1
|
Wang J, Qu Z, Ma X, Olajide JS, Cai J. Cloning, expression, and functional identification of aquaporin genes from Eimeria tenella. Vet Parasitol 2024; 328:110153. [PMID: 38452532 DOI: 10.1016/j.vetpar.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Avian coccidiosis, caused by Eimeria spp., is one of the major parasitic diseases in chicken. Aquaporins (AQP) are essential mediators of water regulation and nutritional intake in parasites, and it may be a suitable molecule for chemotherapeutic target and vaccine candidate. We identified two aquaporin genes in Eimeria tenella (EtAQP1 and EtAQP2) with their full sequence, and the expression profiles were analyzed across different stages of E. tenella life cycle. The expression of EtAQP1 and EtAQP2 in Xenopus oocytes renders them highly permeable for both water and glycerol. Sugar alcohols up to five carbons and urea pass the pore. The immunohistochemical analysis confirms the restriction of antiserum staining to the surface of transfected Xenopus oocytes. Like other AQP family, EtAQPs are transmembrane proteins that are likely important molecules that facilitate solute uptake for parasite intracellular growth and therapeutic targets.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Zigang Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xueting Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Joshua Seun Olajide
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianping Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Rahimi Z, Lohrasebi A. Impacts of external electric fields on the permeation of glycerol and water molecules through aquaglyceroporin-7: molecular dynamics simulation approach. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:3. [PMID: 36656387 DOI: 10.1140/epje/s10189-023-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The aquaglyceroporin-7 (AQP7) protein channels facilitate the permeation of glycerol and water molecules through cell membranes by passive diffusion and play a crucial role in cell physiology. Considering the wide-spirit usage of radiofrequency electromagnetic fields in our daily life, in this study, the effects of constant and GHz electric fields were investigated on the dynamics of glycerol and water molecules inside the AQP7. To this end, four different molecular simulation groups were carried out in the absence and presence of electric fields. The results reveal that the free energy profile of the glycerol permeation inside the channel is reduced in the presence of the field of 0.2 mV/nm and the oscillating field of 10 GHz. In addition, exposing the channel to the electric field of 0.2 mV/nm assisted the water transport through the channel with no considerable effect on channel stability. These observations provide a framework for understanding how such fields could alter normal operation of protein channels, which may lead to disease beginning or being used in disease treatment. Glycerol and water molecules permeation through the aquaglyceroporin-7 channel can be influenced by application of external electric fields.
Collapse
Affiliation(s)
- Zeinab Rahimi
- Department of Physics, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Amir Lohrasebi
- Department of Physics, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran.
| |
Collapse
|
3
|
Hadidi H, Kamali R. Molecular dynamics study of water transport through AQP5-R188C mutant causing palmoplantar keratoderma (PPK) using the gating mechanism concept. Biophys Chem 2021; 277:106655. [PMID: 34225022 DOI: 10.1016/j.bpc.2021.106655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/05/2023]
Abstract
It is widely known that any disruption to the water regulation in aquaporins (AQPs) leads to numerous important diseases. However, studies of dynamics and energetics of disease-causing mutations in the aquaporins on the molecular level are still limited. In the present work, the effects of a skin disease-causing mutant, R188C, on the structure of AQP5 and water transport mechanism within this mutated aquaporin are investigated using the concept of gating mechanism. Our results have revealed that the R188C mutation causes a remarkable increase in the pore radius inside the selectivity filter (SF) region facilitating the passage of water molecules. This observation is supported by plotting the free energy profiles of water molecules transport and calculating permeability values through AQP5-R188C, such that the energy barrier in the SF region of the pores was substantially reduced by this mutation, and therefore, the translocation of water molecules was improved. The total averaged osmotic permeability for R188C has been computed as about 11-fold of the wild-type permeability. However, a comparison between the osmotic permeability values related to the open conformation of CE revealed that this coefficient for AQP5-R188C is about 6.5 times larger than that of wt-AQP5, which can be a more accurate value according to the gating mechanism associated with the constriction region of the aquaporin.
