1
|
Cao Y, Tao Z, Tian Y, Chen KE, Zhang L, Ren J, Xiao H, Zhang Q, Liu W, Cao C. A handheld contactless conductivity detector for monitoring the desalting of low-volume virus and cell samples. Biosens Bioelectron 2023; 237:115482. [PMID: 37406479 DOI: 10.1016/j.bios.2023.115482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Desalting of biosamples is crucial for analytical techniques intolerant to abundant salts. However, there is no simple tool to monitor the desalting of low-volume biosamples so far. Here we developed a handheld capacitively coupled contactless conductivity detector (hC4D) as a miniaturized device to measure the conductivity of 75 μL biosamples. Polyether-ether-ketone (PEEK) tubing was selected as the sample reservoir for sample loading via a pipette. Another pipetting of air pushed the sample solution out of the tubing to recollect the sample. Owing to the low sample consumption and easy sample recollection, hC4D is advantageous for testing expensive biosamples, such as viruses and cells. In addition, the whole process of sample injection, conductivity measurement, recollection, and calibration of conductivity can be completed within 1 min. To verify the feasibility of hC4D, we monitored the desalting progress of gel filtration (GF) of 200 μL blood samples, ultrafiltration (UF) of 300 μL virus samples, and dialysis of 7 mL cell samples. Three rounds of GF and UF completely removed the salts but led to poor sample recovery. In contrast, low concentrations of residual salts remained and better recovery was achieved after two rounds of GF and UF. We further utilized the hC4D to monitor the dialysis and tuned the salt concentration in the cell sample, such that we maintained the viability of cells in a low conductivity environment. These results indicated that hC4D is a promising tool for optimizing the desalting procedure of low-volume biosamples.
Collapse
Affiliation(s)
- Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhimin Tao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youli Tian
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke-Er Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Lu Zhang
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Xiao
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Jackson S, Lee S, Badu-Tawiah AK. Automated Immunoassay Performed on a 3D Microfluidic Paper-Based Device for Malaria Detection by Ambient Mass Spectrometry. Anal Chem 2022; 94:5132-5139. [PMID: 35293204 DOI: 10.1021/acs.analchem.1c05530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) are emerging as a prominent platform for disease detection, specifically in developing countries. This paper device offer simplicity and affordability not typically seen in centralized laboratory settings. However, detection limits in μPADs are inadequate and often require test results to be read within a specific time interval to ensure accuracy. To overcome these challenges, we are developing an on-chip mass spectrometry (MS) detection strategy for immunoassays performed on paper substrates. Herein, we present our initial results from a proof-of-concept study toward the development of μPADs capable of storing immunoassay reagents within the confinements of the 3D device, automatic splitting of biofluid into four individual test zones, immuno-capture of the disease biomarker, and on-chip MS detection of the captured species. The reported study encourages the development of point-of-care and direct-to-customer testing using disposable μPADs to collect samples, followed by sensitive analysis using portable MSs. We demonstrate this capability using malaria Plasmodium falciparum histidine-rich protein 2 (PfHRP2) antigen detection.
Collapse
Affiliation(s)
- Sierra Jackson
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Suji Lee
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Zhao Z, Dou X, Luo J, Jin M, Qin J, Wang C, Yang S, Yang M. Magnetic particles encoding a suspension probe for ultra-sensitive and quantitative determination of atrazine. J Pharm Biomed Anal 2020; 195:113868. [PMID: 33406474 DOI: 10.1016/j.jpba.2020.113868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023]
Abstract
As a highly toxic and widely used herbicide, atrazine poses a serious threat to food safety as well as overall environmental and human health. Due to complex matrix interference and the difficulty of signal enrichment, there is an urgent need for a convenient, fast, and ultrasensitive method that detects trace atrazine without concern for matrix effects. Here, we provide the first account of a sensitive and rapid suspension probe based on magnetic microspheres used to detect atrazine in herbs. The self-made magnetic beads featured -COOH groups and were used as the carrier to construct immunofluorescent probes. These probes then conjugated with the atrazine antigen through an activated ester method, ultimately binding to the antibody. Homogeneous detection was ensured using flow cytometry and the microflow optical channel along with allophycocyanin-conjugated goat-anti-mouse secondary antibody (APC-IgG-SecAb) as the fluorescent signal. The magnetic suspension probe allowed for high target enrichment and the inherent two-dimensional selective detection of flow cytometry effectively avoided any matrix interference. This method had good linearity across 1.69-23.19 ng mL-1. The IC50 and LOD values were 4.81 ng mL-1 and 0.95 ng mL-1, respectively; the sensitivity was increased three-fold relative to ELISA. After complete optimization, 2-N-morpholinoeth-anesulfonic acid was used as the coupling solution and maintained good mono-dispersity, stability, and reactivity for the labelled microspheres during the process. The entire experiment was simple, and effectively used reagents; moreover, both the labor required and detection time were greatly reduced. Critically, the strategy presented here greatly reduced interference from complex matrices, and saved preparation for matrix-matched solutions when different herbs were screened. Overall, this strategy was sensitive, rapid, eco-friendly, and labor-saving; collectively, these attributes make it well-suited for on-site screening of atrazine contamination and will allow for increased food safety.
