1
|
Neal EA, Nakanishi T. Alkyl-Fullerene Materials of Tunable Morphology and Function. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Edward A. Neal
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Nakanishi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
2
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
3
|
Zhao S, Caruso F, Dähne L, Decher G, De Geest BG, Fan J, Feliu N, Gogotsi Y, Hammond PT, Hersam MC, Khademhosseini A, Kotov N, Leporatti S, Li Y, Lisdat F, Liz-Marzán LM, Moya S, Mulvaney P, Rogach AL, Roy S, Shchukin DG, Skirtach AG, Stevens MM, Sukhorukov GB, Weiss PS, Yue Z, Zhu D, Parak WJ. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Möhwald. ACS NANO 2019; 13:6151-6169. [PMID: 31124656 DOI: 10.1021/acsnano.9b03326] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles.
Collapse
Affiliation(s)
- Shuang Zhao
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Lars Dähne
- Surflay Nanotec GmbH , 12489 Berlin , Germany
| | - Gero Decher
- CNRS Institut Charles Sadron, Faculté de Chimie , Université de Strasbourg, Int. Center for Frontier Research in Chemistry , Strasbourg F-67034 , France
- Int. Center for Materials Nanoarchitectonics , Ibaraki 305-0044 , Japan
| | - Bruno G De Geest
- Department of Pharmaceutics , Ghent University , 9000 Ghent , Belgium
| | - Jinchen Fan
- Department of Chemical Engineering and Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48105 , United States
| | - Neus Feliu
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Yury Gogotsi
- Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Paula T Hammond
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02459 , United States
| | - Mark C Hersam
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208-3108 , United States
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Nicholas Kotov
- Department of Chemical Engineering and Biointerfaces Institute , University of Michigan , Ann Arbor , Michigan 48105 , United States
- Michigan Institute for Translational Nanotechnology , Ypsilanti , Michigan 48198 , United States
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia , Italian National Research Council , Lecce 73100 , Italy
| | - Yan Li
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Fred Lisdat
- Biosystems Technology, Institute for Applied Life Sciences , Technical University , D-15745 Wildau , Germany
| | - Luis M Liz-Marzán
- CIC biomaGUNE , San Sebastian 20009 , Spain
- Ikerbasque, Basque Foundation for Science , Bilbao 48013 , Spain
| | | | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP) , City University of Hong Kong , Kowloon Tong , Hong Kong SAR
| | - Sathi Roy
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Dmitry G Shchukin
- Stephenson Institute for Renewable Energy, Department of Chemistry , University of Liverpool , Liverpool L69 7ZF , United Kingdom
| | - Andre G Skirtach
- Nano-BioTechnology group, Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , 9000 Ghent , Belgium
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , United Kingdom
| | - Paul S Weiss
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry and Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Zhao Yue
- Department of Microelectronics , Nankai University , Tianjin 300350 , China
| | - Dingcheng Zhu
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
- CIC biomaGUNE , San Sebastian 20009 , Spain
| |
Collapse
|
4
|
Wayu MB, Pannell MJ, Labban N, Case WS, Pollock JA, Leopold MC. Functionalized carbon nanotube adsorption interfaces for electron transfer studies of galactose oxidase. Bioelectrochemistry 2018; 125:116-126. [PMID: 30449323 DOI: 10.1016/j.bioelechem.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
Modified electrodes featuring specific adsorption platforms able to access the electrochemistry of the copper containing enzyme galactose oxidase (GaOx) were explored, including interfaces featuring nanomaterials such as nanoparticles and carbon nanotubes (CNTs). Electrodes modified with various self-assembled monolayers (SAMs) including those with attached nanoparticles or amide-coupled functionalized CNTs were examined for their ability to effectively immobilize GaOx and study the redox activity related to its copper core. While stable GaOx electrochemistry has been notoriously difficult to achieve at modified electrodes, strategically designed functionalized CNT-based interfaces, cysteamine SAM-modified electrode subsequently amide-coupled to carboxylic acid functionalized single wall CNTs, were significantly more effective with high GaOx surface adsorption along with well-defined, more reversible, stable (≥ 8 days) voltammetry and an average ET rate constant of 0.74 s-1 in spite of increased ET distance - a result attributed to effective electronic coupling at the GaOx active site. Both amperometric and fluorescence assay results suggest embedded GaOx remains active. Fundamental ET properties of GaOx may be relevant to biosensor development targeting galactosemia while the use functionalized CNT platforms for adsorption/electrochemistry of electroactive enzymes/proteins may present an approach for fundamental protein electrochemistry and their future use in both direct and indirect biosensor schemes.
