1
|
Youden B, Yang D, Carrier A, Oakes K, Servos M, Jiang R, Zhang X. Speciation Analysis of Metals and Metalloids by Surface Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39250346 DOI: 10.1021/acs.est.4c06906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The presence of metalloids and heavy metals in the environment is of critical concern due to their toxicological impacts. However, not all metallic species have the same risk level. Specifically, the physical, chemical, and isotopic speciation of the metal(loids) dictate their metabolism, toxicity, and environmental fate. As such, speciation analysis is critical for environmental monitoring and risk assessment. In the past two decades, surface-enhanced Raman spectroscopy (SERS) has seen significant developments regarding trace metal(loid) sensing due to its ultrahigh sensitivity, readiness for in situ real-time applications, and cost-effectiveness. However, the speciation of metal(loid)s has not been accounted for in the design and application of SERS sensors. In this Perspective, we examine the potential of SERS for metal(loid) speciation analysis and highlight the advantages, progress, opportunities, and challenges of this application.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dongchang Yang
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
2
|
Ranasinghe JC, Wang Z, Huang S. Unveiling brain disorders using liquid biopsy and Raman spectroscopy. NANOSCALE 2024; 16:11879-11913. [PMID: 38845582 PMCID: PMC11290551 DOI: 10.1039/d4nr01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Brain disorders, including neurodegenerative diseases (NDs) and traumatic brain injury (TBI), present significant challenges in early diagnosis and intervention. Conventional imaging modalities, while valuable, lack the molecular specificity necessary for precise disease characterization. Compared to the study of conventional brain tissues, liquid biopsy, which focuses on blood, tear, saliva, and cerebrospinal fluid (CSF), also unveils a myriad of underlying molecular processes, providing abundant predictive clinical information. In addition, liquid biopsy is minimally- to non-invasive, and highly repeatable, offering the potential for continuous monitoring. Raman spectroscopy (RS), with its ability to provide rich molecular information and cost-effectiveness, holds great potential for transformative advancements in early detection and understanding the biochemical changes associated with NDs and TBI. Recent developments in Raman enhancement technologies and advanced data analysis methods have enhanced the applicability of RS in probing the intricate molecular signatures within biological fluids, offering new insights into disease pathology. This review explores the growing role of RS as a promising and emerging tool for disease diagnosis in brain disorders, particularly through the analysis of liquid biopsy. It discusses the current landscape and future prospects of RS in the diagnosis of brain disorders, highlighting its potential as a non-invasive and molecularly specific diagnostic tool.
Collapse
Affiliation(s)
- Jeewan C Ranasinghe
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Ziyang Wang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
3
|
Lucas IT, Bazin D, Daudon M. Raman opportunities in the field of pathological calcifications. CR CHIM 2022. [DOI: 10.5802/crchim.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Schultz JF, Mahapatra S, Li L, Jiang N. The Expanding Frontiers of Tip-Enhanced Raman Spectroscopy. APPLIED SPECTROSCOPY 2020; 74:1313-1340. [PMID: 32419485 DOI: 10.1177/0003702820932229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fundamental understanding of chemistry and physical properties at the nanoscale enables the rational design of interface-based systems. Surface interactions underlie numerous technologies ranging from catalysis to organic thin films to biological systems. Since surface environments are especially prone to heterogeneity, it becomes crucial to characterize these systems with spatial resolution sufficient to localize individual active sites or defects. Spectroscopy presents as a powerful means to understand these interactions, but typical light-based techniques lack sufficient spatial resolution. This review describes the growing number of applications for the nanoscale spectroscopic technique, tip-enhanced Raman spectroscopy (TERS), with a focus on developments in areas that involve measurements in new environmental conditions, such as liquid, electrochemical, and ultrahigh vacuum. The expansion into unique environments enables the ability to spectroscopically define chemistry at the spatial limit. Through the confinement and enhancement of light at the apex of a plasmonic scanning probe microscopy tip, TERS is able to yield vibrational fingerprint information of molecules and materials with nanoscale resolution, providing insight into highly localized chemical effects.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| | - Sayantan Mahapatra
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| | - Linfei Li
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| | - Nan Jiang
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
5
|
