bossak K, Goch W, Bonna A, Bal W, Frączyk T. Human annexins A1, A2, and A8 as potential molecular targets for Ni(II) ions. Chem Res Toxicol 2014; 27:1996-2009. [PMID: 25330107 DOI: 10.1021/tx500337w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nickel is harmful for humans, but molecular mechanisms of its toxicity are far from being fully elucidated. One of such mechanisms may be associated with the Ni(II)-dependent peptide bond hydrolysis, which occurs before Ser/Thr in Ser/Thr-Xaa-His sequences. Human annexins A1, A2, and A8, proteins modulating the immune system, contain several such sequences. To test if these proteins are potential molecular targets for nickel toxicity we characterized the binding of Ni(II) ions and hydrolysis of peptides Ac-KALTGHLEE-am (A1-1), Ac-TKYSKHDMN-am (A1-2), and Ac-GVGTRHKAL-am (A1-3), from annexin A1, Ac-KMSTVHEIL-am (A2-1) and Ac-SALSGHLET-am (A2-2), from annexin A2, and Ac-VKSSSHFNP-am (A8-1), from annexin A8, using UV-vis and circular dichroism (CD) spectroscopies, potentiometry, isothermal titration calorimetry, high-performance liquid chromatography (HPLC), and electrospray ionization mass spectrometry (ESI-MS). We found that at physiological conditions (pH 7.4 and 37 °C) peptides A1-2, A1-3, A8-1, and to some extent A2-2 bind Ni(II) ions sufficiently strongly in 4N complexes and are hydrolyzed at sufficiently high rates to justify the notion that these annexins can undergo nickel hydrolysis in vivo. These results are discussed in the context of specific biochemical interactions of respective proteins. Our results also expand the knowledge about Ni(II) binding to histidine peptides by determination of thermodynamic parameters of this process and spectroscopic characterization of 3N complexes. Altogether, our results indicate that human annexins A1, A2, and A8 are potential molecular targets for nickel toxicity and help design appropriate cellular studies.
Collapse
Affiliation(s)
- Nina E Wezynfeld
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
8
|
Malandrinos G, Hadjiliadis N. Cu(II)–histones interaction related to toxicity-carcinogenesis. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Peana M, Medici S, Nurchi VM, Crisponi G, Zoroddu MA. Nickel binding sites in histone proteins: Spectroscopic and structural characterization. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Alies B, Hureau C, Faller P. The role of metal ions in amyloid formation: general principles from model peptides. Metallomics 2013; 5:183-92. [DOI: 10.1039/c3mt20219d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Witkowska D, Politano R, Rowinska-Zyrek M, Guerrini R, Remelli M, Kozlowski H. The Coordination of NiIIand CuIIIons to the Polyhistidyl Motif of Hpn Protein: Is It as Strong as We Think? Chemistry 2012; 18:11088-99. [DOI: 10.1002/chem.201200780] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Indexed: 01/22/2023]
|
12
|
Cheng TF, Choudhuri S, Muldoon-Jacobs K. Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol 2012; 32:643-53. [DOI: 10.1002/jat.2717] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022]
Affiliation(s)
- Tsu-Fan Cheng
- US Food and Drug Administration; Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, Division of Food Contact Notification; College Park; MD; USA
| | - Supratim Choudhuri
- US Food and Drug Administration; Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, Division of Biotechnology and GRAS Notice Review; College Park; MD; USA
| | - Kristi Muldoon-Jacobs
- US Food and Drug Administration; Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, Division of Food Contact Notification; College Park; MD; USA
| |
Collapse
|
13
|
Zavitsanos K, Nunes AM, Malandrinos G, Hadjiliadis N. DNA strand breakage induced by CuII and NiII, in the presence of peptide models of histone H2B. J Inorg Biochem 2011; 105:1329-37. [PMID: 21864811 DOI: 10.1016/j.jinorgbio.2011.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 11/20/2022]
Abstract
In the present study we used the plasmid relaxation assay, a very sensitive method for detection of DNA strand breaks in vitro, in order to evaluate the role of peptide fragments of histone H2B in DNA strand breakage induced by copper and nickel. We have found that in the presence of peptides modeling the histone fold domain (H2B(32-62) and H2B(63-93)) as well as the N-terminal tail (H2B(1-31)) of histone H2B there is an increased DNA damage by Cu(2+)/H(2)O(2) and Ni(2+)/H(2)O(2) reaction mixtures. On the contrary, the C-terminal tail (H2B(94-125)) seems to have a protective role on the attack of ROS species to DNA. We have rendered our findings to the interactions of the peptides with DNA, as well as with the metal.
Collapse
Affiliation(s)
- Kimon Zavitsanos
- Department of Chemistry, University of Ioannina, Ioannina, Greece
| | | | | | | |
Collapse
|
14
|
Zavitsanos K, Nunes AM, Malandrinos G, Hadjiliadis N. Copper effective binding with 32–62 and 94–125 peptide fragments of histone H2B. J Inorg Biochem 2011; 105:102-10. [DOI: 10.1016/j.jinorgbio.2010.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/29/2022]
|