1
|
Ren Y, Guan S, Qu X. Polymer-Protein Assemblies with Tunable Vesicular and Hierarchical Nanostructures. Angew Chem Int Ed Engl 2024; 63:e202317251. [PMID: 38189597 DOI: 10.1002/anie.202317251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
The construction of variable structured multi-protein nano-assemblies is of great interest for the development of protein-based therapeutic systems. This study showcases the synthesis of polymer-protein assemblies with tunable structure like single- and multi-layer polymer-crosslinked protein vesicles, Janus protein vesicles and other hierarchical-structured assemblies by utilizing a dynamic template-assistant intermittent-assembly approach. The generalization of the methodology helps the protein assemblies to gain notable functional complexity. And we demonstrate compelling evidence highlighting the substantial impact of the topological morphology of protein nanoaggregates on their cellular uptake capacity.
Collapse
Affiliation(s)
- Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
2
|
Voutyritsa E, Gryparis C, Theodorou A, Velonia K. Synthesis of Multifunctional Protein-Polymer Conjugates via Oxygen-tolerant, Aqueous Copper-Mediated Polymerization, and Bioorthogonal Click Chemistry. Macromol Rapid Commun 2023; 44:e2200976. [PMID: 37002553 DOI: 10.1002/marc.202200976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Indexed: 04/04/2023]
Abstract
Oxygen-tolerant, aqueous copper-mediated polymerization approaches are combined with click chemistry in either a sequential or a simultaneous manner, to enable the synthesis of multifunctional protein-polymer conjugates. Propargyl acrylate (PgA) and propargyl methacrylate (PgMA) grafting from a bovine serum albumin (BSA) macroinitiator is thoroughly optimized to synthesize chemically addressable BSA-poly(propargyl acrylate) and BSA-poly(propargyl methacrylate) respectively. The produced multifunctional bioconjugates bear pendant terminal 1-alkynes which can be readily post-functionalized via both [3+2] Huisgen cycloaddition and thiol-yne click chemistry under mild reaction conditions. Simultaneous oxygen-tolerant, aqueous copper-catalyzed polymerization, and click chemistry mediate the in situ multiple chemical tailoring of biomacromolecules in excellent yields.
Collapse
Affiliation(s)
- Errika Voutyritsa
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 70013, Greece
| | - Charis Gryparis
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 70013, Greece
| | - Alexis Theodorou
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 70013, Greece
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete, 70013, Greece
| |
Collapse
|
3
|
Shirinichi F, Ibrahim T, Rodriguez M, Sun H. Assembling the best of two worlds: Biomolecule‐polymer nanoparticles via polymerization‐induced self‐assembly. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Farbod Shirinichi
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Tarek Ibrahim
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Mia Rodriguez
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Hao Sun
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| |
Collapse
|
4
|
Theodorou A, Gounaris D, Voutyritsa E, Andrikopoulos N, Baltzaki CIM, Anastasaki A, Velonia K. Rapid Oxygen-Tolerant Synthesis of Protein-Polymer Bioconjugates via Aqueous Copper-Mediated Polymerization. Biomacromolecules 2022; 23:4241-4253. [PMID: 36067415 DOI: 10.1021/acs.biomac.2c00726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of protein-polymer conjugates usually requires extensive and costly deoxygenation procedures, thus limiting their availability and potential applications. In this work, we report the ultrafast synthesis of polymer-protein bioconjugates in the absence of any external deoxygenation via an aqueous copper-mediated methodology. Within 10 min and in the absence of any external stimulus such as light (which may limit the monomer scope and/or disrupt the secondary structure of the protein), a range of hydrophobic and hydrophilic monomers could be successfully grafted from a BSA macroinitiator, yielding well-defined polymer-protein bioconjugates at quantitative yields. Our approach is compatible with a wide range of monomer classes such as (meth) acrylates, styrene, and acrylamides as well as multiple macroinitiators including BSA, BSA nanoparticles, and beta-galactosidase from Aspergillus oryzae. Notably, the synthesis of challenging protein-polymer-polymer triblock copolymers was also demonstrated, thus significantly expanding the scope of our strategy. Importantly, both lower and higher scale polymerizations (from 0.2 to 35 mL) were possible without compromising the overall efficiency and the final yields. This simple methodology paves the way for a plethora of applications in aqueous solutions without the need of external stimuli or tedious deoxygenation.