Collapse
Affiliation(s)
- Zhigao Zhao
- Laboratory of Cultivation and Breeding of Medicinal Plants, National Administration of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xiaowen Dou
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Medical Laboratory of the Third affiliated hospital of Shenzhen university, Shenzhen, 518001, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Meiqi Jin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Changjian Wang
- Laboratory of Cultivation and Breeding of Medicinal Plants, National Administration of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Shihai Yang
- Laboratory of Cultivation and Breeding of Medicinal Plants, National Administration of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
4
|
Ranade AV, Mukhtarov R, An Liu KJ, Behrner MA, Sun B. Characterization of Sample Loss Caused by Competitive Adsorption of Proteins in Vials Using Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4224-4232. [PMID: 30813715 DOI: 10.1021/acs.langmuir.8b04281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sample loss caused by competitive protein adsorption on solid surfaces from complex samples remains to be a major hurdle in sensitive analyses of proteins. No label-free techniques can easily quantify individual proteins adsorbed on irregular surfaces of Eppendorf vials or Falcon tubes, which are commonly used to contain complex biological samples. Multiplexed characterization of such adsorption by different proteins is technically challenging. Herein, we developed a direct protein analysis based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the characterization of sample loss occurred on the curved surface with limited area. Using this simple and easily accessible method, we discovered the effect of ethylenediaminetetraacetic acid on surface adsorption of different milk proteins, specifically an augmented loss of milk proteins in low-binding sample vials. In this study, we also identified severe biases of silver staining and established proteomics-based mapping of protein distribution in biological samples for absolute quantification of competitive protein adsorption on irregular surfaces.
Collapse
|
5
|
Lewin Y, Neupärtl M, Golghalyani V, Karas M. Proteomic Sample Preparation through Extraction by Unspecific Adsorption on Silica Beads for ArgC-like Digestion. J Proteome Res 2019; 18:1289-1298. [PMID: 30698437 DOI: 10.1021/acs.jproteome.8b00882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sample preparation for mass-spectrometry-based proteomic analyses usually requires intricate, multistep workflows that are often limited in capacity or suffer from sample loss. Here, we introduce a lean adsorption-based protocol (ABP) for the extraction of proteins from fresh cell lysates that enables us to modify and tag protein samples under harsh conditions, such as organic solvents, high salt concentrations, or low pH values. This offers high versatility while also reducing the required steps in the preparation process significantly. Protein identifications are slightly increased compared to traditional acetone precipitation followed by an in-solution digestion (AP/IS) or filter aided sample preparation (FASP) and proved complementary to both methods regarding proteome coverage. When combined with ArgC-like digestion, this approach delivered 5386 uniquely identified proteins, a substantial increase of 18.27% over tryptic digestion (4554), while decreasing spectra complexity due to a lower number of peptide to spectra matches per protein and the number of missed cleaved peptides. In addition, an increased number of identified membrane proteins and histones as well as improved fragmentation and intensity coverage were observed through comprehensive data analysis.
Collapse
Affiliation(s)
- Yannik Lewin
- Institute of Pharmaceutical Chemistry , Goethe-University , Frankfurt am Main 60438 , Germany
| | - Moritz Neupärtl
- Institute of Pharmaceutical Chemistry , Goethe-University , Frankfurt am Main 60438 , Germany
| | - Vahid Golghalyani
- Institute of Pharmaceutical Chemistry , Goethe-University , Frankfurt am Main 60438 , Germany.,Biopharmaceutical Development, Analytical Sciences , MedImmune, Ltd. , Granta Park, Great Abington CB21 6GH , United Kingdom
| | - Michael Karas
- Institute of Pharmaceutical Chemistry , Goethe-University , Frankfurt am Main 60438 , Germany
| |
Collapse
|
6
|
Lee MCG, Sun B. Quantitation of nonspecific protein adsorption at solid–liquid interfaces for single-cell proteomics. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein nonspecific adsorption that occurred at the solid–liquid interface has been subjected to intense physical and chemical characterizations due to its crucial role in a wide range of applications, including food and pharmaceutical industries, medical implants, biosensing, and so on. Protein-adsorption caused sample loss has largely hindered the studies of single-cell proteomics; the prevention of such loss requires the understanding of protein–surface adsorption at the proteome level, in which the competitive adsorption of thousands and millions of proteins with vast dynamic range occurs. To this end, we feel the necessity to review current methodologies on their potentials to characterize — more specifically to quantify — the proteome-wide adsorption. We hope this effort can help advancing single-cell proteomics and trace proteomics.
