1
|
Chevalier F, Schlathölter T, Poully JC. Radiation-Induced Transfer of Charge, Atoms, and Energy within Isolated Biomolecular Systems. Chembiochem 2023; 24:e202300543. [PMID: 37712497 DOI: 10.1002/cbic.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
In biological tissues, ionizing radiation interacts with a variety of molecules and the consequences include cell killing and the modification of mechanical properties. Applications of biological radiation action are for instance radiotherapy, sterilization, or the tailoring of biomaterial properties. During the first femtoseconds to milliseconds after the initial radiation action, biomolecular systems typically respond by transfer of charge, atoms, or energy. In the condensed phase, it is usually very difficult to distinguish direct effects from indirect effects. A straightforward solution for this problem is the use of gas-phase techniques, for instance from the field of mass spectrometry. In this review, we survey mainly experimental but also theoretical work, focusing on radiation-induced intra- and inter-molecular transfer of charge, atoms, and energy within biomolecular systems in the gas phase. Building blocks of DNA, proteins, and saccharides, but also antibiotics are considered. The emergence of general processes as well as their timescales and mechanisms are highlighted.
Collapse
Affiliation(s)
- François Chevalier
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Groningen (The, Netherlands
- University College Groningen, University of Groningen, Groningen (The, Netherlands
| | - Jean-Christophe Poully
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| |
Collapse
|
2
|
Roque JPL, Nunes CM, Viegas LP, Pereira NAM, Pinho E Melo TMVD, Schreiner PR, Fausto R. Switching on H-Tunneling through Conformational Control. J Am Chem Soc 2021; 143:8266-8271. [PMID: 34048232 DOI: 10.1021/jacs.1c04329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
H-tunneling is a ubiquitous phenomenon, relevant to fields from biochemistry to materials science, but harnessing it for mastering the manipulation of chemical structures still remains nearly illusory. Here, we demonstrate how to switch on H-tunneling by conformational control using external radiation. This is outlined with a triplet 2-hydroxyphenylnitrene generated in an N2 matrix at 10 K by UV-irradiation of an azide precursor. The anti-orientation of the nitrene's OH moiety was converted to syn by selective vibrational excitation at the 2ν(OH) frequency, thereby moving the H atom closer to the vicinal nitrene center. This triggers spontaneous H-tunneling to a singlet 6-imino-2,4-cyclohexadienone. Computations reveal that such fast H-tunneling occurs through crossing the triplet-to-singlet potential energy surfaces. Our experimental realization provides an exciting novel strategy to attain control over tunneling, opening new avenues for directing chemical transformations.
Collapse
Affiliation(s)
- José P L Roque
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Cláudio M Nunes
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Luís P Viegas
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Nelson A M Pereira
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal
| | | | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Rui Fausto
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
Lang SM, Bernhardt TM, Bakker JM, Barnett RN, Landman U. Energetic Stabilization of Carboxylic Acid Conformers by Manganese Atoms and Clusters. J Phys Chem A 2020; 124:4990-4997. [DOI: 10.1021/acs.jpca.0c03315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra M. Lang
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - Thorsten M. Bernhardt
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - Joost M. Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Robert N. Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, United States
| | - Uzi Landman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, United States
| |
Collapse
|
4
|
Guo M, Wu H, Zhang H, Luo Z. Furthering the Diverse Hydrogen Atom Transfer and Carbon Bond Dissociation of Amino Acids under Vacuum Ultraviolet. ChemistrySelect 2019. [DOI: 10.1002/slct.201803564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengdi Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| |
Collapse
|
5
|
Grygoryeva K, Ončák M, Pysanenko A, Fárník M. Pyruvic acid proton and hydrogen transfer reactions in clusters. Phys Chem Chem Phys 2019; 21:8221-8227. [DOI: 10.1039/c8cp07008c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate ion chemistry in pyruvic acid (PA) clusters in a molecular beam experiment.