Collapse
Affiliation(s)
- Alexis Theodorou
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Dimitris Gounaris
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Errika Voutyritsa
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Nicholas Andrikopoulos
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | | | | | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| |
Collapse
|
5
|
Kumar S, Binder WH. Peptide-induced RAFT polymerization via an amyloid-β 17-20-based chain transfer agent. SOFT MATTER 2020; 16:6964-6968. [PMID: 32717010 DOI: 10.1039/d0sm01169j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We here describe the synthesis of a novel peptide/polymer-conjugate, embedding the amyloid-β (Aβ) protein core sequence Leu-Val-Phe-Phe (LVFF, Aβ17-20) via RAFT polymerization. Based on a novel chain transfer-agent, the "grafting-from" approach effectively generates the well-defined peptide-polymer conjugates with appreciably high monomer conversion rate, resulting in mechanically stiffer peptide-functional cross-linked polymeric hydrogels.
Collapse
Affiliation(s)
- Sonu Kumar
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany. and Department of Applied Sciences (Chemistry), Punjab Engineering College (Deemed to be University), Sector 12, Chandigarh, 160012, India
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany.
| |
Collapse
|
6
|
Andrikopoulos N, Li Y, Cecchetto L, Nandakumar A, Da Ros T, Davis TP, Velonia K, Ke PC. Nanomaterial synthesis, an enabler of amyloidosis inhibition against human diseases. NANOSCALE 2020; 12:14422-14440. [PMID: 32638780 DOI: 10.1039/d0nr04273k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amyloid diseases are global epidemics with no cure currently available. In the past decade, the use of engineered nanomaterials as inhibitors or probes against the pathogenic aggregation of amyloid peptides and proteins has emerged as a new frontier in nanomedicine. In this Minireview, we summarize for the first time the pivotal role of chemical synthesis in enabling the development of this multidisciplinary field.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Luca Cecchetto
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia.
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
7
|
López-Andarias J, Saarbach J, Moreau D, Cheng Y, Derivery E, Laurent Q, González-Gaitán M, Winssinger N, Sakai N, Matile S. Cell-Penetrating Streptavidin: A General Tool for Bifunctional Delivery with Spatiotemporal Control, Mediated by Transport Systems Such as Adaptive Benzopolysulfane Networks. J Am Chem Soc 2020; 142:4784-4792. [PMID: 32109058 PMCID: PMC7307903 DOI: 10.1021/jacs.9b13621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/17/2022]
Abstract
In this report, cell-penetrating streptavidin (CPS) is introduced to exploit the full power of streptavidin-biotin biotechnology in cellular uptake. For this purpose, transporters, here cyclic oligochalcogenides (COCs), are covalently attached to lysines of wild-type streptavidin. This leaves all four biotin binding sites free for at least bifunctional delivery. To maximize the standards of the quantitative evaluation of cytosolic delivery, the recent chloroalkane penetration assay (CAPA) is coupled with automated high content (HC) imaging, a technique that combines the advantages of fluorescence microscopy and flow cytometry. According to the resulting HC-CAPA, cytosolic delivery of CPS equipped with four benzopolysulfanes was the best among all tested CPSs, also better than the much smaller TAT peptide, the original cell-penetrating peptide from HIV. HaloTag-GFP fusion proteins expressed on mitochondria were successfully targeted using CPS carrying two different biotinylated ligands, HaloTag substrates or anti-GFP nanobodies, interfaced with peptide nucleic acids, flipper force probes, or fluorescent substrates. The delivered substrates could be released from CPS into the cytosol through desthiobiotin-biotin exchange. These results validate CPS as a general tool which enables unrestricted use of streptavidin-biotin biotechnology in cellular uptake.
Collapse
Affiliation(s)
- Javier López-Andarias
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Jacques Saarbach
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Dimitri Moreau
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Yangyang Cheng
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Emmanuel Derivery
- MRC
Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Quentin Laurent
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Marcos González-Gaitán
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Nicolas Winssinger
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
8
|
Abstract
Bioconjugates made of the model red fluorescent protein mCherry and synthetic polymer blocks show that topology, i.e. the BA, BA2, ABA and ABC chain structure of the block copolymers, where B represents the protein and A and C represent polymers, has a significant effect on ordering transitions and the type and size of nanostructures formed during microphase separation.
Collapse
Affiliation(s)
- Takuya Suguri
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Yokkaichi Research Center
| | - Bradley D. Olsen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
9
|
Ju Y, Zhang Y, Zhao H. Fabrication of Polymer-Protein Hybrids. Macromol Rapid Commun 2018; 39:e1700737. [PMID: 29383794 DOI: 10.1002/marc.201700737] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Rapid developments in organic chemistry and polymer chemistry promote the synthesis of polymer-protein hybrids with different structures and biofunctionalities. In this feature article, recent progress achieved in the synthesis of polymer-protein conjugates, protein-nanoparticle core-shell structures, and polymer-protein nanogels/hydrogels is briefly reviewed. The polymer-protein conjugates can be synthesized by the "grafting-to" or the "grafting-from" approach. In this article, different coupling reactions and polymerization methods used in the synthesis of bioconjugates are reviewed. Protein molecules can be immobilized on the surfaces of nanoparticles by covalent or noncovalent linkages. The specific interactions and chemical reactions employed in the synthesis of core-shell structures are discussed. Finally, a general introduction to the synthesis of environmentally responsive polymer-protein nanogels/hydrogels by chemical cross-linking reactions or molecular recognition is provided.