Schultz JF, Li S, Jiang S, Jiang N. Optical scanning tunneling microscopy based chemical imaging and spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:463001. [PMID: 32702674 DOI: 10.1088/1361-648x/aba8c7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Through coupling optical processes with the scanning tunneling microscope (STM), single-molecule chemistry and physics have been investigated at the ultimate spatial and temporal limit. Electrons and photons can be used to drive interactions and reactions in chemical systems and simultaneously probe their characteristics and consequences. In this review we introduce and review methods to couple optical imaging and spectroscopy with scanning tunneling microscopy. The integration of the STM and optical spectroscopy provides new insights into individual molecular adsorbates, surface-supported molecular assemblies, and two-dimensional materials with subnanoscale resolution, enabling the fundamental study of chemistry at the spatial and temporal limit. The inelastic scattering of photons by molecules and materials, that results in unique and sensitive vibrational fingerprints, will be considered with tip-enhanced Raman spectroscopy. STM-induced luminescence examines the intrinsic luminescence of organic adsorbates and their energy transfer and charge transfer processes with their surroundings. We also provide a survey of recent efforts to probe the dynamics of optical excitation at the molecular level with scanning tunneling microscopy in the context of light-induced photophysical and photochemical transformations.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Shaowei Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, United States of America
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Song Jiang
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| |
Collapse
|
6
|
Paluszkiewicz C, Piergies N, Guidi MC, Pięta E, Ścierski W, Misiołek M, Drozdzowska B, Ziora P, Lisowska G, Kwiatek WM. Nanoscale infrared probing of amyloid formation within the pleomorphic adenoma tissue. Biochim Biophys Acta Gen Subj 2020; 1864:129677. [PMID: 32634535 DOI: 10.1016/j.bbagen.2020.129677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The process of malignant transformations of many tumour cases is still unclear and more specific experimental approaches are necessary. The detailed identification of the pathological changes may help in the therapy progression through the development of drugs with more selective action. METHODS In this study, the AFM-IR nanospectroscopy was applied for the first time to the pleomorphic adenoma (TM) and the marginal tissue characterizations. In order to verify the obtained spectral information, conventional FT-IR investigations were also performed. RESULTS The AFM-IR data (topographies, intensity maps, and spectra) show structural changes observed for the margin and TM samples. Additionally, within the tumour tissue the fibril-like areas, characteristic for amyloid diseases, were distinguished. CONCLUSIONS The application of AFM-IR allows to determine changes in the protein secondary structures between the fibrils and the regions outside them. It has been proved that, for the former areas, the α-helix/random coil/ β-sheet components dominate, while for the latter regions the α-helix/random coil indicate the main contribution to the protein composition. GENERAL SIGNIFICANCE The FT-IR results remain in good agreement with the AFM-IR data recorded for the areas outside the fibrils of the TM. This observation confirms that by means of the conventional FT-IR method the identification of the considered fibrils structure would be impossible. Only application of the AFM-IR nanospectroscopy allow for characterization and visualization of the fibrillization process occurring within the investigated tumour tissue.
Collapse
Affiliation(s)
| | - Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | | | - Ewa Pięta
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Wojciech Ścierski
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia Katowice, PL-41800 Zabrze, Poland
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia Katowice, PL-41800 Zabrze, Poland
| | - Bogna Drozdzowska
- Department and Chair of Pathomorphology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, PL-41800 Zabrze, Poland
| | - Paweł Ziora
- Department and Chair of Pathomorphology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, PL-41800 Zabrze, Poland
| | - Grażyna Lisowska
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia Katowice, PL-41800 Zabrze, Poland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
7
|
Nima ZA, Vang KB, Nedosekin D, Kannarpady G, Saini V, Bourdo SE, Majeed W, Watanabe F, Darrigues E, Alghazali KM, Alawajji RA, Petibone D, Ali S, Biris AR, Casciano D, Ghosh A, Salamo G, Zharov V, Biris AS. Quantification of cellular associated graphene and induced surface receptor responses. NANOSCALE 2019; 11:932-944. [PMID: 30608496 PMCID: PMC9261879 DOI: 10.1039/c8nr06847j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of graphene for biomedical and other applications involving humans is growing and shows practical promise. However, quantifying the graphitic nanomaterials that interact with cells and assessing any corresponding cellular response is extremely challenging. Here, we report an effective approach to quantify graphene interacting with single cells that utilizes combined multimodal-Raman and photoacoustic spectroscopy. This approach correlates the spectroscopic signature of graphene with the measurement of its mass using a quartz crystal microbalance resonator. Using this technique, we demonstrate single cell noninvasive quantification and multidimensional mapping of graphene with a detection limit of as low as 200 femtograms. Our investigation also revealed previously unseen graphene-induced changes in surface receptor expression in dendritic cells of the immune system. This tool integrates high-sensitivity real-time detection and monitoring of nanoscale materials inside single cells with the measurement of induced simultaneous biological cell responses, providing a powerful method to study the impact of nanomaterials on living systems and as a result, the toxicology of nanoscale materials.