Collapse
Affiliation(s)
- Hooman Hadidi
- School of Mechanical Engineering, Shiraz University, Shiraz, Fars 71348-51154, Iran
| | - Reza Kamali
- School of Mechanical Engineering, Shiraz University, Shiraz, Fars 71348-51154, Iran.
| |
Collapse
|
4
|
Rahimi Z, Lohrasebi A. Influences of electric fields on the operation of Aqy1 aquaporin channels: a molecular dynamics study. Phys Chem Chem Phys 2020; 22:25859-25868. [PMID: 33155592 DOI: 10.1039/d0cp04763e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The dynamics of water molecules inside an Aquaporin channel, embedded within a stochastically fluctuating membrane, was modeled by means of the application of the molecular dynamics (MD) simulation method. We considered the effect of the existence and nonexistence of an external electric field, either constant or oscillating, on the stability of the channel. It was observed that the permeation of water molecules through the channel was increased when the channel was exposed to a constant electric field of strength -0.2 mV nm-1. Moreover, oscillating electric fields of 5 and 10 GHz frequencies, which is the range of field frequency generally present in our daily life, were applied to the channel, showing not significant effects on the stability of the channel and its important parts. In addition, we investigated the influence of the application of electric fields on the water molecule ordinations in the channels, and the results showed that the water molecule orientations were changed in response to the applied field.
Collapse
Affiliation(s)
- Z Rahimi
- Department of Physics, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran.
| | | |
Collapse
|
5
|
Neumann LSM, Dias AHS, Skaf MS. Molecular Modeling of Aquaporins from Leishmania major. J Phys Chem B 2020; 124:5825-5836. [PMID: 32551664 DOI: 10.1021/acs.jpcb.0c03550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aquaporins are membrane proteins responsible for permeating water, ions, dissolved gases, and other small molecular weight compounds through the protective cell membranes of living organisms. These proteins have been gaining increased importance as targets for treating a variety of parasitic diseases, since they control key physiological processes in the life cycle of parasitic protozoans, such as the uptake of nutrients, release of metabolites, and alleviation of osmotic stress. In this work, we use homology modeling to build three-dimensional structures for the four main aquaporins encoded and expressed by Leishmania major, a protozoan that causes leishmaniasis and affects millions of people worldwide. Physico-chemical properties of the proposed models for LmAQP1, LmAQPα, LmAQPβ, and LmAQPγ are then investigated using molecular dynamics simulations and the reference interaction site model (RISM) molecular theory of solvation. Pore characteristics, water permeation, and potential of mean force across the AQP channels for water, methanol, urea, ammonia, and carbon dioxide are examined and compared with results obtained for a protozoan (Plasmodium falciparum) aquaporin for which a crystal structure is available.
Collapse
Affiliation(s)
- Lucas S M Neumann
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, SP 13084-862, Brazil
| | - Artur H S Dias
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, SP 13084-862, Brazil
| | - Munir S Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, SP 13084-862, Brazil
| |
Collapse
|
6
|
Moss FJ, Mahinthichaichan P, Lodowski DT, Kowatz T, Tajkhorshid E, Engel A, Boron WF, Vahedi-Faridi A. Aquaporin-7: A Dynamic Aquaglyceroporin With Greater Water and Glycerol Permeability Than Its Bacterial Homolog GlpF. Front Physiol 2020; 11:728. [PMID: 32695023 PMCID: PMC7339978 DOI: 10.3389/fphys.2020.00728] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/04/2020] [Indexed: 12/27/2022] Open
Abstract
Xenopus oocytes expressing human aquaporin-7 (AQP7) exhibit greater osmotic water permeability and 3H-glycerol uptake vs. those expressing the bacterial glycerol facilitator GlpF. AQP7-expressing oocytes exposed to increasing extracellular [glycerol] under isosmolal conditions exhibit increasing swelling rates, whereas GlpF-expressing oocytes do not swell at all. To provide a structural basis for these observed physiological differences, we performed X-ray crystallographic structure determination of AQP7 and molecular-dynamics simulations on AQP7 and GlpF. The structure reveals AQP7 tetramers containing two monomers with 3 glycerols, and two monomers with 2 glycerols in the pore. In contrast to GlpF, no glycerol is bound at the AQP7 selectivity filter (SF), comprising residues F74, G222, Y223, and R229. The AQP7 SF is resolved in its closed state because F74 blocks the passage of small solutes. Molecular dynamics simulations demonstrate that F74 undergoes large and rapid conformational changes, allowing glycerol molecules to permeate without orientational restriction. The more rigid GlpF imposes orientational constraints on glycerol molecules passing through the SF. Moreover, GlpF-W48 (analogous to AQP7-F74) undergoes rare but long-lasting conformational changes that block the pore to H2O and glycerol.