Collapse
Affiliation(s)
| | - Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
7
|
Huang Y, Xu J, Liu J, Wang X, Chen B. Disease-Related Detection with Electrochemical Biosensors: A Review. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2375. [PMID: 29039742 PMCID: PMC5676665 DOI: 10.3390/s17102375] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/10/2017] [Accepted: 10/14/2017] [Indexed: 01/05/2023]
Abstract
Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.
Collapse
Affiliation(s)
- Ying Huang
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
| | - Jin Xu
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
| | - Junjie Liu
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
| | - Xiangyang Wang
- CET-College of Engineering and Technology, Southwest University, Chongqing 400715, China.
| | - Bin Chen
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
A rapid and highly sensitive immunoassay format for human lipocalin-2 using multiwalled carbon nanotubes. Biosens Bioelectron 2017; 93:198-204. [DOI: 10.1016/j.bios.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
|
9
|
Zhao Y, Czilwik G, Klein V, Mitsakakis K, Zengerle R, Paust N. C-reactive protein and interleukin 6 microfluidic immunoassays with on-chip pre-stored reagents and centrifugo-pneumatic liquid control. LAB ON A CHIP 2017; 17:1666-1677. [PMID: 28426080 DOI: 10.1039/c7lc00251c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a fully automated centrifugal microfluidic method for particle based protein immunoassays. Stick-pack technology is employed for pre-storage and release of liquid reagents. Quantitative layout of centrifugo-pneumatic particle handling, including timed valving, switching and pumping is assisted by network simulations. The automation is exclusively controlled by the spinning frequency and does not require any additional means. New centrifugal microfluidic process chains are developed in order to sequentially supply wash buffer based on frequency dependent stick-pack opening and pneumatic pumping to perform two washing steps from one stored wash buffer; pre-store and re-suspend functionalized microparticles on a disk; and switch between the path of the waste fluid and the path of the substrate reaction product with 100% efficiency. The automated immunoassay concept is composed of on demand ligand binding, two washing steps, the substrate reaction, timed separation of the reaction products, and termination of the substrate reaction. We demonstrated separation of particles from three different liquids with particle loss below 4% and residual liquid remaining within particles below 3%. The automated immunoassay concept was demonstrated by means of detecting C-reactive protein (CRP) in the range of 1-81 ng ml-1 and interleukin 6 (IL-6) in the range of 64-13 500 pg ml-1. The limit of detection and quantification were 1.0 ng ml-1 and 2.1 ng ml-1 for CRP and 64 pg ml-1 and 205 pg ml-1 for IL-6, respectively.
Collapse
Affiliation(s)
- Y Zhao
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
O'Kennedy R, Fitzgerald S, Murphy C. Don't blame it all on antibodies – The need for exhaustive characterisation, appropriate handling, and addressing the issues that affect specificity. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Vashist SK, Schneider EM, Barth E, Luong JH. Surface plasmon resonance-based immunoassay for procalcitonin. Anal Chim Acta 2016; 938:129-36. [DOI: 10.1016/j.aca.2016.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 01/23/2023]
|
12
|
Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays. MICROARRAYS 2016; 5:microarrays5020016. [PMID: 27600082 PMCID: PMC5003492 DOI: 10.3390/microarrays5020016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 11/17/2022]
Abstract
Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts.
Collapse
|
13
|
Micro and nanotechnology for early diagnosis and detection of rheumatic diseases-molecular markers. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0305-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Mansur AAP, de Carvalho SM, Mansur HS. Bioengineered quantum dot/chitosan-tripeptide nanoconjugates for targeting the receptors of cancer cells. Int J Biol Macromol 2015; 82:780-9. [PMID: 26499085 DOI: 10.1016/j.ijbiomac.2015.10.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/19/2022]
Abstract
Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular level for diagnostic and therapeutic purposes. In this work, we report the synthesis of novel multifunctional nanoconjugates composed of fluorescent inorganic semiconductor quantum dot (QD) cores and tripeptide-modified polysaccharide organic shells. These structures were designed for targeting and imaging the αvβ3 integrin receptors of cancer cells. Initially, chitosan was covalently bound with the RGD peptide using a crosslinker to form bioconjugates (RGD-chitosan), which were later utilized as capping ligands for the production of surface-functionalized CdS QDs via a single-step process in aqueous media at room temperature. These core-shell nanostructures were extensively characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), zeta potential (ZP) and dynamic light scattering (DLS). The TEM images and the UV-vis absorption results indicated the formation of ultra-small CdS QD nanocrystals with average diameters between 2.0 and 3.0 nm. In addition, the PL results demonstrated that the nanobioconjugates exhibited intense green fluorescence under excitation. The CdS-RGD-chitosan systems were effective at specific targeting integrin when assayed in vitro using two model cell cultures, HEK 293 (non-cancerous human embryonic kidney cell) and SAOS (cancerous sarcoma osteogenic-derived cells) imaged using fluorescence microscopy.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation-CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Escola de Engenharia, Bloco 2/2233, Pampulha, Belo Horizonte 31.270-901 MG, Brazil
| | - Sandhra M de Carvalho
- Center of Nanoscience, Nanotechnology and Innovation-CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Escola de Engenharia, Bloco 2/2233, Pampulha, Belo Horizonte 31.270-901 MG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation-CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Escola de Engenharia, Bloco 2/2233, Pampulha, Belo Horizonte 31.270-901 MG, Brazil.