Collapse
Affiliation(s)
- Zeid A Nima
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| | - Kieng Bao Vang
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| | - Dmitry Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301W. Markham St, Little Rock, Arkansas 72205, USA.
| | - Ganesh Kannarpady
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| | - Viney Saini
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| | - Shawn E Bourdo
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| | - Waqar Majeed
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| | - Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| | - Emilie Darrigues
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| | - Karrer M Alghazali
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| | - Raad A Alawajji
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| | - Dayton Petibone
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Syed Ali
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Alexandru R Biris
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, RO-400293 Cluj-Napoca, Romania
| | - Daniel Casciano
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| | - Anindya Ghosh
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| | - Gregory Salamo
- Institute for Nanoscience and Engineering, University of Arkansas at Fayetteville, AR 72701, USA
| | - Vladimir Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301W. Markham St, Little Rock, Arkansas 72205, USA.
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204, USA.
| |
Collapse
|
8
|
Gao L, Zhao H, Li T, Huo P, Chen D, Liu B. Atomic Force Microscopy Based Tip-Enhanced Raman Spectroscopy in Biology. Int J Mol Sci 2018; 19:E1193. [PMID: 29652860 PMCID: PMC5979470 DOI: 10.3390/ijms19041193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
Most biological phenomena occur at the nanometer scale, which is not accessible by the conventional optical techniques because of the optical diffraction limitation. Tip-enhanced Raman spectroscopy (TERS), one of the burgeoning probing techniques, not only can provide the topography characterization with high resolution, but also can deliver the chemical or molecular information of a sample beyond the optical diffraction limitation. Therefore, it has been widely used in various structural analyses pertaining to materials science, tissue engineering, biological processes and so on. Based on the different feedback mechanisms, TERS can be classified into three types: atomic force microscopy based TERS system (AFM-TERS), scanning tunneling microscopy based TERS system (STM-TERS) and shear force microscopy based TERS system (SFM-TERS). Among them, AFM-TERS is the most widely adopted feedback system by live biosamples because it can work in liquid and this allows the investigation of biological molecules under native conditions. In this review, we mainly focus on the applications of AFM-TERS in three biological systems: nucleic acids, proteins and pathogens. From the TERS characterization to the data analysis, this review demonstrates that AFM-TERS has great potential applications to visually characterizing the biomolecular structure and crucially detecting more nano-chemical information of biological systems.
Collapse
Affiliation(s)
- Lizhen Gao
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Huiling Zhao
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Tianfeng Li
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Dong Chen
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Bo Liu
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| |
Collapse
|
9
|
Sereda V, Lednev IK. Two Mechanisms of Tip Enhancement of Raman Scattering by Protein Aggregates. APPLIED SPECTROSCOPY 2017; 71:118-128. [PMID: 27407009 DOI: 10.1177/0003702816651890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for probing the surface of biological species with nanometer spatial resolution. Here, we report the TER spectra of an individual insulin fibril, the protein cast film and a short peptide (LVEALYL) microcrystal mimicking the fibril core. Two different types of TER spectra were acquired depending on the "roughness" of the probed surface at the molecular level. A fully reproducible, low-intensity, normal Raman-type spectrum was characteristic of the top flat surface of the microcrystal while highly variable, higher intensity TER spectra were obtained for the edges of the microcrystal, cast film, and fibril. As a result, two tip enhancement mechanisms of Raman scattering, long- and short-range, were proposed by analogy with the physical and chemical enhancement mechanisms, respectively, known for surface-enhanced Raman spectroscopy.
