1
|
Kurdadze T, Lamadie F, Nehme KA, Teychené S, Biscans B, Rodriguez-Ruiz I. On-Chip Photonic Detection Techniques for Non-Invasive In Situ Characterizations at the Microfluidic Scale. SENSORS (BASEL, SWITZERLAND) 2024; 24:1529. [PMID: 38475065 DOI: 10.3390/s24051529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is particularly advantageous due to its non-invasive nature, which permits sensitive, real-time, high throughput, and rapid analyses, taking advantage of the microfluidic special environments and reduced sample volumes. Putting a special emphasis on integrated detection schemes, this review article explores the most relevant advances in the on-chip implementation of UV-vis, near-infrared, terahertz, and X-ray-based techniques for different characterizations, ranging from punctual spectroscopic or scattering-based measurements to different types of mapping/imaging. The principles of the techniques and their interest are discussed through their application to different systems.
Collapse
Affiliation(s)
- Tamar Kurdadze
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Fabrice Lamadie
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Karen A Nehme
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Béatrice Biscans
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, CNRS, UMR 5503, 4 Allée Emile Monso, 31432 Toulouse, France
| |
Collapse
|
2
|
Jia N, Torres de Oliveira L, Bégin-Drolet A, Greener J. A spectIR-fluidic reactor for monitoring fast chemical reaction kinetics with on-chip attenuated total reflection Fourier transform infrared spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5129-5138. [PMID: 37609867 DOI: 10.1039/d3ay00842h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Microfluidics has emerged as a powerful technology with diverse applications in microbiology, medicine, chemistry, and physics. While its potential for controlling and studying chemical reactions is well recognized, the extraction and analysis of useful chemical information generated within microfluidic devices remain challenging. This is mainly due to the limited tools available for in situ measurements of chemical reactions. In this study, we present a proof-of-concept spectIR-fluidic reactor design that combines microfluidics with Fourier transform infrared (FTIR) spectroscopy for in situ kinetic studies of fast reactions. By integrating a multi-ridge silicon attenuated total reflection (ATR) wafer into the microfluidic device, we enable multi-point measurements for precise reaction time monitoring. As such, this work establishes a validated foundation for studying fast chemical reactions using on-chip ATR-FTIR spectroscopy in a microfluidic reactor environment, which enables simultaneous monitoring of reagents, intermediates, and products using a phosphate proton transfer reaction. The spectIR-fluidic reactor platform offers customizable designs, allowing for the investigation of reactions with various time scales, and has the potential to significantly advance studies exploring reaction mechanisms and optimization.
Collapse
Affiliation(s)
- Nan Jia
- Département de Chimie, Faculté des Sciences et de Génie, Université Laval, Québec, G1V 0A6, Canada.
| | - Leon Torres de Oliveira
- Département de Chimie, Faculté des Sciences et de Génie, Université Laval, Québec, G1V 0A6, Canada.
| | - André Bégin-Drolet
- Département de Génie Mécanique, Faculté des Sciences et de Génie, Université Laval, Québec, G1V 0A6, Canada
| | - Jesse Greener
- Département de Chimie, Faculté des Sciences et de Génie, Université Laval, Québec, G1V 0A6, Canada.
- CHU de Québec, Centre de Recherche du CHU de Québec, Université Laval, Québec, G1L 3L5, Canada
| |
Collapse
|
3
|
Jia N, Daignault-Bouchard A, Deng T, Mayerhöfer TG, Bégin-Drolet A, Greener J. SpectIR-fluidics: completely customizable microfluidic cartridges for high sensitivity on-chip infrared spectroscopy with point-of-application studies on bacterial biofilms. LAB ON A CHIP 2023; 23:3561-3570. [PMID: 37403603 DOI: 10.1039/d3lc00388d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
We present a generalizable fabrication method for a new class of analytical devices that merges virtually any microfluidic design with high-sensitivity on-chip attenuated total reflection (ATR) sampling using any standard Fourier transform infrared (FTIR) spectrometer. Termed "spectIR-fluidics", a major design feature is the integration of a multi-groove silicon ATR crystal into a microfluidic device, compared with previous approaches in which the ATR surface served as a structural support for the entire device. This was accomplished by the design, fabrication, and aligned bonding of a highly engineered ATR sensing layer, which con```tains a seamlessly embedded ATR crystal on the channel side and an optical access port that matched the spectrometer light path characteristics at the device exterior. The refocused role of the ATR crystal as a dedicated analytical element, combined with optimized light coupling to the spectrometer, results in limits of detection as low as 540 nM for a D-glucose solution, arbitrarily complex channel features that are fully enclosed, and up to 18 world-to-chip connections. Three purpose-built spectIR-fluidic cartridges are used in a series of validation experiments followed by several point-of-application studies on biofilms from the gut microbiota of plastic-consuming insects using a small portable spectrometer.
Collapse
Affiliation(s)
- Nan Jia
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Arthur Daignault-Bouchard
- Département de génie mécanique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Tianyang Deng
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Thomas G Mayerhöfer
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, Jena, 07745, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, Jena, 07743, Germany
| | - André Bégin-Drolet
- Département de génie mécanique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Jesse Greener
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.