Collapse
Affiliation(s)
- Mulugeta B Wayu
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - Michael J Pannell
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - Najwa Labban
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - William S Case
- Department of Biology, Chemistry, and Physics, Converse College, Spartanburg, SC 29302, United States
| | - Julie A Pollock
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - Michael C Leopold
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States.
| |
Collapse
|
6
|
Lu F, Nakanishi T. Alkyl- π engineering in state control toward versatile optoelectronic soft materials. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:014805. [PMID: 27877748 PMCID: PMC5036497 DOI: 10.1088/1468-6996/16/1/014805] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 05/30/2023]
Abstract
Organic π-conjugated molecules with extremely rich and tailorable electronic and optical properties are frequently utilized for the fabrication of optoelectronic devices. To achieve high solubility for facile solution processing and desirable softness for flexible device fabrication, the rigid π units were in most cases attached by alkyl chains through chemical modification. Considerable numbers of alkylated-π molecular systems with versatile applications have been reported. However, a profound understanding of the molecular state control through proper alkyl chain substitution is still highly demanded because effective applications of these molecules are closely related to their physical states. To explore the underlying rule, we review a large number of alkylated-π molecules with emphasis on the interplay of van der Waals interactions (vdW) of the alkyl chains and π-π interactions of the π moieties. Based on our comprehensive investigations of the two interactions' impacts on the physical states of the molecules, a clear guidance for state control by alkyl-π engineering is proposed. Specifically, either with proper alkyl chain substitution or favorable additives, the vdW and π-π interactions can be adjusted, resulting in modulation of the physical states and optoelectronic properties of the molecules. We believe the strategy summarized here will significantly benefit the alkyl-π chemistry toward wide-spread applications in optoelectronic devices.
Collapse
Affiliation(s)
- Fengniu Lu
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | | |
Collapse
|
9
|
Sezer M, Millo D, Weidinger IM, Zebger I, Hildebrandt P. Analyzing the catalytic processes of immobilized redox enzymes by vibrational spectroscopies. IUBMB Life 2012; 64:455-64. [PMID: 22535701 DOI: 10.1002/iub.1020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/12/2012] [Indexed: 11/10/2022]
Abstract
Analyzing the structure and function of redox enzymes attached to electrodes is a central challenge in many fields of fundamental and applied life science. Electrochemical techniques such as cyclic voltammetry which are routinely used do not provide insight into the molecular structure and reaction mechanisms of the immobilized proteins. Surface-enhanced infrared absorption (SEIRA) and surface-enhanced resonance Raman (SERR) spectroscopy may fill this gap, if nanostructured Au or Ag are used as conductive support materials. In this account, we will first outline the principles of the methodology including a description of the most important strategies for biocompatible protein immobilization. Subsequently, we will critically review SERR and SEIRA spectroscopic approaches to characterize the protein and active site structure of the immobilized enzymes. Special emphasis is laid on the combination of surface-enhanced vibrational spectroscopies with electrochemical methods to analyze equilibria and dynamics of the interfacial redox processes. Finally, we will assess the potential of SERR and SEIRA spectroscopy for in situ investigations on the basis of the first promising studies on human sulfite oxidase and hydrogenases under turnover conditions.
Collapse
Affiliation(s)
- Murat Sezer
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | | | |
Collapse
|
13
|
Ly HK, Sezer M, Wisitruangsakul N, Feng JJ, Kranich A, Millo D, Weidinger IM, Zebger I, Murgida DH, Hildebrandt P. Surface-enhanced vibrational spectroscopy for probing transient interactions of proteins with biomimetic interfaces: electric field effects on structure, dynamics and function of cytochrome c. FEBS J 2011; 278:1382-90. [PMID: 21352495 DOI: 10.1111/j.1742-4658.2011.08064.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most of the biochemical and biophysical processes of proteins take place at membranes, and are thus under the influence of strong local electric fields, which are likely to affect the structure as well as the reaction mechanism and dynamics. To analyse such electric field effects, biomimetic interfaces may be employed that consist of membrane models deposited on nanostructured metal electrodes. For such devices, surface-enhanced resonance Raman and IR absorption spectroscopy are powerful techniques to disentangle the complex interfacial processes of proteins in terms of rotational diffusion, electron transfer, and protein and cofactor structural changes. The present article reviews the results obtained for the haem protein cytochrome c, which is widely used as a model protein for studying the various reaction steps of interfacial redox processes in general. In addition, it is shown that electric field effects may be functional for the natural redox processes of cytochrome c in the respiratory chain, as well as for the switch from the redox to the peroxidase function, one of the key events preceding apoptosis.
Collapse
Affiliation(s)
- Hong Khoa Ly
- Technische Universität Berlin, Institut für Chemie, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|