Collapse
|
10
|
Roider C, Ritsch-Marte M, Jesacher A. High-resolution confocal Raman microscopy using pixel reassignment. OPTICS LETTERS 2016; 41:3825-8. [PMID: 27519099 DOI: 10.1364/ol.41.003825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present a practical modification of fiber-coupled confocal Raman scanning microscopes that is able to provide high confocal resolution in conjunction with high light collection efficiency. For this purpose, the single detection fiber is replaced by a hexagonal lenslet array in combination with a hexagonally packed round-to-linear multimode fiber bundle. A multiline detector is used to collect individual Raman spectra for each fiber. Data post-processing based on pixel reassignment allows one to improve the lateral resolution by up to 41% compared to a single fiber of equal light collection efficiency. We present results from an experimental implementation featuring seven collection fibers, yielding a resolution improvement of about 30%. We believe that our implementation represents an attractive upgrade for existing confocal Raman microscopes that employ multi-line detectors.
Collapse
|
11
|
Sereda V, Sawaya MR, Lednev IK. Structural Organization of Insulin Fibrils Based on Polarized Raman Spectroscopy: Evaluation of Existing Models. J Am Chem Soc 2015; 137:11312-20. [DOI: 10.1021/jacs.5b07535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Valentin Sereda
- Department
of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Michael R. Sawaya
- UCLA−DOE Institute, 611 Charles
E. Young Drive, Los Angeles, California 90095-1570, United States
| | - Igor K. Lednev
- Department
of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
12
|
Zhang Z, Deckert-Gaudig T, Deckert V. Label-free monitoring of plasmonic catalysis on the nanoscale. Analyst 2015; 140:4325-35. [PMID: 26000344 DOI: 10.1039/c5an00630a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmonics is the description of specific light matter interactions of metallic structures. In general the size of such structures is well in the nanometer regime and also determines such specific characteristics as color, field confinement etc. Plasmon-induced hot electrons play a vital role in so-called plasmonic catalysis, a field that has recently attracted attention as a new reaction platform. Current reports introduce such nanoscale catalysis as an effective approach to concentrate the energy of visible light and direct it to adsorbed molecules, thereby increasing the chemical reaction rate, and controlling the reaction selectivity. In this review, we present various plasmon-catalyzed reactions specifically monitored with Raman spectroscopy, namely surface-enhanced Raman scattering (SERS), remote SERS (Re-SERS) and tip-enhanced Raman scattering (TERS). These techniques utilize the signal enhancing effect of the metal nanoparticles. However, at the same time they can be used to control the actual reactivity. In the first part, the mechanism of plasmonic catalysis is introduced. Then it is shown how catalytic reactions can be spectroscopically investigated far beyond the diffraction limit using TERS. Finally, the sensitivity of the methods is discussed.
Collapse
Affiliation(s)
- Zhenglong Zhang
- Leibniz Institute of Photonic Technology - IPHT, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | | | | |
Collapse
|
13
|
Sharma G, Deckert-Gaudig T, Deckert V. Tip-enhanced Raman scattering--Targeting structure-specific surface characterization for biomedical samples. Adv Drug Deliv Rev 2015; 89:42-56. [PMID: 26130490 DOI: 10.1016/j.addr.2015.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/11/2015] [Accepted: 06/19/2015] [Indexed: 11/16/2022]
Abstract
Tip-enhanced Raman scattering (TERS) has become a powerful tool for nanoscale structural analysis for several branches of organic, inorganic, and biological chemistry. This highly sensitive technique enables molecular characterization with a lateral resolution far beyond Abbe's diffraction limit and correlates structural and topographic information on a nanometer scale. In this review, the current experimental concepts with respect to their strengths and obstacles are introduced and discussed. A further focus was set to biochemistry comprising applications like nucleic acids, proteins, and microorganisms, thus demonstrating the potential use towards the pharmaceutically relevant challenges where nanometer resolution is required.
Collapse
Affiliation(s)
- Gaurav Sharma
- Institute for Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, Friedrich Schiller-University Jena, D-07743 Jena, Germany
| | - Tanja Deckert-Gaudig
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena, Germany
| | - Volker Deckert
- Institute for Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, Friedrich Schiller-University Jena, D-07743 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena, Germany.
| |
Collapse
|
14
|
Optical imaging beyond the diffraction limit by SNEM: Effects of AFM tip modifications with thiol monolayers on imaging quality. Ultramicroscopy 2015; 150:79-87. [DOI: 10.1016/j.ultramic.2014.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/18/2014] [Accepted: 12/07/2014] [Indexed: 11/19/2022]
|
15
|
Kazemi-Zanjani N, Gobbo P, Zhu Z, Workentin MS, Lagugné-Labarthet F. High-resolution Raman imaging of bundles of single-walled carbon nanotubes by tip-enhanced Raman spectroscopy. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bundles of single-walled carbon nanotubes (SWCNTs) prepared by plasma torch method and further purified, are deposited over a glass coverslip to estimate the spatial resolution of tip-enhanced Raman spectroscopy measurements. For this purpose, near-field Raman maps and spectra of isolated bundles of carbon nanotubes are collected using optimized experimental conditions such as a tightly focused beam using a 1.4 numerical aperture oil immersion microscope objective and a gold coated atomic force microscope probe illuminated by a radially polarized 632.8 nm wavelength to selectively excite the localized surface plasmon confined at the extremity of the tip. The near-field nature of the collected Raman signals is evaluated through measuring the decay of the Raman signal with respect to the tip-sample separation.