- CHU de Québec, Centre de recherche du CHU de Québec, Université Laval, Québec, QC G1L 3L5, Canada
| |
Collapse
|
4
|
Flaman GT, Boyle ND, Vermelle C, Morhart TA, Ramaswami B, Read S, Rosendahl SM, Wells G, Newman LP, Atkinson N, Achenbach S, Burgess IJ. Chemical Imaging of Mass Transport Near the No-Slip Interface of a Microfluidic Device using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy. Anal Chem 2023; 95:4940-4949. [PMID: 36880970 DOI: 10.1021/acs.analchem.2c04880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Mass transport in geometrically confined environments is fundamental to microfluidic applications. Measuring the distribution of chemical species on flow requires the use of spatially resolved analytical tools compatible with microfluidic materials and designs. Here, the implementation of an attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) imaging (macro-ATR) approach for chemical mapping of species in microfluidic devices is described. The imaging method is configurable between a large field of view, single-frame imaging, and the use of image stitching to build composite chemical maps. Macro-ATR is used to quantify transverse diffusion in the laminar streams of coflowing fluids in dedicated microfluidic test devices. It is demonstrated that the ATR evanescent wave, which primarily probes the fluid within ∼500 nm of the channel surface, provides accurate quantification of the spatial distribution of species in the entire microfluidic device cross section. This is the case when flow and channel conditions promote vertical concentration contours in the channel as verified by three-dimensional numeric simulations of mass transport. Furthermore, the validity of treating the mass transport problem in a simplified and faster approach using reduced dimensionality numeric simulations is described. Simplified one-dimensional simulations, for the specific parameters used herein, overestimate diffusion coefficients by a factor of approximately 2, whereas full three-dimensional simulations accurately agree with experimental results.
Collapse
Affiliation(s)
- Grace T Flaman
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 Canada
| | - Nicole D Boyle
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 Canada
| | - Cyprien Vermelle
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 Canada
| | - Tyler A Morhart
- Canadian Light Source Inc., Saskatoon, Saskatchewan S7N 2V3 Canada
| | - Bdhanya Ramaswami
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 Canada
| | - Stuart Read
- Canadian Light Source Inc., Saskatoon, Saskatchewan S7N 2V3 Canada
| | | | - Garth Wells
- Canadian Light Source Inc., Saskatoon, Saskatchewan S7N 2V3 Canada
| | - Liam P Newman
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 Canada
| | - Noah Atkinson
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 Canada
| | - Sven Achenbach
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9 Canada
| | - Ian J Burgess
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 Canada
| |
Collapse
|
5
|
Joly M, Deng T, Morhart TA, Wells G, Achenbach S, Bégin-Drolet A, Greener J. Scanning Aperture Approach for Spatially Selective ATR-FTIR Spectroscopy: Application to Microfluidics. Anal Chem 2021; 93:14076-14087. [PMID: 34636233 DOI: 10.1021/acs.analchem.1c01614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a novel spectroscopy accessory that can easily convert any Fourier transform infrared (FTIR) spectrometer into a fully automated mapping and assaying system. The accessory uses a multiridge attenuated total reflection (ATR) wafer as the sensing element coupled with a moving aperture that is used to select the regions of interest on the wafer. In this demonstration, the accessory is combined with a series of parallel micropatterned channels, which are positioned co-linear with the light-coupling ridges on the opposite side of the ATR wafer. The ATR spectroscopy microfluidic assay accessory (ASMAA) was used in continuous mapping mode to scan perpendicular to the ATR ridges, revealing complex but repeatable oscillations in the spectral intensities. To understand this behavior, the light path through the optical components was simulated with consideration of the aperture position, ridge-to-channel alignment, and excitation beam profile. With this approach, the simulation reproduced the experimental mapping results and provided evidence that the measurement position and area changed with the aperture position. To demonstrate the assay mode, we obtained spectra along the centerline of individual microchannels and determined noise baselines and limits of detection.
Collapse
Affiliation(s)
- Maxime Joly
- Département de génie mécanique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Tianyang Deng
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Tyler A Morhart
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada.,Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - Garth Wells
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - Sven Achenbach
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - André Bégin-Drolet
- Département de génie mécanique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jesse Greener
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.,CHU de Québec, centre de recherche, Université Laval, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada
| |
Collapse
|
6
|
Huang SH, Li J, Fan Z, Delgado R, Shvets G. Monitoring the effects of chemical stimuli on live cells with metasurface-enhanced infrared reflection spectroscopy. LAB ON A CHIP 2021; 21:3991-4004. [PMID: 34474459 PMCID: PMC8511245 DOI: 10.1039/d1lc00580d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Infrared spectroscopy has found wide applications in the analysis of biological materials. A more recent development is the use of engineered nanostructures - plasmonic metasurfaces - as substrates for metasurface-enhanced infrared reflection spectroscopy (MEIRS). Here, we demonstrate that strong field enhancement from plasmonic metasurfaces enables the use of MEIRS as a highly informative analytic technique for real-time monitoring of cells. By exposing live cells cultured on a plasmonic metasurface to chemical compounds, we show that MEIRS can be used as a label-free phenotypic assay for detecting multiple cellular responses to external stimuli: changes in cell morphology, adhesion, and lipid composition of the cellular membrane, as well as intracellular signaling. Using a focal plane array detection system, we show that MEIRS also enables spectro-chemical imaging at the single-cell level. The described metasurface-based all-optical sensor opens the way to a scalable, high-throughput spectroscopic assay for live cells.
Collapse
Affiliation(s)
- Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Jiaruo Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Zhiyuan Fan
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Robert Delgado
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| |
Collapse
|
7
|
Cirillo AI, Tomaiuolo G, Guido S. Membrane Fouling Phenomena in Microfluidic Systems: From Technical Challenges to Scientific Opportunities. MICROMACHINES 2021; 12:820. [PMID: 34357230 PMCID: PMC8305447 DOI: 10.3390/mi12070820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022]
Abstract
The almost ubiquitous, though undesired, deposition and accumulation of suspended/dissolved matter on solid surfaces, known as fouling, represents a crucial issue strongly affecting the efficiency and sustainability of micro-scale reactors. Fouling becomes even more detrimental for all the applications that require the use of membrane separation units. As a matter of fact, membrane technology is a key route towards process intensification, having the potential to replace conventional separation procedures, with significant energy savings and reduced environmental impact, in a broad range of applications, from water purification to food and pharmaceutical industries. Despite all the research efforts so far, fouling still represents an unsolved problem. The complex interplay of physical and chemical mechanisms governing its evolution is indeed yet to be fully unraveled and the role played by foulants' properties or operating conditions is an area of active research where microfluidics can play a fundamental role. The aim of this review is to explore fouling through microfluidic systems, assessing the fundamental interactions involved and how microfluidics enables the comprehension of the mechanisms characterizing the process. The main mathematical models describing the fouling stages will also be reviewed and their limitations discussed. Finally, the principal dynamic investigation techniques in which microfluidics represents a key tool will be discussed, analyzing their employment to study fouling.