Collapse
Affiliation(s)
- Yuanyuan Ju
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
10
|
Ni Y, Sun J, Wei Y, Fu X, Zhu C, Li Z. Two-Dimensional Supramolecular Assemblies from pH-Responsive Poly(ethyl glycol)-b-poly(l-glutamic acid)-b-poly(N-octylglycine) Triblock Copolymer. Biomacromolecules 2017; 18:3367-3374. [DOI: 10.1021/acs.biomac.7b01014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yunxia Ni
- Key Laboratory
of Biobased Polymer Materials, Shandong Provincial
Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Jing Sun
- Key Laboratory
of Biobased Polymer Materials, Shandong Provincial
Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Yuhan Wei
- Key Laboratory
of Biobased Polymer Materials, Shandong Provincial
Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Xiaohui Fu
- Key Laboratory
of Biobased Polymer Materials, Shandong Provincial
Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Chenhui Zhu
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhibo Li
- Key Laboratory
of Biobased Polymer Materials, Shandong Provincial
Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| |
Collapse
|
11
|
Wang L, Liu L, Dong B, Zhao H, Zhang M, Chen W, Hong Y. Multi-stimuli-responsive biohybrid nanoparticles with cross-linked albumin coronae self-assembled by a polymer-protein biodynamer. Acta Biomater 2017; 54:259-270. [PMID: 28286038 DOI: 10.1016/j.actbio.2017.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022]
Abstract
A thermoresponsive polymer-protein biodynamer was prepared via the bioconjugation of an aliphatic aldehyde-functionalized copolymer to hydrazine-modified bovine serum albumin (BSA) through reversible pyridylhydrazone linkages. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography (SEC) results indicated that the pyridylhydrazone linkages cleaved in an intracellular-mimicking acidic milieu, thus leading to the release of BSA. The dynamic character of the protein biodynamer was demonstrated by exchange reactions with aldehyde-containing molecules. The biodynamer self-assembled into spherical micelles at a temperature above its lower critical solution temperature (LCST). Subsequently, BSA molecules within the hydrophilic coronae of the micelles were readily cross-linked via reaction with cystamine at 45°C, and multi-stimuli-responsive nanoparticles were generated. The biohybrid nanoparticles reversibly swelled and shrank as the cores of the nanoparticles were solvated below the LCST and desolvated above the LCST. The accessible reversibility of the pyridylhydrazone bonds imparts pH-responsive and dynamic characteristics to the nanoparticles. The nanoparticles displayed glutathione (GSH) responsiveness, and the synergistic effects of pH and GSH resulted in complete disintegration of the nanoparticles under the intracellular-mimicking acidic and reductive conditions. The nanoparticles were also enzyme-responsive and disintegrated rapidly in the presence of protease. In vitro cytotoxicity and cell uptake assays demonstrated that the nanoparticles were highly biocompatible and effectively internalized by HepG2 cells, which make them interesting candidates as vehicles for drug delivery application and biomimetic platforms to investigate the biological process in nature. SIGNIFICANCE STATEMENT In this research, we report the synthesis of a temperature and pH dual-responsive polymer-protein biodynamer through reversible pyridylhydrazone formation. The prepared biodynamer can offer a potential platform for intracellular protein delivery. The multi-stimuli-responsive biohybrid nanoparticles containing disulfide functionalities are constructed by cross-linking albumin coronae of the biodynamer micelles. With the combination of a thermoresponsive polymer, protein and reversible covalent bonds, the biohybrid nanoparticles are endowed with highly biocompatible, environmentally responsive and adaptive features. These nanoparticles present the ability to undergo changes in their constitution, hydrodynamic size and nanostructure in response to physical, chemical and biological stimuli, which make them interesting candidates as vehicles for drug delivery application and a biomimetic platform to investigate the biological process in nature.
Collapse
|
12
|
Cohen-Karni D, Kovaliov M, Ramelot T, Konkolewicz D, Graner S, Averick S. Grafting challenging monomers from proteins using aqueous ICAR ATRP under bio-relevant conditions. Polym Chem 2017. [DOI: 10.1039/c7py00669a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aqueous ICAR ATRP was applied to graft well defined acrylamide, N,N-dimethylacrylamide and N-vinylimidazole homo and block copolymers from a model protein initiator (bovine serum albumin (BSA)) under bio-relevant conditions.