Collapse
Affiliation(s)
- Nastaran Kazemi-Zanjani
- Department of Chemistry, The University of Western Ontario, Chemistry Building, 1151Richmond Street, London, ON N6A 5B7, Canada
| | - Pierangelo Gobbo
- Department of Chemistry, The University of Western Ontario, Chemistry Building, 1151Richmond Street, London, ON N6A 5B7, Canada
| | - Ziyan Zhu
- Department of Chemistry, The University of Western Ontario, Chemistry Building, 1151Richmond Street, London, ON N6A 5B7, Canada
| | - Mark S. Workentin
- Department of Chemistry, The University of Western Ontario, Chemistry Building, 1151Richmond Street, London, ON N6A 5B7, Canada
| | - François Lagugné-Labarthet
- Department of Chemistry, The University of Western Ontario, Chemistry Building, 1151Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
16
|
Singh P, Deckert-Gaudig T, Schneidewind H, Kirsch K, van Schrojenstein Lantman EM, Weckhuysen BM, Deckert V. Differences in single and aggregated nanoparticle plasmon spectroscopy. Phys Chem Chem Phys 2014; 17:2991-5. [PMID: 25516108 DOI: 10.1039/c4cp04850d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vibrational spectroscopy usually provides structural information averaged over many molecules. We report a larger peak position variation and reproducibly smaller FWHM of TERS spectra compared to SERS spectra indicating that the number of molecules excited in a TERS experiment is extremely low. Thus, orientational averaging effects are suppressed and micro ensembles are investigated. This is shown for a thiophenol molecule adsorbed on Au nanoplates and nanoparticles.
Collapse
Affiliation(s)
- Pushkar Singh
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS). Biophys J 2014; 106:263-71. [PMID: 24411258 DOI: 10.1016/j.bpj.2013.10.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/19/2013] [Accepted: 10/28/2013] [Indexed: 11/22/2022] Open
Abstract
Amyloid fibrils are β-sheet-rich protein aggregates that are strongly associated with a variety of neurodegenerative maladies, such as Alzheimer's and Parkinson's diseases. Even if the secondary structure of such fibrils is well characterized, a thorough understanding of their surface organization still remains elusive. Tip-enhanced Raman spectroscopy (TERS) is one of a few techniques that allow the direct characterization of the amino acid composition and the protein secondary structure of the amyloid fibril surface. Herein, we investigated the surfaces of two insulin fibril polymorphs with flat (flat) and left-twisted (twisted) morphology. It was found that the two differ substantially in both amino acid composition and protein secondary structure. For example, the amounts of Tyr, Pro, and His differ, as does the number of carboxyl groups on the respective surfaces, whereas the amounts of Phe and of positively charged amino and imino groups remain similar. In addition, the surface of protofilaments, the precursors of the mature flat and twisted fibrils, was investigated using TERS. The results show substantial differences with respect to the mature fibrils. A correlation of amino acid frequencies and protein secondary structures on the surface of protofilaments and on flat and twisted fibrils allowed us to propose a hypothetical mechanism for the propagation to specific fibril polymorphs. This knowledge can shed a light on the toxicity of amyloids and define the key factors responsible for fibril polymorphism. Finally, this work demonstrates the potential of TERS for the surface characterization of amyloid fibril polymorphs.