Collapse
Affiliation(s)
- Fraser J. Moss
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Paween Mahinthichaichan
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - David T. Lodowski
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas Kowatz
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Andreas Engel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Walter F. Boron
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ardeschir Vahedi-Faridi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
7
|
Chen LY. Application of the Brown dynamics fluctuation-dissipation theorem to the study of Plasmodium berghei transporter protein PbAQP. FRONTIERS IN PHYSICS 2020; 8:119. [PMID: 32457897 PMCID: PMC7250396 DOI: 10.3389/fphy.2020.00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, the Brownian dynamics fluctuation-dissipation theorem (BD-FDT) is applied to the study of transport of neutral solutes across the cellular membrane of Plasmodium berghei (Pb), a disease-causing parasite. Pb infects rodents and causes symptoms in laboratory mice that are comparable to human malaria caused by Plasmodium falciparum (Pf). Due to the relative ease of its genetic engineering, P. berghei has been exploited as a model organism for the study of human malaria. P. berghei expresses one type of aquaporin (AQP), PbAQP, and, in parallel, P. falciparum expresses PfAQP. Either PbAQP or PfAQP is a multifunctional channel protein in the plasma membrane of the rodent/human malarial parasite for homeostasis of water, uptake of glycerol, and excretion of some metabolic wastes across the cell membrane. This FDT-study of the channel protein PbAQP is to elucidate how and how strongly it interacts with water, glycerol, and erythritol. It is found that erythritol, which binds deep inside the conducting pore of PbAQP/PfAQP, inhibits the channel protein's functions of conducting water, glycerol etc. This points to the possibility that erythritol, a sugar substitute, may inhibit the malarial parasites in rodents and in humans.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Padhi S, Priyakumar UD. Selectivity and transport in aquaporins from molecular simulation studies. VITAMINS AND HORMONES 2020; 112:47-70. [DOI: 10.1016/bs.vh.2019.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2930504. [PMID: 31316715 PMCID: PMC6604302 DOI: 10.1155/2019/2930504] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022]
Abstract
Aquaporins (AQPs) are transmembrane proteins that conduct not only water molecules across the cell membrane but also other solutes, such as reactive oxygen and nitrogen species (RONS), produced (among others) by cold atmospheric plasma (CAP). These RONS may induce oxidative stress in the cell interior, which plays a role in cancer treatment. The underlying mechanisms of the transport of RONS across AQPs, however, still remain obscure. We apply molecular dynamics simulations to investigate the permeation of both hydrophilic (H2O2 and OH) and hydrophobic (NO2 and NO) RONS through AQP1. Our simulations show that these RONS can all penetrate across the pores of AQP1. The permeation free energy barrier of OH and NO is lower than that of H2O2 and NO2, indicating that these radicals may have easier access to the pore interior and interact with the amino acid residues of AQP1. We also study the effect of RONS-induced oxidation of both the phospholipids and AQP1 (i.e., sulfenylation of Cys191) on the transport of the above-mentioned RONS across AQP1. Both lipid and protein oxidation seem to slightly increase the free energy barrier for H2O2 and NO2 permeation, while for OH and NO, we do not observe a strong effect of oxidation. The simulation results help to gain insight in the underlying mechanisms of the noticeable rise of CAP-induced RONS in cancer cells, thereby improving our understanding on the role of AQPs in the selective anticancer capacity of CAP.