Collapse
Affiliation(s)
- Devora Cohen-Karni
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pitts-burgh
- USA
| | - Marina Kovaliov
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pitts-burgh
- USA
| | - Theresa Ramelot
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | | | - Scott Graner
- Department of Pathology
- Allegheny Health Network
- Allegheny General Hospital
- Pittsburgh
- USA
| | - Saadyah Averick
- Neuroscience Disruptive Research Lab
- Allegheny Health Network Research Institute
- Allegheny General Hospital
- Pitts-burgh
- USA
| |
Collapse
|
13
|
Sun J, Černoch P, Völkel A, Wei Y, Ruokolainen J, Schlaad H. Aqueous Self-Assembly of a Protein-Mimetic Ampholytic Block Copolypeptide. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00817] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jing Sun
- School
of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
- Department
of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Peter Černoch
- Institute of Macromolecular
Chemistry, Heyrovského nám.
2, 162 06 Praha
6, Czech Republic
- Department
of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Antje Völkel
- Department
of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Yuhan Wei
- School
of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Janne Ruokolainen
- Department
of Applied Physics, Aalto University Nanomicroscopy Center (Aalto-NMC), Puumiehenkuja
2, 02150 Espoo, Finland
| | - Helmut Schlaad
- Department
of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
14
|
Zhang Y, Zhao H. Surfactant Behavior of Amphiphilic Polymer-Tethered Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3567-3579. [PMID: 27018567 DOI: 10.1021/acs.langmuir.6b00267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, an emerging research area has been the surfactant behavior of polymer-tethered nanoparticles. In this feature article, we have provided a general introduction to the synthesis, self-assembly, and interfacial activity of polymer-tethered inorganic nanoparticles, polymer-tethered organic nanoparticles, and polymer-tethered natural nanoparticles. In addition, applications of the polymer-tethered nanoparticles in colloidal and materials science are briefly reviewed. All research demonstrates that amphiphilic polymer-tethered nanoparticles exhibit surfactant behavior and can be used as elemental building blocks for the fabrication of advanced structures by the self-assembly approach. The polymer-tethered nanoparticles provide new opportunities to engineer materials and biomaterials possessing specific functionality and physical properties.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University , Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
15
|
Wang JT, Hong Y, Ji X, Zhang M, Liu L, Zhao H. In situ fabrication of PHEMA–BSA core–corona biohybrid particles. J Mater Chem B 2016; 4:4430-4438. [DOI: 10.1039/c6tb00699j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(2-hydroxyethyl methacrylate)–bovine serum albumin core–corona particles were prepared using in situ activators generated by electron transfer for atom transfer radical polymerizations of HEMA initiated by a BSA macroinitiator.
Collapse
Affiliation(s)
- Jin-Tao Wang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Yanhang Hong
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Xiaotian Ji
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
16
|
Shi J, Wang X, Zhang S, Tang L, Jiang Z. Enzyme-conjugated ZIF-8 particles as efficient and stable Pickering interfacial biocatalysts for biphasic biocatalysis. J Mater Chem B 2016; 4:2654-2661. [DOI: 10.1039/c6tb00104a] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enzyme-based biphasic catalytic reactions were successfully accomplished by utilizing CRL-conjugated ZIF-8 particles as robust Pickering interfacial biocatalysts.
Collapse
Affiliation(s)
- Jiafu Shi
- School of Environmental Science & Engineering
- Tianjin University
- Tianjin 300072
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Xiaoli Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
| | - Shaohua Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
| | - Lei Tang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Zhongyi Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin 300072
- P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
| |
Collapse
|
17
|
Su H, Koo JM, Cui H. One-component nanomedicine. J Control Release 2015; 219:383-395. [PMID: 26423237 PMCID: PMC4656119 DOI: 10.1016/j.jconrel.2015.09.056] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/06/2023]
Abstract
One-component nanomedicine (OCN) represents an emerging class of therapeutic nanostructures that contain only one type of chemical substance. This one-component feature allows for fine-tuning and optimization of the drug loading and physicochemical properties of nanomedicine in a precise manner through molecular engineering of the underlying building blocks. Using a precipitation procedure or effective molecular assembly strategies, molecularly crafted therapeutic agents (e.g. polymer-drug conjugates, small molecule prodrugs, or drug amphiphiles) could involuntarily aggregate, or self-assemble into nanoscale objects of well-defined sizes and shapes. Unlike traditional carrier-based nanomedicines that are inherently multicomponent systems, an OCN does not require the use of additional carriers and could itself possess desired physicochemical features for preferential accumulation at target sites. We review here recent progress in the molecular design, conjugation methods, and fabrication strategies of OCN, and analyze the opportunities that this emerging platform could open for the new and improved treatment of devastating diseases such as cancer.