Collapse
Affiliation(s)
- Andrea Iginio Cirillo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy; (A.I.C.); (S.G.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Giovanna Tomaiuolo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy; (A.I.C.); (S.G.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy; (A.I.C.); (S.G.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| |
Collapse
|
8
|
Li J, Šimek H, Ilioae D, Jung N, Bräse S, Zappe H, Dittmeyer R, Ladewig BP. In situ sensors for flow reactors – a review. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00038a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A comprehensive review on integrating microfluidic reactors with in situ sensors for reaction probing of chemical transformation.
Collapse
Affiliation(s)
- Jun Li
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Helena Šimek
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - David Ilioae
- Gisela and Erwin Sick Laboratory for Micro-optics, Department of Microsystems Engineering, University of Freiburg, Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Hans Zappe
- Gisela and Erwin Sick Laboratory for Micro-optics, Department of Microsystems Engineering, University of Freiburg, Germany
| | - Roland Dittmeyer
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Bradley P. Ladewig
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
9
|
Le THH, Matsushita T, Ohta R, Shimoda Y, Matsui H, Kitamori T. Fabrication of Infrared-Compatible Nanofluidic Devices for Plasmon-Enhanced Infrared Absorption Spectroscopy. MICROMACHINES 2020; 11:mi11121062. [PMID: 33266007 PMCID: PMC7760999 DOI: 10.3390/mi11121062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
Nanofluidic devices have offered us fascinating analytical platforms for chemical and bioanalysis by exploiting unique properties of liquids and molecules confined in nanospaces. The increasing interests in nanofluidic analytical devices have triggered the development of new robust and sensitive detection techniques, especially label-free ones. IR absorption spectroscopy is one of the most powerful biochemical analysis methods for identification and quantitative measurement of chemical species in the label-free and non-invasive fashion. However, the low sensitivity and the difficulties in fabrication of IR-compatible nanofluidic devices are major obstacles that restrict the applications of IR spectroscopy in nanofluidics. Here, we realized the bonding of CaF2 and SiO2 at room temperature and demonstrated an IR-compatible nanofluidic device that allowed the IR spectroscopy in a wide range of mid-IR regime. We also performed the integration of metal-insulator-metal perfect absorber metamaterials into nanofluidic devices for plasmon-enhanced infrared absorption spectroscopy with ultrahigh sensitivity. This study also shows a proof-of-concept of the multi-band absorber by combining different types of nanostructures. The results indicate the potential of implementing metamaterials in tracking several characteristic molecular vibrational modes simultaneously, making it possible to identify molecular species in mixture or complex biological entities.
Collapse
Affiliation(s)
- Thu Hac Huong Le
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan;
- Correspondence:
| | - Takumi Matsushita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan;
| | - Ryoichi Ohta
- Collaborative Research Organization for Micro and Nano Multifunctional Devices (NMfD), The University of Tokyo, Tokyo 113-8654, Japan; (R.O.); (T.K.)
| | - Yuta Shimoda
- Department of Bioengineering/Electrical Engineering and Information systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan; (Y.S.); (H.M.)
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Hiroaki Matsui
- Department of Bioengineering/Electrical Engineering and Information systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan; (Y.S.); (H.M.)
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Takehiko Kitamori
- Collaborative Research Organization for Micro and Nano Multifunctional Devices (NMfD), The University of Tokyo, Tokyo 113-8654, Japan; (R.O.); (T.K.)
- Institute of Nanoengineering and Microsystems iNEMS, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
10
|
Kratz C, Furchner A, Sun G, Rappich J, Hinrichs K. Sensing and structure analysis by in situIR spectroscopy: from mL flow cells to microfluidic applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:393002. [PMID: 32235045 DOI: 10.1088/1361-648x/ab8523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
In situmid-infrared (MIR) spectroscopy in liquids is an emerging field for the analysis of functional surfaces and chemical reactions. Different basic geometries exist forin situMIR spectroscopy in milliliter (mL) and microfluidic flow cells, such as attenuated total reflection (ATR), simple reflection, transmission and fiber waveguides. After a general introduction of linear opticalin situMIR techniques, the methodology of ATR, ellipsometric and microfluidic applications in single-reflection geometries is presented. Selected examples focusing on thin layers relevant to optical, electronical, polymer, biomedical, sensing and silicon technology are discussed. The development of an optofluidic platform translates IR spectroscopy to the world of micro- and nanofluidics. With the implementation of SEIRA (surface enhanced infrared absorption) interfaces, the sensitivity of optofluidic analyses of biomolecules can be improved significantly. A large variety of enhancement surfaces ranging from tailored nanostructures to metal-island film substrates are promising for this purpose. Meanwhile, time-resolved studies, such as sub-monolayer formation of organic molecules in nL volumes, become available in microscopic or laser-based set-ups. With the adaption of modern brilliant IR sources, such as tunable and broadband IR lasers as well as frequency comb sources, possible applications of far-field IR spectroscopy inin situsensing with high lateral (sub-mm) and time (sub-s) resolution are considerably extended.