Collapse
|
10
|
Jain A, Verma RK, Sankararamakrishnan R. Presence of Intra-helical Salt-Bridge in Loop E Half-Helix Can Influence the Transport Properties of AQP1 and GlpF Channels: Molecular Dynamics Simulations of In Silico Mutants. J Membr Biol 2018; 252:17-29. [PMID: 30470864 DOI: 10.1007/s00232-018-0054-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/09/2018] [Indexed: 11/25/2022]
Abstract
Major intrinsic protein (MIP) superfamily contains water-transporting AQP1 and glycerol-specific GlpF belonging to two major phylogenetic groups, namely aquaporins (AQPs) and aquaglyceroporins (AQGPs). MIP channels have six transmembrane helices (TM1 to TM6) and two half-helices (LB and LE). LE region contributes two residues to the aromatic/arginine (Ar/R) selectivity filter (SF) within the MIP channel. Bioinformatics analyses have shown that all AQGPs have an intra-helical salt-bridge (IHSB) in LE half-helix and all AQGPs and majority of AQPs have helix destabilizing Gly and/or Pro in the same region. In this paper, we mutated in silico the acidic and basic residues in GlpF to Ser and introduced salt-bridge interaction in AQP1 LE half-helix by substituting Ser residues at the equivalent positions with acidic and basic residues. We investigated the influence of IHSB in LE half-helix on the transport properties of GlpF and AQP1 mutant channels using molecular dynamics simulations. With IHSB abolished in LE half-helix, the GlpF mutant exhibited a significantly reduced water transport. In contrast, the introduction of IHSB in the two AQP1 mutants has increased water transport. Absence of salt-bridge in LE half-helix alters the SF geometry and results in a higher energy barrier for the solutes in the Ar/R selectivity filter. Presence/absence of IHSB in LE half-helix influences the channel transport properties and it is evident especially for the AQGPs. By modulating its helical flexibility, LE half-helix can perhaps play a regulatory role in transport either on its own or in conjunction with other extracellular regions.
Collapse
Affiliation(s)
- Alok Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Ravi Kumar Verma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | | |
Collapse
|
11
|
Irudayanathan FJ, Wang N, Wang X, Nangia S. Architecture of the paracellular channels formed by claudins of the blood–brain barrier tight junctions. Ann N Y Acad Sci 2017; 1405:131-146. [DOI: 10.1111/nyas.13378] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/31/2023]
Affiliation(s)
| | - Nan Wang
- Department of Biomedical and Chemical Engineering Syracuse University Syracuse New York
| | - Xiaoyi Wang
- Department of Biomedical and Chemical Engineering Syracuse University Syracuse New York
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering Syracuse University Syracuse New York
| |
Collapse
|
12
|
Wambo TO, Rodriguez RA, Chen LY. Computing osmotic permeabilities of aquaporins AQP4, AQP5, and GlpF from near-equilibrium simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1310-1316. [PMID: 28455098 DOI: 10.1016/j.bbamem.2017.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 12/01/2022]
Abstract
Measuring or computing the single-channel permeability of aquaporins/aquaglyceroporins (AQPs) has long been a challenge. The measured values scatter over an order of magnitude but the corresponding Arrhenius activation energies converge in the current literature. Osmotic flux through an AQP was simulated as water current forced through the channel by kilobar hydraulic pressure or theoretically approximated as single-file diffusion. In this paper, we report large scale simulations of osmotic current under sub M gradient through three AQPs (water channels AQP4 and AQP5 and glycerol-water channel GlpF) using the mature particle mesh Ewald technique (PME) for which the established force fields have been optimized with known accuracy. These simulations were implemented with hybrid periodic boundary conditions devised to avoid the artifactitious mixing across the membrane in a regular PME simulation. The computed single-channel permeabilities at 5°C and 25°C are in agreement with recently refined experiments on GlpF. The Arrhenius activation energies extracted from our simulations for all the three AQPs agree with the in vitro measurements. The single-file diffusion approximations from our large-scale simulations are consistent with the current literature on smaller systems. From these unambiguous agreements among the in vitro and in silico studies, we observe the quantitative accuracy of the all-atom force fields of the current literature for water-channel biology. We also observe that AQP4, that is particularly rich in the central nervous system, is more efficient in water conduction and more temperature-sensitive than other water-only channels (excluding glycerol channels that also conduct water when not inhibited by glycerol).