Collapse
Affiliation(s)
- Hao Su
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Jin Mo Koo
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA.
| |
Collapse
|
18
|
Moatsou D, Li J, Ranji A, Pitto-Barry A, Ntai I, Jewett MC, O’Reilly RK. Self-Assembly of Temperature-Responsive Protein-Polymer Bioconjugates. Bioconjug Chem 2015; 26:1890-9. [PMID: 26083370 PMCID: PMC4577958 DOI: 10.1021/acs.bioconjchem.5b00264] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/12/2015] [Indexed: 12/13/2022]
Abstract
We report a simple temperature-responsive bioconjugate system comprising superfolder green fluorescent protein (sfGFP) decorated with poly[(oligo ethylene glycol) methyl ether methacrylate] (PEGMA) polymers. We used amber suppression to site-specifically incorporate the non-canonical azide-functional amino acid p-azidophenylalanine (pAzF) into sfGFP at different positions. The azide moiety on modified sfGFP was then coupled using copper-catalyzed "click" chemistry with the alkyne terminus of a PEGMA synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The protein in the resulting bioconjugate was found to remain functionally active (i.e., fluorescent) after conjugation. Turbidity measurements revealed that the point of attachment of the polymer onto the protein scaffold has an impact on the thermoresponsive behavior of the resultant bioconjugate. Furthermore, small-angle X-ray scattering analysis showed the wrapping of the polymer around the protein in a temperature-dependent fashion. Our work demonstrates that standard genetic manipulation combined with an expanded genetic code provides an easy way to construct functional hybrid biomaterials where the location of the conjugation site on the protein plays an important role in determining material properties. We anticipate that our approach could be generalized for the synthesis of complex functional materials with precisely defined domain orientation, connectivity, and composition.
Collapse
Affiliation(s)
- Dafni Moatsou
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Jian Li
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Arnaz Ranji
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Anaïs Pitto-Barry
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Ioanna Ntai
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel K. O’Reilly
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
19
|
pH-responsive double hydrophilic protein-polymer hybrids and their self-assembly in aqueous solution. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3725-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Koda Y, Terashima T, Sawamoto M, Maynard HD. Amphiphilic/fluorous random copolymers as a new class of non-cytotoxic polymeric materials for protein conjugation. Polym Chem 2015. [DOI: 10.1039/c4py01346h] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amphiphilic/fluorous random copolymers bearing poly(ethylene glycol) chains and perfluorinated alkane pendants were developed as novel non-cytotoxic polymeric materials for protein conjugation.
Collapse
Affiliation(s)
- Yuta Koda
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Takaya Terashima
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Mitsuo Sawamoto
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| |
Collapse
|
21
|
Yu X, Li Y, Dong XH, Yue K, Lin Z, Feng X, Huang M, Zhang WB, Cheng SZD. Giant surfactants based on molecular nanoparticles: Precise synthesis and solution self-assembly. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23571] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinfei Yu
- Department of Polymer Science; College of Polymer Science and Polymer Engineering, The University of Akron; Akron Ohio 44325-3909
| | - Yiwen Li
- Department of Polymer Science; College of Polymer Science and Polymer Engineering, The University of Akron; Akron Ohio 44325-3909
| | - Xue-Hui Dong
- Department of Polymer Science; College of Polymer Science and Polymer Engineering, The University of Akron; Akron Ohio 44325-3909
| | - Kan Yue
- Department of Polymer Science; College of Polymer Science and Polymer Engineering, The University of Akron; Akron Ohio 44325-3909
| | - Zhiwei Lin
- Department of Polymer Science; College of Polymer Science and Polymer Engineering, The University of Akron; Akron Ohio 44325-3909
| | - Xueyan Feng
- Department of Polymer Science; College of Polymer Science and Polymer Engineering, The University of Akron; Akron Ohio 44325-3909
| | - Mingjun Huang
- Department of Polymer Science; College of Polymer Science and Polymer Engineering, The University of Akron; Akron Ohio 44325-3909
| | - Wen-Bin Zhang
- Department of Polymer Science; College of Polymer Science and Polymer Engineering, The University of Akron; Akron Ohio 44325-3909
- Department of Polymer Science and Engineering; Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University; Beijing 100871 People's Republic of China
| | - Stephen Z. D. Cheng
- Department of Polymer Science; College of Polymer Science and Polymer Engineering, The University of Akron; Akron Ohio 44325-3909
| |
Collapse
|
22
|
Santos JL, Herrera-Alonso M. Kinetically Arrested Assemblies of Architecturally Distinct Block Copolymers. Macromolecules 2013. [DOI: 10.1021/ma402047e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- José Luis Santos
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Margarita Herrera-Alonso
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
23
|
Abstract
Linear polymers have been considered the best molecular structures for the formation of efficient protein conjugates due to their biological advantages, synthetic convenience and ease of functionalization. In recent years, much attention has been dedicated to develop synthetic strategies that produce the most control over protein conjugation utilizing linear polymers as scaffolds. As a result, different conjugate models, such as semitelechelic, homotelechelic, heterotelechelic and branched or star polymer conjugates, have been obtained that take advantage of these well-controlled synthetic strategies. Development of protein conjugates using nanostructures and the formation of said nanostructures from protein-polymer bioconjugates are other areas in the protein bioconjugation field. Although several polymer-protein technologies have been developed from these discoveries, few review articles have focused on the design and function of these polymers and nanostructures. This review will highlight some recent advances in protein-linear polymer technologies that employ protein covalent conjugation and successful protein-nanostructure bioconjugates (covalent conjugation as well) that have shown great potential for biological applications.