Collapse
Affiliation(s)
| | | | - Guoguang Sun
- ISAS-e.V., Schwarzschildstr. 8, 12489 Berlin, Germany
| | - Jörg Rappich
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekuléstr. 5, 12489 Berlin, Germany
| | | |
Collapse
|
11
|
Kelp G, Li J, Lu J, DiNapoli N, Delgado R, Liu C, Fan D, Dutta-Gupta S, Shvets G. Infrared spectroscopy of live cells from a flowing solution using electrically-biased plasmonic metasurfaces. LAB ON A CHIP 2020; 20:2136-2153. [PMID: 32406430 DOI: 10.1039/c9lc01054h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spectral cytopathology (SCP) is a promising label-free technique for diagnosing diseases and monitoring therapeutic outcomes using FTIR spectroscopy. In most cases, cells must be immobilized on a substrate prior to spectroscopic interrogation. This creates significant limitations for high throughput phenotypic whole-cell analysis, especially for the non-adherent cells. Here we demonstrate how metasurface-enhanced infrared reflection spectroscopy (MEIRS) can be applied to a continuous flow of live cell solution by applying AC voltage to metallic metasurfaces. By integrating metasurfaces with microfluidic delivery channels and attracting the cells to the metasurface via dielectrophoretic (DEP) force, we collect the infrared spectra of cells in real time within a minute, and correlate the spectra with simultaneously acquired images of the attracted cells. The resulting DEP-MEIRS technique paves the way for rapid SCP of complex cell-containing body fluids with low cell concentrations, and for the development of a wide range of label-free liquid biopsies.
Collapse
Affiliation(s)
- Glen Kelp
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kriete B, Feenstra CJ, Pshenichnikov MS. Microfluidic out-of-equilibrium control of molecular nanotubes. Phys Chem Chem Phys 2020; 22:10179-10188. [PMID: 32347288 DOI: 10.1039/d0cp01734e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The bottom-up fabrication of functional nanosystems for light-harvesting applications and excitonic devices often relies on molecular self-assembly. Gaining access to the intermediate species involved in self-assembly would provide valuable insights into the pathways via which the final architecture has evolved, yet difficult to achieve due to their intrinsically short-lived nature. Here, we employ a lab-on-a-chip approach as a means to obtain in situ control of the structural complexity of an artificial light-harvesting complex: molecular double-walled nanotubes. Rapid and stable dissolution of the outer wall was realized via microfluidic mixing thereby rendering the thermodynamically unstable inner tubes accessible to spectroscopy. By measurement of the linear dichroism and time-resolved photoluminescence of both double-walled nanotubes and isolated inner tubes we show that the optical (excitonic) properties of the inner tube are remarkably robust to such drastic perturbation of the system's supramolecular structure as removal of the outer wall. The developed platform is readily extendable to a broad range of practical applications such as e.g. self-assembling systems and molecular photonics devices.
Collapse
Affiliation(s)
- Björn Kriete
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Carolien J Feenstra
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Maxim S Pshenichnikov
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| |
Collapse
|
13
|
Bomers M, Charlot B, Barho F, Chanuel A, Mezy A, Cerutti L, Gonzalez-Posada F, Taliercio T. Microfluidic surface-enhanced infrared spectroscopy with semiconductor plasmonics for the fingerprint region. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00350a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
III–V semiconductor plasmonics enables to perform microfluidic surface-enhanced mid-IR spectroscopy and to access the so-called molecular fingerprint region from 6.7 μm to 20 μm (1500–500 cm−1).
Collapse
Affiliation(s)
- Mario Bomers
- IES
- Université de Montpellier
- CNRS
- Montpellier
- France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ari J, Louvet G, Ledemi Y, Célarié F, Morais S, Bureau B, Marre S, Nazabal V, Messaddeq Y. Anodic bonding of mid-infrared transparent germanate glasses for high pressure - high temperature microfluidic applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 21:11-24. [PMID: 32082440 PMCID: PMC7006688 DOI: 10.1080/14686996.2019.1702861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
High pressure/high-temperature microreactors based on silicon-Pyrex® microfabrication technologies have attracted increasing interest in various applications providing optical access in high-pressure flow processes. However, they cannot be coupled to infrared spectroscopy due to the limited optical transparency (up to ~2.7 μm in the infrared region) of the Pyrex® glass substrate employed in the microreactor fabrication. To address this limitation, the alternative approach proposed in this work consists in replacing the Pyrex® glass in the microreactor by a mid-infrared transparent glass with thermal and mechanical properties as close as possible or even better to those of the Pyrex®, including its ability for silicon-wafers coupling by the anodic bonding process. Glasses based on germanate GeO2, known for their excellent transmission in the mid-infrared range and thermal/thermo-mechanical properties, have been thus evaluated and developed for this purpose. The optical, mechanical, thermal and electrical conductivity properties of adapted glass compositions belonging to five vitreous systems have been systemically investigated. The glass composition 70GeO2-15Al2O3-10La2O3-5Na2O (mol.%) was defined as the best candidate and produced in large plates of 50 mm diameter and 1 mm thickness. Anodic bonding tests with Si-wafers have been then successfully conducted, paving the way for the development of fully mid-infrared transparent silicon-glass microreactors.