Collapse
Affiliation(s)
- Thierry O Wambo
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Roberto A Rodriguez
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
13
|
Padhi S, Priyakumar UD. Microsecond simulation of human aquaporin 2 reveals structural determinants of water permeability and selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:10-16. [DOI: 10.1016/j.bbamem.2016.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023]
|
14
|
Yu L, Villarreal OD, Chen LL, Chen LY. 1,3-Propanediol binds inside the water-conducting pore of aquaporin 4: Does this efficacious inhibitor have sufficient potency? ACTA ACUST UNITED AC 2016; 2:91-98. [PMID: 27213050 DOI: 10.15761/jsin.1000117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among the thirteen types of water channel proteins, aquaporins (AQPs), which play various essential roles in human physiology, AQP4 is richly expressed in cells of the central nervous system and implicated in pathological conditions such as brain edema. Therefore, researchers have been looking for ways to inhibit AQP4's water-conducting function. Many small molecules have been investigated for their interactions with the residues that form the AQP4 channel entry vestibule on the extracellular side and their interruption of waters entering into the conducting pore. Conducting all-atom simulations on the basis of CHARMM 36 force field, we study one such inhibitor, 5-acetamido-1,3,4-thiadiazole-2-sulfonamide (AZM), to achieve quantitative agreement between the computed and the experimentally measured values of AZM-AQP4 binding affinity. Using the same method, we examine the possibility of plugging up the AQP4 channel around the Asn-Pro-Ala motifs located near the channel center because a small molecule bound there would totally occlude water conduction through AQP4. We compute the binding affinities of 1,2-ethanediol (EDO) and 1,3-propanediol (PDO) inside the AQP4 conducting pore and identify the specificities of the interactions. The EDO-AQP4 interaction is weak with a dissociation constant of 80 mM. The PDO-AQP4 interaction is rather strong with a dissociation constant of 328 μM, which indicates that PDO is an efficacious AQP4 inhibitor with sufficiently high potency. Considering the fact that PDO is classified by the US Food and Drug Administration as generally safe, we predict that 1,3-propanediol could be an effective drug for brain edema and other AQP4-correlated neurological conditions.
Collapse
Affiliation(s)
- Lili Yu
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Oscar D Villarreal
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - L Laurie Chen
- Medical School, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| |
Collapse
|
15
|
Cordeiro RM. Molecular dynamics simulations of the transport of reactive oxygen species by mammalian and plant aquaporins. Biochim Biophys Acta Gen Subj 2015; 1850:1786-94. [PMID: 25982446 DOI: 10.1016/j.bbagen.2015.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Aquaporins are responsible for water transport across lipid membranes. They are also able to transport reactive oxygen species, playing an important role in redox signaling. Certain plant aquaporins have even the ability to be regulated by oxidative stress. However, the underlying mechanisms are still not fully understood. METHODS Here, molecular dynamics simulations were employed to determine the activation free energies related to the transport of reactive oxygen species through both mammalian and plant aquaporin models. RESULTS AND CONCLUSIONS Both aquaporins may transport hydrogen peroxide (H2O2) and the protonated form of superoxide radicals (HO2). The solution-to-pore transfer free energies were low for small oxy-radicals, suggesting that even highly reactive hydroxyl radicals (HO) might have access to the pore interior and oxidize amino acids responsible for channel selectivity. In the plant aquaporin, no significant change in water permeability was observed upon oxidation of the solvent-exposed disulfide bonds at the extracellular region. During the simulated time scale, the existence of a direct oxidative gating mechanism involving these disulfide bonds could not be demonstrated. GENERAL SIGNIFICANCE Simulation results may improve the understanding of redox signaling mechanisms and help in the interpretation of protein oxidative labeling experiments.