Collapse
|
24
|
|
25
|
Okiyama N, Ota E, Sumino A, Noji T, Yamamoto K, Oku JI, Dewa T, Tanaka T, Mizuno T. Creation of Fibrous Nanotubes of Green Fluorescent Protein by Conjugation with pH-Responsive Polymer, Poly(2-vinylpyridine), and Use of Microfluidic Synthesis. CHEM LETT 2013. [DOI: 10.1246/cl.130033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naoya Okiyama
- Graduate School of Engineering, Nagoya Institute of Technology
| | - Eriko Ota
- Graduate School of Engineering, Nagoya Institute of Technology
| | - Ayumi Sumino
- Graduate School of Engineering, Nagoya Institute of Technology
| | - Tomoyasu Noji
- Graduate School of Engineering, Nagoya Institute of Technology
| | | | - Jun-ichi Oku
- Graduate School of Engineering, Nagoya Institute of Technology
| | - Takehisa Dewa
- Graduate School of Engineering, Nagoya Institute of Technology
| | - Toshiki Tanaka
- Graduate School of Engineering, Nagoya Institute of Technology
| | | |
Collapse
|
26
|
Kuan SL, Wu Y, Weil T. Precision Biopolymers from Protein Precursors for Biomedical Applications. Macromol Rapid Commun 2013; 34:380-92. [DOI: 10.1002/marc.201200662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/27/2012] [Indexed: 12/17/2022]
|
27
|
Haspel N, Laurent AD, Zanuy D, Nussinov R, Alemán C, Puiggalí J, Revilla-López G. Conformational exploration of two peptides and their hybrid polymer conjugates: potentialities as self-aggregating materials. J Phys Chem B 2012; 116:13941-52. [PMID: 23157485 PMCID: PMC7512015 DOI: 10.1021/jp3043363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this work we elucidate the conformational preferences of two amyloid-forming peptides, Arginine-Vasopressin and Neuromedin-K, and two new biomacromolecular conjugates obtained by linking the two peptides to a polyester (poly(R-lactic acid)) chain. The conformational properties of the new hybrid conjugates have been assessed through molecular dynamics simulations and compared to those of their individual components. Our results suggest that the free unconjugated peptides tend to adopt backbone arrangements which resemble a β-hairpin shape, a conformation which has been reported to facilitate amyloid self-aggregation. The backbone conformational preferences of the unlinked peptides are maintained in the peptide-polymer hybrid. Yet significant differences in the side-chains nonbonding interactions patterns were detected between the two states. This suggests that the conformational profile of the peptides' backbones is preserved when linked to the polymer, maintaining the amyloid precursor-like structure. Additionally, several hydrodynamic parameters were computed for both the polylactic acid and for the conjugates: no significant differences were observed, which suggests that the peptide moiety of the hybrid does not significantly affect the conformational tendencies of the polymer chain. Combined, our results provide a conformational exploration of two amyloid-forming peptides and first steps toward the design of two feasible self-aggregating hybrid materials.