Collapse
|
18
|
Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat Commun 2014; 4:2890. [PMID: 24301518 PMCID: PMC3863900 DOI: 10.1038/ncomms3890] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/07/2013] [Indexed: 02/06/2023] Open
Abstract
Mid-infrared spectroscopy is a widely used tool for material identification and secondary structure analysis in chemistry, biology and biochemistry. However, the diffraction limit prevents nanoscale protein studies. Here we introduce mapping of protein structure with 30 nm lateral resolution and sensitivity to individual protein complexes by Fourier transform infrared nanospectroscopy (nano-FTIR). We present local broadband spectra of one virus, ferritin complexes, purple membranes and insulin aggregates, which can be interpreted in terms of their α-helical and/or β-sheet structure. Applying nano-FTIR for studying insulin fibrils—a model system widely used in neurodegenerative disease research—we find clear evidence that 3-nm-thin amyloid-like fibrils contain a large amount of α-helical structure. This reveals the surprisingly high level of protein organization in the fibril’s periphery, which might explain why fibrils associate. We envision a wide application potential of nano-FTIR, including cellular receptor in vitro mapping and analysis of proteins within quaternary structures. Mid-infrared spectroscopy offers important chemical and structural information about biological samples but diffraction prevents nanoscale studies. Amenabar et al. demonstrate Fourier transform infrared nanospectroscopy for analysing the secondary structure of protein complexes with 30 nm spatial resolution.
Collapse
|
19
|
Kainz B, Oprzeska-Zingrebe EA, Herrera JL. Biomaterial and cellular properties as examined through atomic force microscopy, fluorescence optical microscopies and spectroscopic techniques. Biotechnol J 2013; 9:51-60. [DOI: 10.1002/biot.201300087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/23/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023]
|
20
|
Kurouski D, Postiglione T, Deckert-Gaudig T, Deckert V, Lednev IK. Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. Analyst 2013; 138:1665-73. [PMID: 23330149 DOI: 10.1039/c2an36478f] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) are modern spectroscopic techniques, which are becoming widely used and show a great potential for the structural characterisation of biological systems. Strong enhancement of the Raman signal through localised surface plasmon resonance enables chemical detection at the single-molecule scale. Enhanced Raman spectra collected from biological specimens, such as peptides, proteins or microorganisms, were often observed to lack the amide I band, which is commonly used as a marker for the interpretation of the secondary protein structure. The cause of this phenomenon was unclear for many decades. In this work, we investigated this phenomenon for native insulin and insulin fibrils using both TERS and SERS and compared these spectra to the spectra of well-defined homo peptides. The results indicate that the appearance of the amide I Raman band does not correlate with the protein aggregation state, but is instead determined by the size of the amino acid side chain. For short model peptides, the absence of the amide I band in TERS and SERS spectra correlates with the presence of a bulky side chain. Homo-glycine and -alanine, which are peptides with small side chain groups (H and CH(3), respectively), exhibited an intense amide I band in almost 100% of the acquired spectra. Peptides with bulky side chains, such as tyrosine and tryptophan, exhibited the amide I band in 70% and 31% of the acquired spectra, respectively.
Collapse
Affiliation(s)
- Dmitry Kurouski
- University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA
| | | | | | | | | |
Collapse
|
21
|
Cumurcu A, Duvigneau J, Lindsay ID, Schön PM, Vancso GJ. Multimodal imaging of heterogeneous polymers at the nanoscale by AFM and scanning near-field ellipsometric microscopy. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Moretti M, Proietti Zaccaria R, Descrovi E, Das G, Leoncini M, Liberale C, De Angelis F, Di Fabrizio E. Reflection-mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes. PLASMONICS (NORWELL, MASS.) 2013; 8:25-33. [PMID: 23504187 PMCID: PMC3597279 DOI: 10.1007/s11468-012-9385-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/23/2012] [Indexed: 05/26/2023]
Abstract
Tip-enhanced Raman spectroscopy provides chemical information while raster scanning samples with topographical detail. The coupling of atomic force microscopy and Raman spectroscopy in top illumination optical setup is a powerful configuration to resolve nanometer structures while collecting reflection mode backscattered signal. Here, we theoretically calculate the field enhancement generated by TER spectroscopy with top illumination geometry and we apply the technique to the characterization of insulin amyloid fibrils. We experimentally confirm that this technique is able to enhance the Raman signal of the polypeptide chain by a factor of 105, thus revealing details down to few molecules resolution.