Collapse
Affiliation(s)
- Kateryna Grygoryeva
- J. Heyrovský Institute of Physical Chemistry, v.v.i
- Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
- University of Chemistry and Technology
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- A-6020 Innsbruck
- Austria
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, v.v.i
- Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i
- Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
| |
Collapse
|
6
|
Komorek R, Xu B, Yao J, Ablikim U, Troy TP, Kostko O, Ahmed M, Yu XY. Enabling liquid vapor analysis using synchrotron VUV single photon ionization mass spectrometry with a microfluidic interface. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:115105. [PMID: 30501361 DOI: 10.1063/1.5048315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Vacuum ultraviolet (VUV) single photon ionization mass spectrometry (SPI-MS) is a vacuum-based technique typically used for the analysis of gas phase and solid samples, but not for liquids due to the challenge in introducing volatile liquids in a vacuum. Here we present the first demonstration of in situ liquid analysis by integrating the System for Analysis at the Liquid Vacuum Interface (SALVI) microfluidic reactor into VUV SPI-MS. Four representative volatile organic compound (VOC) solutions were used to illustrate the feasibility of liquid analysis. Our results show the accurate mass identification of the VOC molecules and the reliable determination of appearance energy that is consistent with ionization energy for gaseous species in the literature as reported. This work validates that the vacuum-compatible SALVI microfluidic interface can be utilized at the synchrotron beamline and enable the in situ study of gas-phase molecules evaporating off the surface of a liquid, which holds importance in the study of condensed matter chemistry.
Collapse
Affiliation(s)
- R Komorek
- Atmospheric Sciences and Global Change Division, PNNL, Richland, Washington 99354, USA
| | - B Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J Yao
- Atmospheric Sciences and Global Change Division, PNNL, Richland, Washington 99354, USA
| | - U Ablikim
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - T P Troy
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - O Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - M Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - X Y Yu
- Atmospheric Sciences and Global Change Division, PNNL, Richland, Washington 99354, USA
| |
Collapse
|
7
|
Chiarinelli J, Bolognesi P, Domaracka A, Rousseau P, Castrovilli MC, Richter R, Chatterjee S, Wang F, Avaldi L. Insights into the dissociative ionization of glycine by PEPICO experiments. Phys Chem Chem Phys 2018; 20:22841-22848. [PMID: 30151535 DOI: 10.1039/c8cp03473g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fragmentation of glycine (NH2CH2COOH) has been studied by photoelectron–photoion coincidence, PEPICO, experiments at 60 eV photon energy.
Collapse
Affiliation(s)
- Jacopo Chiarinelli
- Dipartimento di Scienze, Università di Roma Tre
- Roma
- Italy
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1
- Monterotondo Scalo
| | - Paola Bolognesi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1
- Monterotondo Scalo
- Italy
| | - Alicja Domaracka
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP
- 14000 Caen
- France
| | - Patrick Rousseau
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP
- 14000 Caen
- France
| | | | - Robert Richter
- Molecular Modelling Discovery Laboratory, Department of Chemistry and Biotechnology
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne
- Vic 3122
- Australia
| | | | - Feng Wang
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5
- Basovizza
- Italy
| | - Lorenzo Avaldi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1
- Monterotondo Scalo
- Italy
| |
Collapse
|
8
|
Gług M, Brela MZ, Boczar M, Turek AM, Boda Ł, Wójcik MJ, Nakajima T, Ozaki Y. Infrared Spectroscopy and Born–Oppenheimer Molecular Dynamics Simulation Study on Deuterium Substitution in the Crystalline Benzoic Acid. J Phys Chem B 2017; 121:479-489. [DOI: 10.1021/acs.jpcb.6b10617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maciej Gług
- Faculty
of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Mateusz Z. Brela
- Faculty
of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Marek Boczar
- Faculty
of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Andrzej M. Turek
- Faculty
of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Łukasz Boda
- Faculty
of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Marek J. Wójcik
- Faculty
of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Takahito Nakajima
- Advanced
Institute for Computational Science, RIKEN, 7-1-26, Minatojima-minami-machi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
9
|
Chandra S, Bhattacharya A. Attochemistry of Ionized Halogen, Chalcogen, Pnicogen, and Tetrel Noncovalent Bonded Clusters. J Phys Chem A 2016; 120:10057-10071. [DOI: 10.1021/acs.jpca.6b09813] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sankhabrata Chandra
- Department of Inorganic and
Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India 560012
| | - Atanu Bhattacharya
- Department of Inorganic and
Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India 560012
| |
Collapse
|
10
|
Chandra S, Rana B, Periyasamy G, Bhattacharya A. On the ultrafast charge migration dynamics in isolated ionized halogen, chalcogen, pnicogen, and tetrel bonded clusters. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Shin JW, Bernstein ER. Vacuum ultraviolet photoionization of carbohydrates and nucleotides. J Chem Phys 2015; 140:044330. [PMID: 25669546 DOI: 10.1063/1.4862829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.