Collapse
Affiliation(s)
- Nurit Haspel
- UMass Boston, Department of Compuer Science, Boston, MA 02125 USA
| | - Adèle D. Laurent
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | - David Zanuy
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland 21702
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carlos Alemán
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | - Guillem Revilla-López
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| |
Collapse
|
28
|
Tada S, Andou T, Suzuki T, Dohmae N, Kobatake E, Ito Y. Genetic PEGylation. PLoS One 2012; 7:e49235. [PMID: 23145132 PMCID: PMC3493536 DOI: 10.1371/journal.pone.0049235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022] Open
Abstract
Polyethylene glycol (PEG) was genetically incorporated into a polypeptide. Stop-anticodon-containing tRNAs were acylated with PEG-containing amino acids and were then translated into polypeptides corresponding to DNA sequences containing the stop codons. The molecular weights of the PEG used were 170, 500, 700, 1000, and 2000 Da, and the translation was confirmed by mass spectrometry. The PEG incorporation ratio decreased as the molecular weight of PEG increased, and PEG with a molecular weight of 1000 Da was only slightly incorporated. Although improvement is required to increase the efficiency of the process, this study demonstrates the possibility of genetic PEGylation.
Collapse
Affiliation(s)
- Seiichi Tada
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - Takashi Andou
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Team, Chemical Biology Core Facility, Chemical Biology Department, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Team, Chemical Biology Core Facility, Chemical Biology Department, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - Eiry Kobatake
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
29
|
Li Y, Dong XH, Guo K, Wang Z, Chen Z, Wesdemiotis C, Quirk RP, Zhang WB, Cheng SZD. Synthesis of Shape Amphiphiles Based on POSS Tethered with Two Symmetric/Asymmetric Polymer Tails via Sequential "Grafting-from" and Thiol-Ene "Click" Chemistry. ACS Macro Lett 2012; 1:834-839. [PMID: 35607128 DOI: 10.1021/mz300196x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A series of shape amphiphiles based on functionalized polyhedral oligomeric silsesquioxane (POSS) head tethered with two polymeric tails of symmetric or asymmetric compositions was designed and synthesized using sequential "grafting-from" and "click" surface functionalization. The monofunctionalization of octavinylPOSS was performed using thiol-ene chemistry to afford a dihydroxyl-functionalized POSS that was further derived into precisely defined homo- and heterobifunctional macroinitiators. Polymer tails, such as polycaprolactone and polystyrene, could then be grown from these POSS-based macroinitiators with controlled molecular weight via ring-opening polymerization and atom transfer radical polymerization (ATRP). The vinyl groups on POSS were found to be compatible with ATRP conditions. These macromolecular precursors were further modified by thiol-ene chemistry to install surface functionalities onto the POSS cage. The polymer chain composition and POSS surface chemistry can thus be tuned separately in a modular and efficient way.
Collapse
Affiliation(s)
- Yiwen Li
- Department
of Polymer Science, College of Polymer Science and Polymer
Engineering, ‡Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Xue-Hui Dong
- Department
of Polymer Science, College of Polymer Science and Polymer
Engineering, ‡Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Kai Guo
- Department
of Polymer Science, College of Polymer Science and Polymer
Engineering, ‡Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Zhao Wang
- Department
of Polymer Science, College of Polymer Science and Polymer
Engineering, ‡Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Ziran Chen
- Department
of Polymer Science, College of Polymer Science and Polymer
Engineering, ‡Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Chrys Wesdemiotis
- Department
of Polymer Science, College of Polymer Science and Polymer
Engineering, ‡Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Roderic P. Quirk
- Department
of Polymer Science, College of Polymer Science and Polymer
Engineering, ‡Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Wen-Bin Zhang
- Department
of Polymer Science, College of Polymer Science and Polymer
Engineering, ‡Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Stephen Z. D. Cheng
- Department
of Polymer Science, College of Polymer Science and Polymer
Engineering, ‡Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
30
|
Tada S, Kitajima T, Ito Y. Design and synthesis of binding growth factors. Int J Mol Sci 2012; 13:6053-6072. [PMID: 22754349 PMCID: PMC3382770 DOI: 10.3390/ijms13056053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 05/09/2012] [Indexed: 01/01/2023] Open
Abstract
Growth factors play important roles in tissue regeneration. However, because of their instability and diffusible nature, improvements in their performance would be desirable for therapeutic applications. Conferring binding affinities would be one way to improve their applicability. Here we review techniques for conjugating growth factors to polypeptides with particular affinities. Conjugation has been designed at the level of gene fusion and of polypeptide ligation. We summarize and discuss the designs and applications of binding growth factors prepared by such conjugation approaches.