Collapse
Affiliation(s)
- Julien Ari
- Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec (QC), Canada
- Equipe Verres & Céramiques - Institut des Sciences Chimiques de Rennes (ISCR), UMR-CNRS 6226, Université de Rennes 1, Rennes, France
| | - Geoffrey Louvet
- Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec (QC), Canada
- Equipe Verres & Céramiques - Institut des Sciences Chimiques de Rennes (ISCR), UMR-CNRS 6226, Université de Rennes 1, Rennes, France
| | - Yannick Ledemi
- Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec (QC), Canada
| | - Fabrice Célarié
- Département Mécanique & Verres, Institut de Physique de Rennes (IPR), UMR-CNRS 6251, Université de Rennes 1, Rennes, France
| | - Sandy Morais
- Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), UMR-CNRS 5026, Université de Bordeaux, Bordeaux, France
| | - Bruno Bureau
- Equipe Verres & Céramiques - Institut des Sciences Chimiques de Rennes (ISCR), UMR-CNRS 6226, Université de Rennes 1, Rennes, France
| | - Samuel Marre
- Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), UMR-CNRS 5026, Université de Bordeaux, Bordeaux, France
| | - Virginie Nazabal
- Equipe Verres & Céramiques - Institut des Sciences Chimiques de Rennes (ISCR), UMR-CNRS 6226, Université de Rennes 1, Rennes, France
| | - Younès Messaddeq
- Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec (QC), Canada
| |
Collapse
|
15
|
Jang H, Pawate AS, Bhargava R, Kenis PJA. Polymeric microfluidic continuous flow mixer combined with hyperspectral FT-IR imaging for studying rapid biomolecular events. LAB ON A CHIP 2019; 19:2598-2609. [PMID: 31259340 DOI: 10.1039/c9lc00182d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Early reaction intermediates in protein folding, such as those resulting in β-amyloid formation due to transient misfolding, emerge within a few hundred microseconds. Here, we report a method to obtain sub-millisecond temporal resolution and molecular structural information of protein (mis-)folding events by using a microfluidic continuous-flow mixer (MCFM) in combination with Fourier transform infrared (FT-IR) imaging. The MCFMs are made out of cyclic olefin copolymer (COC) films, because this approach allows for rapid prototyping of different mixer designs. Furthermore, COC offers high IR transparency between 1500 and 2500 cm-1, thus maximizing the signal to noise ratio of the IR data obtained from a sample of interest. By combining narrow and wide channel widths in MCFM design, the platform provides fast mixing (460 μs) to induce protein (mis-)folding, and it maximizes the residence time in the observing area, so a wide range of reaction timescales can be captured in a single image. We validated the platform for its ability to induce and observe sub-millisecond processes by studying two systems: (i) the mixing of H2O and D2O and (ii) the mixing induced deprotonation of carboxylic acid. First, we observed excellent agreement between simulated and experimental data of the on-chip mixing of H2O and D2O, which verifies the distance-reaction time relationships based on simulation. Second, deprotonation of carboxylic acid by on-chip mixing with sodium hydroxide solution validates the ability of the platform to induce rapid pH jump that is needed for some biomolecular reactions. Finally, we studied the methanol-induced partial-unfolding of ubiquitin to show that our platform can be used to study biomolecular events 'on-pathway' using FT-IR imaging. We successfully extracted kinetic and structural details of the conformational changes along the channel. Our results are in agreement with prior studies that required more elaborate stopped flow approaches to acquire data for different time points. In summary, the reported method uses an easy-to-fabricate microfluidic mixer platform integrated with hyperspectral FT-IR imaging for rapid acquisition of structural details and kinetic parameters of biomolecular reactions. This approach does not need stopped flow or molecular imaging probes, as required respectively for alternative FT-IR spectroscopy and fluorescence approaches.
Collapse
Affiliation(s)
- Hyukjin Jang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green St, Urbana, IL, USA. and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, USA
| | - Ashtamurthy S Pawate
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, USA
| | - Rohit Bhargava
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green St, Urbana, IL, USA. and Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, USA and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, USA
| | - Paul J A Kenis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green St, Urbana, IL, USA. and Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, USA and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, USA
| |
Collapse
|
16
|
Waldron C, Pankajakshan A, Quaglio M, Cao E, Galvanin F, Gavriilidis A. An autonomous microreactor platform for the rapid identification of kinetic models. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00345a] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rapid estimation of kinetic parameters with high precision is facilitated by automation combined with online Model-Based Design of Experiments.
Collapse
Affiliation(s)
- Conor Waldron
- Dept of Chemical Engineering
- University College London
- London
- UK
| | | | - Marco Quaglio
- Dept of Chemical Engineering
- University College London
- London
- UK
| | - Enhong Cao
- Dept of Chemical Engineering
- University College London
- London
- UK
| | | | | |
Collapse
|
17
|
Gavoille T, Pannacci N, Bergeot G, Marliere C, Marre S. Microfluidic approaches for accessing thermophysical properties of fluid systems. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00130a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thermophysical properties of fluid systems under high pressure and high temperature conditions are highly desirable as they are used in many industrial processes both from a chemical engineering point of view and to push forward the development of modeling approaches.
Collapse
Affiliation(s)
- Theo Gavoille
- IFP Energies nouvelles
- 92852 Rueil-Malmaison Cedex
- France
- CNRS
- Univ. Bordeaux
| | | | | | | | - Samuel Marre
- CNRS
- Univ. Bordeaux
- Bordeaux INP
- ICMCB
- F-33600 Pessac
| |
Collapse
|
18
|
Morhart TA, Read S, Wells G, Jacobs M, Rosendahl SM, Achenbach S, Burgess IJ. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectromicroscopy Using Synchrotron Radiation and Micromachined Silicon Wafers for Microfluidic Applications. APPLIED SPECTROSCOPY 2018; 72:1781-1789. [PMID: 29893584 DOI: 10.1177/0003702818785640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A custom-designed optical configuration compatible with the use of micromachined multigroove internal reflection elements (μ-groove IREs) for attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and imaging applications in microfluidic devices is described. The μ-groove IREs consist of several face-angled grooves etched into a single, monolithic silicon chip. The optical configuration permits individual grooves to be addressed by focusing synchrotron sourced IR light through a 150 µm pinhole aperture, restricting the beam spot size to a dimension smaller than that of the groove walls. The effective beam spot diameter at the ATR sampling plane is determined through deconvolution of the measured detector response and found to be 70 µm. The μ-groove IREs are highly compatible with standard photolithographic techniques as demonstrated by printing a 400 µm wide channel in an SU-8 film spin-coated on the IRE surface. Attenuated total reflection FT-IR mapping as a function of sample position across the channel illustrates the potential application of this approach for rapid prototyping of microfluidic devices.