Collapse
Affiliation(s)
- Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
16
|
Verma RK, Prabh ND, Sankararamakrishnan R. Intra-helical salt-bridge and helix destabilizing residues within the same helical turn: Role of functionally important loop E half-helix in channel regulation of major intrinsic proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1436-49. [PMID: 25797519 DOI: 10.1016/j.bbamem.2015.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 12/26/2022]
Abstract
The superfamily of major intrinsic proteins (MIPs) includes aquaporin (AQP) and aquaglyceroporin (AQGP) and it is involved in the transport of water and neutral solutes across the membrane. Diverse MIP sequences adopt a unique hour-glass fold with six transmembrane helices (TM1 to TM6) and two half-helices (LB and LE). Loop E contains one of the two conserved NPA motifs and contributes two residues to the aromatic/arginine selectivity filter. Function and regulation of majority of MIP channels are not yet characterized. We have analyzed the loop E region of 1468 MIP sequences and their structural models from six different organism groups. They can be phylogenetically clustered into AQGPs, AQPs, plant MIPs and other MIPs. The LE half-helix in all AQGPs contains an intra-helical salt-bridge and helix-breaking residues Gly/Pro within the same helical turn. All non-AQGPs lack this salt-bridge but have the helix destabilizing Gly and/or Pro in the same positions. However, the segment connecting LE half-helix and TM6 is longer by 10-15 residues in AQGPs compared to all non-AQGPs. We speculate that this longer loop in AQGPs and the LE half-helix of non-AQGPs will be relatively more flexible and this could be functionally important. Molecular dynamics simulations on glycerol-specific GlpF, water-transporting AQP1, its mutant and a fungal AQP channel confirm these predictions. Thus two distinct regions of loop E, one in AQGPs and the other in non-AQGPs, seem to be capable of modulating the transport. These regions can also act in conjunction with other extracellular residues/segments to regulate MIP channel transport.
Collapse
Affiliation(s)
- Ravi Kumar Verma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Neel Duti Prabh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ramasubbu Sankararamakrishnan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Centre of Excellence for Chemical Biology, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
17
|
Chen LY. Erythritol predicted to inhibit permeation of water and solutes through the conducting pore of P. falciparum aquaporin. Biophys Chem 2015; 198:14-21. [PMID: 25637890 DOI: 10.1016/j.bpc.2015.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 01/04/2015] [Accepted: 01/07/2015] [Indexed: 12/21/2022]
Abstract
Plasmodium falciparum aquaporin (PfAQP) is a multifunctional channel protein in the plasma membrane of the malarial parasite that causes the most severe form of malaria infecting more than a million people a year. This channel protein facilitates transport of water and several solutes across the cell membrane. In order to better elucidate the fundamental interactions between PfAQP and its permeants and among the permeants, I conducted over three microseconds in silico experiments of atomistic models of the PfAQP-membrane system to obtain the free-energy profiles of five permeants (erythritol, water, glycerol, urea, and ammonia) throughout the amphipathic conducting pore of PfAQP. The profiles are analyzed in light of and shown to be consistent with the existent in vitro data. The binding affinities are computed using the free-energy profiles and the permeant fluctuations inside the channel. On this basis, it is predicted that erythritol, a permeant of PfAQP itself having a deep ditch in its permeation passageway, inhibits PfAQP's functions of transporting water and other solutes with an IC50 in the range of high nanomolars. This leads to the possibility that erythritol, a sweetener generally considered safe, may inhibit or kill the malarial parasite in vivo without causing undesired side effects. Experimental studies are hereby called for to directly test this theoretical prediction of erythritol strongly inhibiting PfAQP in vitro and possibly inhibiting P. falciparum in vivo.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
18
|
Parasite aquaporins: Current developments in drug facilitation and resistance. Biochim Biophys Acta Gen Subj 2014; 1840:1566-73. [DOI: 10.1016/j.bbagen.2013.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 01/15/2023]
|
19
|
Chen LY. Glycerol modulates water permeation through Escherichia coli aquaglyceroporin GlpF. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1786-93. [PMID: 23506682 DOI: 10.1016/j.bbamem.2013.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 11/17/2022]
Abstract
Among aquaglyceroporins that transport both water and glycerol across the cell membrane, Escherichia coli glycerol uptake facilitator (GlpF) is the most thoroughly studied. However, one question remains: Does glycerol modulate water permeation? This study answers this fundamental question by determining the three-dimensional potential of mean force of glycerol along the permeation path through GlpF's conducting pore. There is a deep well near the Asn-Pro-Ala (NPA) motifs (6.5kcal/mol below the bulk level) and a barrier near the selectivity filter (10.1kcal/mol above the well bottom). This profile owes its existence to GlpF's perfect steric arrangement: The glycerol-protein van der Waals interactions are attractive near the NPA but repulsive elsewhere in the conducting pore. In light of the single-file nature of waters and glycerols lining up in GlpF's amphipathic pore, it leads to the following conclusion: Glycerol modulates water permeation in the μM range. At mM concentrations, GlpF is glycerol-saturated and a glycerol residing in the well occludes the conducting pore. Therefore, water permeation is fully correlated to glycerol dissociation that has an Arrhenius activation barrier of 6.5kcal/mol. Validation of this theory is based on the existent in vitro data, some of which have not been given the proper attention they deserved: The Arrhenius activation barriers were found to be 7kcal/mol for water permeation and 9.6kcal/mol for glycerol permeation; The presence of up to 100mM glycerol did not affect the kinetics of water transport with very low permeability, in apparent contradiction with the existent theories that predicted high permeability (0M glycerol).