Collapse
Affiliation(s)
- Joong-Won Shin
- Division of Science, Governors State University, University Park, Illinois 60484-0975, USA
| | - Elliot R Bernstein
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| |
Collapse
|
12
|
Chandra S, Periyasamy G, Bhattacharya A. On the ultrafast charge migration and subsequent charge directed reactivity in Cl⋯N halogen-bonded clusters following vertical ionization. J Chem Phys 2015; 142:244309. [DOI: 10.1063/1.4922843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sankhabrata Chandra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Ganga Periyasamy
- Department of Chemistry, Central College Campus, Bangalore University, Bangalore, India
| | - Atanu Bhattacharya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Poully JC, Vizcaino V, Schwob L, Delaunay R, Kocisek J, Eden S, Chesnel JY, Méry A, Rangama J, Adoui L, Huber B. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase. Chemphyschem 2015; 16:2389-96. [DOI: 10.1002/cphc.201500275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 11/11/2022]
|
14
|
Stringfellow HM, Jones MR, Green MC, Wilson AK, Francisco JS. Selectivity in ROS-Induced Peptide Backbone Bond Cleavage. J Phys Chem A 2014; 118:11399-404. [DOI: 10.1021/jp508877m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hannah M. Stringfellow
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Michael R. Jones
- Department
of Chemistry and Center for Advanced Scientific Computing and Modeling
(CASCaM), University of North Texas, Denton, Texas 76203-5017, United States
| | - Mandy C. Green
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Angela K. Wilson
- Department
of Chemistry and Center for Advanced Scientific Computing and Modeling
(CASCaM), University of North Texas, Denton, Texas 76203-5017, United States
| | - Joseph S. Francisco
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0304, United States
| |
Collapse
|
15
|
Hu Y, Guan J, Bernstein ER. Mass-selected IR-VUV (118 nm) spectroscopic studies of radicals, aliphatic molecules, and their clusters. MASS SPECTROMETRY REVIEWS 2013; 32:484-501. [PMID: 24122973 DOI: 10.1002/mas.21387] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
Mass-selected IR plus UV/VUV spectroscopy and mass spectrometry have been coupled into a powerful technique to investigate chemical, physical, structural, and electronic properties of radicals, molecules, and clusters. Advantages of the use of vacuum ultraviolet (VUV) radiation to create ions for mass spectrometry are its application to nearly all compounds with ionization potentials below the energy of a single VUV photon, its circumventing the requirement of UV chromophore group, its inability to ionize background gases, and its greatly reduced fragmenting capabilities. In this review, mass-selected IR plus VUV (118 nm) spectroscopy is introduced first in a general manner. Selected application examples of this spectroscopy are presented, which include the detections and structural analysis of radicals, molecules, and molecular clusters in a supersonic jet.
Collapse
Affiliation(s)
- Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | | | | |
Collapse
|
16
|
Bhattacharya A, Bernstein ER. Influence of Turn (or Fold) and Local Charge in Fragmentation of the Peptide Analogue Molecule CH3CO-Gly-NH2 Following Single-Photon VUV (118.22 nm) Ionization. J Phys Chem A 2011; 115:10679-88. [DOI: 10.1021/jp203909y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atanu Bhattacharya
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Elliot R. Bernstein
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
17
|
Shin JW, Dong F, Grisham ME, Rocca JJ, Bernstein ER. Extreme ultraviolet photoionization of aldoses and ketoses. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Raczyńska ED, Hallmann M, Duczmal K. Quantum-chemical studies of amide–iminol tautomerism for inhibitor of lactate dehydrogenase: Oxamic acid. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|