Collapse
Affiliation(s)
- Tyler A Morhart
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stuart Read
- Canadian Light Source, Saskatoon, SK, Canada
| | - Garth Wells
- Canadian Light Source, Saskatoon, SK, Canada
| | | | | | - Sven Achenbach
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ian J Burgess
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
19
|
IR-Compatible PDMS microfluidic devices for monitoring of enzyme kinetics. Anal Chim Acta 2018; 1021:95-102. [DOI: 10.1016/j.aca.2018.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 01/17/2018] [Accepted: 03/05/2018] [Indexed: 11/22/2022]
|
20
|
Li S, Ihli J, Marchant WJ, Zeng M, Chen L, Wehbe K, Cinque G, Cespedes O, Kapur N, Meldrum FC. Synchrotron FTIR mapping of mineralization in a microfluidic device. LAB ON A CHIP 2017; 17:1616-1624. [PMID: 28387775 DOI: 10.1039/c6lc01393g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fourier transform infrared micro-spectroscopy provides an effective means of performing rapid, non-destructive, and label-free analysis of specimens according to their vibrational modes. However, as water absorbs very strongly in the infrared region, analysis of aqueous solutions in transmission mode can suffer from problems with signal saturation. We here describe the fabrication of a novel microfluidic device that overcomes this problem. Devices with channel depths of just 3 μm were constructed from calcium fluoride using photolithography and hot embossing bonding, where calcium fluoride was selected due to its transparency in the IR region. The utility of this device was then demonstrated by employing it to follow the precipitation pathways of calcium sulfate and calcium carbonate using synchrotron FTIR micro-spectroscopy. Importantly, due to the high brightness provided by synchrotron radiation, and the fact that the reacting ions (HCO3-, CO32- and SO42-) and the different mineral polymorphs all have finger print spectra in the measured IR range, this method can be used to acquire time-resolved, hyperspectral maps of the mineral particles formed within the sample cell, and then study the interaction and evolution of particles. The data provide new insight into the formation pathway of a population of crystals in confined volumes, and demonstrate that this in situ, real-time detection system provides a powerful tool for studying crystallization processes.
Collapse
Affiliation(s)
- Shunbo Li
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Loutherback K, Birarda G, Chen L, Holman HYN. Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems. Protein Pept Lett 2016; 23:273-82. [PMID: 26732243 PMCID: PMC4997923 DOI: 10.2174/0929866523666160106154035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/30/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023]
Abstract
A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.
Collapse
Affiliation(s)
| | | | | | - Hoi-Ying N Holman
- Berkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
22
|
Su W, Cook BS, Fang Y, Tentzeris MM. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications. Sci Rep 2016; 6:35111. [PMID: 27713545 PMCID: PMC5054388 DOI: 10.1038/srep35111] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/05/2016] [Indexed: 01/01/2023] Open
Abstract
As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates.
Collapse
Affiliation(s)
- Wenjing Su
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-250, USA
| | | | - Yunnan Fang
- Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332-245, USA
| | - Manos M Tentzeris
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332-250, USA
| |
Collapse
|
23
|
Srisa-Art M, Furutani Y. Simple and Rapid Fabrication of PDMS Microfluidic Devices Compatible with FTIR Microspectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20150357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Monpichar Srisa-Art
- Chromatography and Separation Research Unit (ChSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University
- Electrochemistry and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science
| |
Collapse
|
24
|
Silverwood IP, Al-Rifai N, Cao E, Nelson DJ, Chutia A, Wells PP, Nolan SP, Frogley MD, Cinque G, Gavriilidis A, Catlow CRA. Towards microfluidic reactors for in situ synchrotron infrared studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:024101. [PMID: 26931867 DOI: 10.1063/1.4941825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Anodically bonded etched silicon microfluidic devices that allow infrared spectroscopic measurement of solutions are reported. These extend spatially well-resolved in situ infrared measurement to higher temperatures and pressures than previously reported, making them useful for effectively time-resolved measurement of realistic catalytic processes. A data processing technique necessary for the mitigation of interference fringes caused by multiple reflections of the probe beam is also described.
Collapse
Affiliation(s)
- I P Silverwood
- Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - N Al-Rifai
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - E Cao
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - D J Nelson
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom
| | - A Chutia
- Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - P P Wells
- Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - S P Nolan
- EaSTCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - M D Frogley
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom
| | - G Cinque
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom
| | - A Gavriilidis
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - C R A Catlow
- Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| |
Collapse
|
25
|
Perro A, Lebourdon G, Henry S, Lecomte S, Servant L, Marre S. Combining microfluidics and FT-IR spectroscopy: towards spatially resolved information on chemical processes. REACT CHEM ENG 2016. [DOI: 10.1039/c6re00127k] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review outlines the combination of infrared spectroscopy and continuous microfluidic processes.
Collapse
Affiliation(s)
- Adeline Perro
- Institut des Sciences Moléculaires
- Université de Bordeaux—CNRS
- 33405 Talence
- France
| | - Gwenaelle Lebourdon
- Institut des Sciences Moléculaires
- Université de Bordeaux—CNRS
- 33405 Talence
- France
| | - Sarah Henry
- Chimie et Biologie des Membranes et des Nanoobjets
- Université de Bordeaux —CNRS
- 33607 Pessac
- France
| | - Sophie Lecomte
- Chimie et Biologie des Membranes et des Nanoobjets
- Université de Bordeaux —CNRS
- 33607 Pessac
- France
| | - Laurent Servant
- Institut des Sciences Moléculaires
- Université de Bordeaux—CNRS
- 33405 Talence
- France
| | | |
Collapse
|
26
|
Li S, Gong X, Mc Nally CS, Zeng M, Gaule T, Anduix-Canto C, Kulak AN, Bawazer LA, McPherson MJ, Meldrum FC. Rapid preparation of highly reliable PDMS double emulsion microfluidic devices. RSC Adv 2016. [DOI: 10.1039/c6ra03225g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article presents a simple and highly reliable method for preparing PDMS microfluidic double emulsion devices that employs a single-step oxidative plasma treatment to both pattern the wettability of the microchannels and to bond the chips.