Collapse
Affiliation(s)
- Manola Moretti
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | | | - Gobind Das
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco Leoncini
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Carlo Liberale
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Enzo Di Fabrizio
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BIONEM Lab, University of Magna Graecia, Campus S. Venuta, Germaneto, viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
23
|
Kazemi-Zanjani N, Chen H, Goldberg HA, Hunter GK, Grohe B, Lagugné-Labarthet F. Label-Free Mapping of Osteopontin Adsorption to Calcium Oxalate Monohydrate Crystals by Tip-Enhanced Raman Spectroscopy. J Am Chem Soc 2012; 134:17076-82. [DOI: 10.1021/ja3057562] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Nastaran Kazemi-Zanjani
- Department of Chemistry, University of Western Ontario (Western University), 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | | | | | | | | | - François Lagugné-Labarthet
- Department of Chemistry, University of Western Ontario (Western University), 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
24
|
Kurouski D, Deckert-Gaudig T, Deckert V, Lednev IK. Structure and composition of insulin fibril surfaces probed by TERS. J Am Chem Soc 2012; 134:13323-9. [PMID: 22813355 DOI: 10.1021/ja303263y] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Amyloid fibrils associated with many neurodegenerative diseases are the most intriguing targets of modern structural biology. Significant knowledge has been accumulated about the morphology and fibril-core structure recently. However, no conventional methods could probe the fibril surface despite its significant role in the biological activity. Tip-enhanced Raman spectroscopy (TERS) offers a unique opportunity to characterize the surface structure of an individual fibril due to a high depth and lateral spatial resolution of the method in the nanometer range. Herein, TERS is utilized for characterizing the secondary structure and amino acid residue composition of the surface of insulin fibrils. It was found that the surface is strongly heterogeneous and consists of clusters with various protein conformations. More than 30% of the fibril surface is dominated by β-sheet secondary structure, further developing Dobson's model of amyloid fibrils (Jimenez et al. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 9196-9201). The propensity of various amino acids to be on the fibril surface and specific surface secondary structure elements were evaluated. β-sheet areas are rich in cysteine and aromatic amino acids, such as phenylalanine and tyrosine, whereas proline was found only in α-helical and unordered protein clusters. In addition, we showed that carboxyl, amino, and imino groups are nearly equally distributed over β-sheet and α-helix/unordered regions. Overall, this study provides valuable new information about the structure and composition of the insulin fibril surface and demonstrates the power of TERS for fibril characterization.
Collapse
Affiliation(s)
- Dmitry Kurouski
- University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA
| | | | | | | |
Collapse
|
25
|
Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. Biochem Soc Trans 2012; 40:609-14. [DOI: 10.1042/bst20120033] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TERS (tip-enhanced Raman scattering) provides exceptional spatial resolution without any need for labelling and has become a versatile tool for biochemical analysis. Two examples will be highlighted here. On the one hand, TERS measurements on a single mitochondrion are discussed, monitoring the oxidation state of the central iron ion of cytochrome c, leading towards a single protein characterization scheme in a natural environment. On the other hand, a novel approach of single molecule analysis is discussed, again based on TERS experiments on DNA and RNA, further highlighting the resolution capabilities of this method.
Collapse
|
26
|
Deckert-Gaudig T, Böhme R, Freier E, Sebesta A, Merkendorf T, Popp J, Gerwert K, Deckert V. Nanoscale distinction of membrane patches--a TERS study of Halobacterium salinarum. JOURNAL OF BIOPHOTONICS 2012; 5:582-91. [PMID: 22371320 DOI: 10.1002/jbio.201100131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 05/25/2023]
Abstract
The structural organization of cellular membranes has an essential influence on their functionality. The membrane surfaces currently are considered to consist of various distinct patches, which play an important role in many processes, however, not all parameters such as size and distribution are fully determined. In this study, purple membrane (PM) patches isolated from Halobacterium salinarum were investigated in a first step using TERS (tip-enhanced Raman spectroscopy). The characteristic Raman modes of the resonantly enhanced component of the purple membrane lattice, the retinal moiety of bacteriorhodopsin, were found to be suitable as PM markers. In a subsequent experiment a single Halobacterium salinarum was investigated with TERS. By means of the PM marker bands it was feasible to identify and localize PM patches on the bacterial surface. The size of these areas was determined to be a few hundred nanometers.