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
20
|
Chen LY. Glycerol inhibits water permeation through Plasmodium falciparum aquaglyceroporin. J Struct Biol 2013; 181:71-6. [PMID: 23108237 PMCID: PMC3525719 DOI: 10.1016/j.jsb.2012.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 11/20/2022]
Abstract
Plasmodium falciparum aquaglyceroporin (PfAQP) is a multifunctional membrane protein in the plasma membrane of P. falciparum, the parasite that causes the most severe form of malaria. The current literature has established the science of PfAQP's structure, functions, and hydrogen-bonding interactions but left unanswered the following fundamental question: does glycerol modulate water permeation through aquaglyceroporin that conducts both glycerol and water? This paper provides an affirmative answer to this question of essential importance to the protein's functions. On the basis of the chemical-potential profile of glycerol from the extracellular bulk region, throughout PfAQP's conducting channel, to the cytoplasmic bulk region, this study shows the existence of a bound state of glycerol inside aquaglyceroporin's permeation pore, from which the dissociation constant is approximately 14μM. A glycerol molecule occupying the bound state occludes the conducting pore through which permeating molecules line up in single file by hydrogen-bonding with one another and with the luminal residues of aquaglyceroporin. In this way, glycerol inhibits permeation of water and other permeants through aquaglyceroporin. The biological implications of this theory are discussed and shown to agree with the existent in vitro data. It turns out that the structure of aquaglyceroporin is perfect for the van der Waals interactions between the protein and glycerol to cause the existence of the bound state deep inside the conducting pore and, thus to play an unexpected but significant role in aquaglyceroporin's functions.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
21
|
Song J, Almasalmeh A, Krenc D, Beitz E. Molar concentrations of sorbitol and polyethylene glycol inhibit the Plasmodium aquaglyceroporin but not that of E. coli: involvement of the channel vestibules. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1218-24. [PMID: 22326891 DOI: 10.1016/j.bbamem.2012.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 11/25/2022]
Abstract
The aquaglyceroporins of Escherichia coli, EcGlpF, and of Plasmodium falciparum, PfAQP, are probably the best characterized members of the solute-conducting aquaporin (AQP) subfamily. Their crystal structures have been elucidated and numerous experimental and theoretical analyses have been conducted. However, opposing reports on their rates of water permeability require clarification. Hence, we expressed EcGlpF and PfAQP in yeast, prepared protoplasts, and compared water and glycerol permeability of both aquaglyceroporins in the presence of different osmolytes, i.e. sucrose, sorbitol, PEG300, and glycerol. We found that water permeability of PfAQP strongly depends on the external osmolyte, with full inhibition by sorbitol, and increasing water permeability when glycerol, PEG300, and sucrose were used. EcGlpF expression did not enhance water permeability over that of non-expressing control protoplasts regardless of the osmolyte. Glycerol permeability of PfAQP was also inhibited by sorbitol, but to a smaller extent, whereas EcGlpF conducted glycerol independently of the osmolyte. Mixtures of glycerol and urea passed PfAQP equally well under isosmotic conditions, whereas under hypertonic conditions in a countercurrent with water, glycerol was clearly preferred over urea. We conclude that PfAQP has high and EcGlpF low water permeability, and explain the inhibiting effect of sorbitol on PfAQP by its binding to the extracellular vestibule. The preference for glycerol under hypertonic conditions implies that in a physiological setting, PfAQP mainly acts as a water/glycerol channel rather than a urea facilitator.