Collapse
Affiliation(s)
- Shunbo Li
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | | | | | - Muling Zeng
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | - Thembaninkosi Gaule
- School of Chemistry
- University of Leeds
- Leeds
- UK
- Astbury Centre for Structural Molecular Biology
| | | | | | | | - Michael J. McPherson
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology
- University of Leeds
- Leeds
- UK
| | | |
Collapse
|
27
|
Lehmkuhl B, Noblitt SD, Krummel AT, Henry CS. Fabrication of IR-transparent microfluidic devices by anisotropic etching of channels in CaF2. LAB ON A CHIP 2015; 15:4364-4368. [PMID: 26450455 DOI: 10.1039/c5lc00759c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A simple fabrication method for generating infrared (IR) transparent microfluidic devices using etched CaF2 is demonstrated. To etch microfluidic channels, a poly(dimethylsiloxane) (PDMS) microfluidic device was reversibly sealed on a CaF2 plate and acid was pumped through the channel network to perform anisotropic etching of the underlying CaF2 surface. To complete the CaF2 microfluidic device, another CaF2 plate was sealed over the etched channel using a 700 nm thick layer of PDMS adhesive. The impact of different acids and their concentrations on etching was studied, with HNO3 giving the best results in terms of channel roughness and etch rates. Etch rate was determined at etching times ranging from 4-48 hours and showed a linear correlation with etching time. The IR transparency of the CaF2 device was established using a Fourier Transform IR microscope and showed that the device could be used in the mid-IR region. Finally, utility of the device was demonstrated by following the reaction of N-methylacetamide and D2O, which results in an amide peak shift to 1625 cm(-1) from 1650 cm(-1), using an FTIR microscope.
Collapse
Affiliation(s)
- Brynson Lehmkuhl
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA.
| | - Scott D Noblitt
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA.
| | - Amber T Krummel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA.
| |
Collapse
|
28
|
Chau M, Abolhasani M, Thérien-Aubin H, Li Y, Wang Y, Velasco D, Tumarkin E, Ramachandran A, Kumacheva E. Microfluidic Generation of Composite Biopolymer Microgels with Tunable Compositions and Mechanical Properties. Biomacromolecules 2014; 15:2419-25. [DOI: 10.1021/bm5002813] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mokit Chau
- Department
of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Milad Abolhasani
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Héloïse Thérien-Aubin
- Department
of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yang Li
- Department
of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Yihe Wang
- Department
of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Diego Velasco
- Department
of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ethan Tumarkin
- Department
of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Arun Ramachandran
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Eugenia Kumacheva
- Department
of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
29
|
Karabudak E. Micromachined silicon attenuated total reflectance infrared spectroscopy: An emerging detection method in micro/nanofluidics. Electrophoresis 2013; 35:236-44. [DOI: 10.1002/elps.201300248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Engin Karabudak
- Mesoscale Chemical Systems Group (MCS); MESA+ Institute for Nanotechnology; University of Twente; The Netherlands
| |
Collapse
|
30
|
Santolaria J, Monge R, Tobajas Á, Jimenez R, Cabrera MA, Fernandez LJ. Design, manufacture and geometric verification of rapid prototyped microfluidic encapsulations by computed tomography. COMPUT IND 2013. [DOI: 10.1016/j.compind.2013.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Glassford SE, Byrne B, Kazarian SG. Recent applications of ATR FTIR spectroscopy and imaging to proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2849-58. [PMID: 23928299 DOI: 10.1016/j.bbapap.2013.07.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/24/2013] [Accepted: 07/27/2013] [Indexed: 11/25/2022]
Abstract
Attenuated Total Reflection (ATR) Fourier Transform Infrared (FTIR) spectroscopy is a label-free, non-destructive analytical technique that can be used extensively to study a wide variety of different molecules in a range of different conditions. The aim of this review is to discuss and highlight the recent advances in the applications of ATR FTIR spectroscopic imaging to proteins. It briefly covers the basic principles of ATR FTIR spectroscopy and ATR FTIR spectroscopic imaging as well as their advantages to the study of proteins compared to other techniques and other forms of FTIR spectroscopy. It will then go on to examine the advances that have been made within the field over the last several years, particularly the use of ATR FTIR spectroscopy for the understanding and development of protein interaction with surfaces. Additionally, the growing potential of Surface Enhanced Infrared Spectroscopy (SEIRAS) within this area of applications will be discussed. The review includes the applications of ATR FTIR imaging to protein crystallisation and for high-throughput studies, highlighting the future potential of the technology within the field of protein structural studies and beyond.
Collapse
|
32
|
Koziej D, Floryan C, Sperling RA, Ehrlicher AJ, Issadore D, Westervelt R, Weitz DA. Microwave dielectric heating of non-aqueous droplets in a microfluidic device for nanoparticle synthesis. NANOSCALE 2013; 5:5468-75. [PMID: 23670701 DOI: 10.1039/c3nr00500c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We describe a microfluidic device with an integrated microwave heater specifically designed to dielectrically heat non-aqueous droplets using time-varying electrical fields with the frequency range between 700 and 900 MHz. The precise control of frequency, power, temperature and duration of the applied field opens up new vistas for experiments not attainable by conventional microwave heating. We use a non-contact temperature measurement system based on fluorescence to directly determine the temperature inside a single droplet. The maximum temperature achieved of the droplets is 50 °C in 15 ms which represents an increase of about 25 °C above the base temperature of the continuous phase. In addition we use an infrared camera to monitor the thermal characteristics of the device allowing us to ensure that heating is exclusively due to the dielectric heating and not due to other effects like non-dielectric losses due to electrode or contact imperfection. This is crucial for illustrating the potential of dielectric heating of benzyl alcohol droplets for the synthesis of metal oxides. We demonstrate the utility of this technology for metal oxide nanoparticle synthesis, achieving crystallization of tungsten oxide nanoparticles and remarkable microstructure, with a reaction time of 64 ms, a substantial improvement over conventional heating methods.