Collapse
Affiliation(s)
- Tanja Deckert-Gaudig
- Institute of Photonic Technology-IPHT, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sinjab F, Lekprasert B, Woolley RAJ, Roberts CJ, Tendler SJB, Notingher I. Near-field Raman spectroscopy of biological nanomaterials by in situ laser-induced synthesis of tip-enhanced Raman spectroscopy tips. OPTICS LETTERS 2012; 37:2256-8. [PMID: 22739873 DOI: 10.1364/ol.37.002256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report a new approach in tip-enhanced Raman spectroscopy (TERS) in which TERS-active tips with enhancement factors of ∼10(-5)× can be rapidly (1-3 min) produced in situ by laser-induced synthesis of silver nanoparticles at the tip apex. The technique minimizes the risks of tip contamination and damage during handling and provides in situ feedback control, which allows the prediction of the tip performance. We show that TERS tips produced by this technique enable the measurement of spatially resolved TERS spectra of self-assembled peptide nanotubes with a spatial resolution of ∼20 nm.
Collapse
Affiliation(s)
- Faris Sinjab
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Bortchagovsky EG, Fischer UC. The concept of a near-field Raman probe. NANOSCALE 2012; 4:885-889. [PMID: 22215242 DOI: 10.1039/c2nr11330a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This article considers the possibility to use tips, which are functionalised by Raman active molecules, as new Raman probes for near-field optics in such a way that the Raman spectrum can be recorded of such a tip. If the Raman spectrum of the probe molecules is sensitive to their immediate environment, the probe can be used to map a surface by its local influence on the Raman spectrum of the probe. This new concept may be very promising for the investigation of specific interactions at the nanoscale by an optical response. Examples of the sensitivity of such a probe to the local environment are presented as a basis for further development of such a probe.
Collapse
Affiliation(s)
- Eugene G Bortchagovsky
- Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, pr.Nauki 41, Kiev, 03028, Ukraine.
| | | |
Collapse
|
29
|
Mammadov R, Tekinay AB, Dana A, Guler MO. Microscopic characterization of peptide nanostructures. Micron 2012; 43:69-84. [DOI: 10.1016/j.micron.2011.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
|
30
|
Huang YF, Wu DY, Zhu HP, Zhao LB, Liu GK, Ren B, Tian ZQ. Surface-enhanced Raman spectroscopic study of p-aminothiophenol. Phys Chem Chem Phys 2012; 14:8485-97. [DOI: 10.1039/c2cp40558j] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Nanoscale structural analysis using tip-enhanced Raman spectroscopy. Curr Opin Chem Biol 2011; 15:719-24. [PMID: 21775192 DOI: 10.1016/j.cbpa.2011.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/21/2011] [Indexed: 11/22/2022]
Abstract
Tip-enhanced Raman scattering (TERS) enables the label-free investigation of biochemical interfaces with nanometer lateral resolution by combining the benefits of the intrinsic molecular specificity of Raman spectroscopy, the sensitivity because of signal enhancing capabilities of plasmonic nanoparticles, and the precision of scanning probe microscopy. The structural differentiation of constituents based on inherent molecular information is possible even down to a few nanometer spatial resolution and consequently, nucleobases, proteins, lipids, and carbohydrates can be identified and localized in a single measurement. This has been shown in the last few years for different biological samples ranging from single DNA strand investigations to cell membrane studies.
Collapse
|
32
|
Gullekson C, Lucas L, Hewitt K, Kreplak L. Surface-sensitive Raman spectroscopy of collagen I fibrils. Biophys J 2011; 100:1837-45. [PMID: 21463598 PMCID: PMC3072603 DOI: 10.1016/j.bpj.2011.02.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/21/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022] Open
Abstract
Collagen fibrils are the main constituent of the extracellular matrix surrounding eukaryotic cells. Although the assembly and structure of collagen fibrils is well characterized, very little appears to be known about one of the key determinants of their biological function-namely, the physico-chemical properties of their surface. One way to obtain surface-sensitive structural and chemical data is to take advantage of the near-field nature of surface- and tip-enhanced Raman spectroscopy. Using Ag and Au nanoparticles bound to Collagen type-I fibrils, as well as tips coated with a thin layer of Ag, we obtained Raman spectra characteristic to the first layer of collagen molecules at the surface of the fibrils. The most frequent Raman peaks were attributed to aromatic residues such as phenylalanine and tyrosine. In several instances, we also observed Amide I bands with a full width at half-maximum of 10-30 cm(-1). The assignment of these Amide I band positions suggests the presence of 3(10)-helices as well as α- and β-sheets at the fibril's surface.
Collapse
Affiliation(s)
| | | | | | - Laurent Kreplak
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
33
|
Larmour IA, Graham D. Surface enhanced optical spectroscopies for bioanalysis. Analyst 2011; 136:3831-53. [DOI: 10.1039/c1an15452d] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|