Collapse
Affiliation(s)
- Jie Song
- Department of Medicinal amd Pharmaceutical Chemistry, University of Kiel, Gutenbergstrasse 76, 24118, Kiel, Germany
| | | | | | | |
Collapse
|
22
|
Gupta AB, Verma RK, Agarwal V, Vajpai M, Bansal V, Sankararamakrishnan R. MIPModDB: a central resource for the superfamily of major intrinsic proteins. Nucleic Acids Res 2012; 40:D362-9. [PMID: 22080560 PMCID: PMC3245135 DOI: 10.1093/nar/gkr914] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/05/2011] [Accepted: 10/08/2011] [Indexed: 12/23/2022] Open
Abstract
The channel proteins belonging to the major intrinsic proteins (MIP) superfamily are diverse and are found in all forms of life. Water-transporting aquaporin and glycerol-specific aquaglyceroporin are the prototype members of the MIP superfamily. MIPs have also been shown to transport other neutral molecules and gases across the membrane. They have internal homology and possess conserved sequence motifs. By analyzing a large number of publicly available genome sequences, we have identified more than 1000 MIPs from diverse organisms. We have developed a database MIPModDB which will be a unified resource for all MIPs. For each MIP entry, this database contains information about the source, gene structure, sequence features, substitutions in the conserved NPA motifs, structural model, the residues forming the selectivity filter and channel radius profile. For selected set of MIPs, it is possible to derive structure-based sequence alignment and evolutionary relationship. Sequences and structures of selected MIPs can be downloaded from MIPModDB database which is freely available at http://bioinfo.iitk.ac.in/MIPModDB.
Collapse
Affiliation(s)
- Anjali Bansal Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ravi Kumar Verma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Vatsal Agarwal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Manu Vajpai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Vivek Bansal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ramasubbu Sankararamakrishnan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
23
|
Mercury inhibits the L170C mutant of aquaporin Z by making waters clog the water channel. Biophys Chem 2011; 160:69-74. [PMID: 21963041 DOI: 10.1016/j.bpc.2011.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/14/2011] [Accepted: 07/25/2011] [Indexed: 11/22/2022]
Abstract
We conduct in silico experiments of the L170C mutant of the Escherichia coli aquaporin Z (AQPZ) with and without mercury bonded to residue Cys 170. We find that bonding mercury to Cys 170 does not induce consequential structural changes to the protein. We further find that mercury does not stick in the middle of the water channel to simply occlude water permeation, but resides on the wall of the water pore. However, we observe that the water permeation coefficient of L170C-Hg(+) (with one mercury ion bonded to Cys 170) is approximately half of that of the mercury-free L170C. We examine the interactions between the mercury ion and the waters in its vicinity and find that five to six waters are strongly attracted by the mercury ion, occluding the space of the water channel. Therefore we conclude that mercury, at low concentration, inhibits AQPZ-L170C mutant by making water molecules clog the water channel.
Collapse
|
24
|
Chen LY. Exploring the free-energy landscapes of biological systems with steered molecular dynamics. Phys Chem Chem Phys 2011; 13:6176-83. [PMID: 21359274 PMCID: PMC3111135 DOI: 10.1039/c0cp02799e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We perform steered molecular dynamics (SMD) simulations and use the Brownian dynamics fluctuation-dissipation-theorem (BD-FDT) to accurately compute the free-energy profiles for several biophysical processes of fundamental importance: hydration of methane and cations, binding of benzene to T4-lysozyme L99A mutant, and permeation of water through aquaglyceroporin. For each system, the center-of-mass of the small molecule (methane, ion, benzene, and water, respectively) is steered (pulled) at a given speed over a period of time, during which the system transitions from one macroscopic state/conformation (State A) to another one (State B). The mechanical work of pulling the system is measured during the process, sampling a forward pulling path. Then the reverse pulling is conducted to sample a reverse path from B back to A. Sampling a small number of forward and reverse paths, we are able to accurately compute the free-energy profiles for all the afore-listed systems that represent various important aspects of biological physics. The numerical results are in excellent agreement with the experimental data and/or other computational studies available in the literature.
Collapse
Affiliation(s)
- L Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas 78249, USA.
| |
Collapse
|