Collapse
Affiliation(s)
- Dorota Koziej
- School of Engineering and Applied Sciences, Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Chan KLA, Kazarian SG. Aberration-free FTIR spectroscopic imaging of live cells in microfluidic devices. Analyst 2013; 138:4040-7. [PMID: 23515344 DOI: 10.1039/c3an00327b] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The label-free, non-destructive chemical analysis offered by FTIR spectroscopic imaging is a very attractive and potentially powerful tool for studies of live biological cells. FTIR imaging of live cells is a challenging task, due to the fact that cells are cultured in an aqueous environment. While the synchrotron facility has proven to be a valuable tool for FTIR microspectroscopic studies of single live cells, we have demonstrated that high quality infrared spectra of single live cells using an ordinary Globar source can also be obtained by adding a pair of lenses to a common transmission liquid cell. The lenses, when placed on the transmission cell window, form pseudo hemispheres which removes the refraction of light and hence improve the imaging and spectral quality of the obtained data. This study demonstrates that infrared spectra of single live cells can be obtained without the focus shifting effect at different wavenumbers, caused by the chromatic aberration. Spectra of the single cells have confirmed that the measured spectral region remains in focus across the whole range, while spectra of the single cells measured without the lenses have shown some erroneous features as a result of the shift of focus. It has also been demonstrated that the addition of lenses can be applied to the imaging of cells in microfabricated devices. We have shown that it was not possible to obtain a focused image of an isolated cell in a droplet of DPBS in oil unless the lenses are applied. The use of the approach described herein allows for well focused images of single cells in DPBS droplets to be obtained.
Collapse
Affiliation(s)
- K L Andrew Chan
- Department of Chemical Engineering, Imperial College London, SW7 2AZ, London, UK
| | | |
Collapse
|
34
|
Guo F, Lapsley MI, Nawaz AA, Zhao Y, Lin SCS, Chen Y, Yang S, Zhao XZ, Huang TJ. A droplet-based, optofluidic device for high-throughput, quantitative bioanalysis. Anal Chem 2012; 84:10745-9. [PMID: 23140515 DOI: 10.1021/ac302623z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Analysis of chemical or biomolecular contents in a tiny amount of specimen presents a significant challenge in many biochemical studies and diagnostic applications. In this work, we present a single-layer, optofluidic device for real-time, high-throughput, quantitative analysis of droplet contents. Our device integrates an optical fiber-based, on-chip detection unit with a droplet-based microfluidic unit. It can quantitatively analyze the contents of individual droplets in real-time. It also achieves a detection throughput of 2000 droplets per second, a detection limit of 20 nM, and an excellent reproducibility in its detection results. In a proof-of-concept study, we demonstrate that our device can be used to perform detection of DNA and its mutations by monitoring the fluorescent signal changes of the target DNA/molecular beacon complex in single droplets. Our approach can be immediately extended to a real-time, high-throughput detection of other biomolecules (such as proteins and viruses) in droplets. With its advantages in throughput, functionality, cost, size, and reliability, the droplet-based optofluidic device presented here can be a valuable tool for many medical diagnostic applications.
Collapse
Affiliation(s)
- Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chan KLA, Kazarian SG. FT-IR spectroscopic imaging of reactions in multiphase flow in microfluidic channels. Anal Chem 2012; 84:4052-6. [PMID: 22468788 PMCID: PMC3386657 DOI: 10.1021/ac300019m] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Rapid, in situ, and label-free chemical analysis in microfluidic
devices is highly desirable. FT-IR spectroscopic imaging has previously
been shown to be a powerful tool to visualize the distribution of
different chemicals in flows in a microfluidic device at near video
rate imaging speed without tracers or dyes. This paper demonstrates
the possibility of using this imaging technology to capture the chemical
information of all reactants and products at different points in time
and space in a two-phase system. Differences in the rates of chemical
reactions in laminar flow and segmented flow systems are also compared.
Neutralization of benzoic acid in decanol with disodium phosphate
in water has been used as the model reaction. Quantitative information,
such as concentration profiles of reactant and products, can be extracted
from the imaging data. The same feed flow rate was used in both the
laminar flow and segmented flow systems. The laminar flow pattern
was achieved using a plain wide T-junction, whereas the segmented
flow was achieved by introducing a narrowed section and a nozzle at
the T-junction. The results show that the reaction rate is limited
by diffusion and is much slower with the laminar flow pattern, whereas
the reaction is completed more quickly in the segmented flow due to
better mixing.
Collapse
Affiliation(s)
- K L Andrew Chan
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| | | |
Collapse
|
36
|
Gervais L, de Rooij N, Delamarche E. Microfluidic chips for point-of-care immunodiagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:H151-76. [PMID: 21567479 DOI: 10.1002/adma.201100464] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Indexed: 05/03/2023]
Abstract
We might be at the turning point where research in microfluidics undertaken in academia and industrial research laboratories, and substantially sponsored by public grants, may provide a range of portable and networked diagnostic devices. In this Progress Report, an overview on microfluidic devices that may become the next generation of point-of-care (POC) diagnostics is provided. First, we describe gaps and opportunities in medical diagnostics and how microfluidics can address these gaps using the example of immunodiagnostics. Next, we conceptualize how different technologies are converging into working microfluidic POC diagnostics devices. Technologies are explained from the perspective of sample interaction with components of a device. Specifically, we detail materials, surface treatment, sample processing, microfluidic elements (such as valves, pumps, and mixers), receptors, and analytes in the light of various biosensing concepts. Finally, we discuss the integration of components into accurate and reliable devices.
Collapse
Affiliation(s)
- Luc Gervais
- IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | | | | |
Collapse
|
37
|
Chan KLA, Niu X, deMello AJ, Kazarian SG. Generation of Chemical Movies: FT-IR Spectroscopic Imaging of Segmented Flows. Anal Chem 2011; 83:3606-9. [DOI: 10.1021/ac200497a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- K. L. Andrew Chan
- Department of Chemical Engineering and ‡Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - X. Niu
- Department of Chemical Engineering and ‡Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - A. J. deMello
- Department of Chemical Engineering and ‡Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - S. G. Kazarian
- Department of Chemical Engineering and ‡Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| |
Collapse
|