Collapse
Affiliation(s)
- Seiichi Tada
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takashi Kitajima
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
31
|
Ito Y. Elaborate Synthesis of Biological Macromolecules. Chembiochem 2012; 13:1100-2. [DOI: 10.1002/cbic.201200183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Indexed: 11/10/2022]
|
32
|
Sumerlin BS. Proteins as Initiators of Controlled Radical Polymerization: Grafting-from via ATRP and RAFT. ACS Macro Lett 2012; 1:141-145. [PMID: 35578469 DOI: 10.1021/mz200176g] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many recent developments in polymer chemistry have advanced the synthesis of materials in which synthetic polymers are immobilized to biological (macro)molecules to enhance the solubility, stability, activity, or therapeutic utility of the biological entity. In particular, the versatility and robust nature of controlled radical polymerization (CRP) has enabled access to a diverse family of new polymer bioconjugates. While nitroxide-mediated, atom transfer radical (ATRP), and reversible addition-fragmentation chain transfer (RAFT) polymerizations have all proven useful for the preparation of well-defined end-functional polymers capable of being efficiently conjugated to biological molecules, ATRP and RAFT have proven especially proficient for the synthesis of conjugates by direct polymerization of vinyl monomers from biological components functionalized to contain a group capable of initiating chain growth. This Viewpoint highlights several recent advances that have relied on grafting-from by CRP, with particular attention devoted to a recent report that seeks to facilitate the process of grafting-from proteins via ATRP under biologically relevant conditions.
Collapse
Affiliation(s)
- Brent S. Sumerlin
- Department
of Chemistry and Center for
Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, Texas 75275-0314, United
States
| |
Collapse
|
33
|
Jones MW, Strickland RA, Schumacher FF, Caddick S, Baker JR, Gibson MI, Haddleton DM. Polymeric Dibromomaleimides As Extremely Efficient Disulfide Bridging Bioconjugation and Pegylation Agents. J Am Chem Soc 2012; 134:1847-52. [DOI: 10.1021/ja210335f] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mathew W. Jones
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | | | - Stephen Caddick
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - James. R. Baker
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | |
Collapse
|
34
|
Meeuwissen SA, Debets MF, van Hest JCM. Copper-free click chemistry on polymersomes: pre- vs. post-self-assembly functionalisation. Polym Chem 2012. [DOI: 10.1039/c2py00466f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Jung B, Theato P. Chemical Strategies for the Synthesis of Protein–Polymer Conjugates. BIO-SYNTHETIC POLYMER CONJUGATES 2012. [DOI: 10.1007/12_2012_169] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Zheng X, Yue M, Yang P, Li Q, Yang W. Cycloketyl radical mediated living polymerization. Polym Chem 2012. [DOI: 10.1039/c2py20117h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Zhang Q, Slavin S, Jones MW, Haddleton AJ, Haddleton DM. Terminal functional glycopolymers via a combination of catalytic chain transfer polymerisation (CCTP) followed by three consecutive click reactions. Polym Chem 2012. [DOI: 10.1039/c2py20013a] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Broyer RM, Grover GN, Maynard HD. Emerging synthetic approaches for protein-polymer conjugations. Chem Commun (Camb) 2011; 47:2212-26. [PMID: 21229146 PMCID: PMC3066092 DOI: 10.1039/c0cc04062b] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein-polymer conjugates are important in diverse fields including drug delivery, biotechnology, and nanotechnology. This feature article highlights recent advances in the synthesis and application of protein-polymer conjugates by controlled radical polymerization techniques. Special emphasis on new applications of the materials, particularly in biomedicine, is provided.
Collapse
Affiliation(s)
| | | | - Heather D. Maynard
- Department of Chemistry & Biochemistry and the California NanoSystems Institute, University of California, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA. ; Tel: +1 310 267 5162
| |
Collapse
|
39
|
Messman JM, Pickel DL, Goswami M, Uhrig DW, Sumpter BG, Mays JW. Combatting ionic aggregation using dielectric forces—combining modeling/simulation and experimental results to explain end-capping of primary amine functionalized polystyrene. Polym Chem 2011. [DOI: 10.1039/c1py00226k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Averick SE, Magenau AJD, Simakova A, Woodman BF, Seong A, Mehl RA, Matyjaszewski K. Covalently incorporated protein–nanogels using AGET ATRP in an inverse miniemulsion. Polym Chem 2011. [DOI: 10.1039/c1py00050k] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
|
42
|
Jones MW, Gibson MI, Mantovani G, Haddleton DM. Tunable thermo-responsive polymer–protein conjugates via a combination of nucleophilic thiol–ene “click” and SET-LRP. Polym Chem 2011. [DOI: 10.1039/c0py00329h] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Slavin S, Khoshdel E, Haddleton DM. PEGylation of surface protein filaments: coverage and impact on denaturation. RSC Adv 2011. [DOI: 10.1039/c1ra00157d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
44
|
Bebis K, Jones MW, Haddleton DM, Gibson MI. Thermoresponsive behaviour of poly[(oligo(ethyleneglycol methacrylate)]s and their protein conjugates: importance of concentration and solvent system. Polym Chem 2011. [DOI: 10.1039/c0py00408a] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|