1
|
Tabatabaei F, Merabia S, Gotsmann B, Prunnila M, Niehaus TA. Molecular electronic refrigeration against parallel phonon heat leakage channels. NANOSCALE 2022; 14:11003-11011. [PMID: 35861384 DOI: 10.1039/d2nr00529h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to their structured density of states, molecular junctions provide rich resources to filter and control the flow of electrons and phonons. Here we compute the out of equilibrium current-voltage characteristics and dissipated heat of some recently synthesized oligophenylenes (OPE3) using the Density Functional based Tight-Binding (DFTB) method within Non-Equilibrium Green's Function Theory (NEGF). We analyze the Peltier cooling power for these molecular junctions as function of a bias voltage and investigate the parameters that lead to optimal cooling performance. In order to quantify the attainable temperature reduction, an electro-thermal circuit model is presented, in which the key electronic and thermal transport parameters enter. Overall, our results demonstrate that the studied OPE3 devices are compatible with temperature reductions of several K. Based on the results, some strategies to enable high performance devices for cooling applications are briefly discussed.
Collapse
Affiliation(s)
- Fatemeh Tabatabaei
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France.
| | - Samy Merabia
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France.
| | | | - Mika Prunnila
- VTT Technical Research Centre of Finland Ltd., Tietotie 3, FI-02150 Espoo, Finland
| | - Thomas A Niehaus
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France.
| |
Collapse
|
2
|
Natali M, Prosa M, Longo A, Brucale M, Mercuri F, Buonomo M, Lago N, Benvenuti E, Prescimone F, Bettini C, Cester A, Melucci M, Muccini M, Toffanin S. On the Nature of Charge-Injecting Contacts in Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30616-30626. [PMID: 32519550 DOI: 10.1021/acsami.0c05106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Organic field-effect transistors (OFETs) are key enabling devices for plastic electronics technology, which has a potentially disruptive impact on a variety of application fields, such as health, safety, and communication. Despite the tremendous advancements in understanding the OFET working mechanisms and device performance, further insights into the complex correlation between the nature of the charge-injecting contacts and the electrical characteristics of devices are still necessary. Here, an in-depth study of the metal-organic interfaces that provides a direct correlation to the performance of OFET devices is reported. The combination of synchrotron X-ray spectroscopy, atomic force microscopy, electron microscopy, and theoretical simulations on two selected electron transport organic semiconductors with tailored chemical structures allows us to gain insights into the nature of the injecting contacts. This multiple analysis repeated at the different stages of contact formation provides a clear picture on the synergy between organic/metal interactions, interfacial morphology, and structural organization of the electrode. The simultaneous synchrotron X-ray experiments and electrical measurements of OFETs in operando uncovers how the nature of the charge-injecting contacts has a direct impact on the injection potential of OFETs.
Collapse
Affiliation(s)
- Marco Natali
- Consiglio Nazionale delle Ricerche (CNR)-Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Mario Prosa
- Consiglio Nazionale delle Ricerche (CNR)-Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Alessandro Longo
- Consiglio Nazionale delle Ricerche (CNR)-Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
- European Synchrotron Radiation Facility, The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche (CNR)-Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Francesco Mercuri
- Consiglio Nazionale delle Ricerche (CNR)-Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Marco Buonomo
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Nicolò Lago
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Emilia Benvenuti
- Consiglio Nazionale delle Ricerche (CNR)-Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Federico Prescimone
- Consiglio Nazionale delle Ricerche (CNR)-Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Cristian Bettini
- Consiglio Nazionale delle Ricerche (CNR)-Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Andrea Cester
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Manuela Melucci
- Consiglio Nazionale delle Ricerche (CNR)-Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche (CNR)-Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Stefano Toffanin
- Consiglio Nazionale delle Ricerche (CNR)-Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
3
|
Sato H, Ushiyama S, Sogo M, Aoki M, Shudo KI, Sugawara T, Yanagisawa S, Morikawa Y, Masuda S. Local electronic properties at organic–metal interfaces: thiophene derivatives on Pt(111). Phys Chem Chem Phys 2012; 14:15412-20. [DOI: 10.1039/c2cp42700a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Aoki M, Kamada T, Sasaki K, Masuda S, Morikawa Y. Chemisorption-induced gap states at organic–metal interfaces: benzenethiol and benzeneselenol on metal surfaces. Phys Chem Chem Phys 2012; 14:4101-8. [DOI: 10.1039/c2cp23206e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Sogo M, Sakamoto Y, Aoki M, Masuda S. Potassium-benzene interactions on Pt(111) studied by metastable atom electron spectroscopy. J Chem Phys 2010; 133:134704. [PMID: 20942552 DOI: 10.1063/1.3482849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Electron emission spectra obtained by thermal collisions of He(∗)(2(3)S) metastable atoms with C(6)H(6)/Pt(111), C(6)H(6)/K/Pt(111), and K/C(6)H(6)/Pt(111) were measured in the temperature range of 50-200 K to elucidate the adsorption/aggregation states, thermal stabilities of pure and binary films, and local electronic properties at the organic-metal interface. For C(6)H(6)/Pt(111), the He(∗)(2(3)S) atoms de-excite on the chemisorbed overlayer predominantly via resonance ionization followed by Auger neutralization and partly via Penning ionization (PI) yielding weak emission just below the Fermi level (E(F)). We assigned this emission to the C(6)H(6) π-derived states delocalized over the Pt 5d bands on the basis of recent density functional calculations. During the layer-by-layer growth, the C(6)H(6)-derived bands via PI reveal a characteristic shift caused by the final-state effect (hole response at the topmost layer). C(6)H(6) molecules chemisorb weakly on the bimetallic Pt(111) (θ(K)=0.1) and physisorb on the K multilayer. In both cases, the sum rule was found to be valid between the K 4s and C(6)H(6)-derived bands. The band intensity versus exposure plot indicates that the C(6)H(6) film grows on the K multilayer by the Volmer-Weber mechanism (island growth), reflecting the weak K-C(6)H(6) interactions. In case of K/C(6)H(6)/Pt(111), the K atoms are trapped on the topmost C(6)H(6) layer at 65 K, forming particlelike clusters. The surface plasmon satellite was identified for the first time and the loss energy increases with increasing cluster size. The K clusters are unstable above ∼100 K due to thermal migration into the C(6)H(6) film. When the cluster coverage is low, the K 4s band extends below and above E(F) of the Pt substrate and the anomaly is discussed in terms of vacuum level bending around the cluster.
Collapse
Affiliation(s)
- M Sogo
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|