| |
Collapse
|
15
|
Kaur G, Saha S, Tomar M, Gupta V. Influence of immobilization strategies on biosensing response characteristics: A comparative study. Enzyme Microb Technol 2015; 82:144-150. [PMID: 26672461 DOI: 10.1016/j.enzmictec.2015.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
The immobilization technique plays an important role in fabrication of a biosensor. NiO based cholesterol biosensor has been used to study the effect of various immobilization techniques on the biosensing response characteristics. The biosensors were fabricated by immobilizing cholesterol oxidase on NiO thin films by three different immobilization techniques viz. physisorption, cross-linking and covalent binding. The study reveals a strong dependence of biosensing response on corresponding immobilization technique. The biosensor based on immobilization by covalent bonding shows superior response characteristics as compared to others owing to its zero length. The results highlight the significance of immobilization technique for biosensor fabrication.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Physics & Astrophysics, University of Delhi, Delhi-7, India
| | - Shibu Saha
- Department of Physics, Dyal Singh College, University of Delhi, Lodi Road, Delhi-3, India
| | - Monika Tomar
- Department of Physics, Miranda House, University of Delhi, Delhi-7, India
| | - Vinay Gupta
- Department of Physics & Astrophysics, University of Delhi, Delhi-7, India.
| |
Collapse
|
16
|
Vashist SK, Schneider EM, Luong JH. A rapid sandwich immunoassay for human fetuin A using agarose-3-aminopropyltriethoxysilane modified microtiter plate. Anal Chim Acta 2015; 883:74-80. [DOI: 10.1016/j.aca.2015.04.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 01/04/2023]
|
17
|
Vashist SK, Schneider EM, Luong JHT. Surface plasmon resonance-based immunoassay for human fetuin A. Analyst 2015; 139:2237-42. [PMID: 24652275 DOI: 10.1039/c4an00149d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article describes a highly-sensitive surface plasmon resonance (SPR)-based immunoassay (IA) for human fetuin A (HFA), a specific biomarker for atherosclerosis and hepatocellular carcinoma. The assay is based on a novel immobilization procedure that simply involves the dilution of an anti-HFA capture antibody (Ab) in 1% (v/v) 3-aminopropyltriethoxysilane (APTES), followed by its dispensing on a KOH-treated gold (Au)-coated SPR chip and incubation for 30 min. The developed SPR IA detected 0.3-20 ng mL(-1) of HFA with a limit of detection and sensitivity of 0.7 ng mL(-1) and 1 ng mL(-1), respectively. The highly-simplified Ab immobilization procedure is also 5-fold more rapid than conventional procedures. It leads to the leach-proof binding of the capture Ab, which means that the developed SPR IA is highly cost-effective, as the Ab-bound SPR chip could be reused for many repeated HFA IAs after regeneration with 10 mM glycine-HCl, pH 2.0. The Ab-bound SPR chip, stored at 4 °C, lost only 18% of its original activity after 4 months. For the detection of HFA spiked in diluted human whole blood and plasma, the results obtained by the developed SPR IA agreed well with the commercial HFA sandwich ELISA.
Collapse
Affiliation(s)
- S K Vashist
- HSG-IMIT - Institut für Mikro - und Informationstechnik, Georges-Koehler Allee 103, 79110 Freiburg, Germany.
| | | | | |
Collapse
|
18
|
Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader. Biosens Bioelectron 2015; 66:169-76. [DOI: 10.1016/j.bios.2014.11.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 01/13/2023]
|
19
|
Polyglycerol based coatings to reduce non-specific protein adsorption in sample vials and on SPR sensors. Anal Chim Acta 2015; 867:47-55. [DOI: 10.1016/j.aca.2015.01.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 12/26/2022]
|
20
|
Vashist SK, Schneider EM, Luong JHT. Surface plasmon resonance-based immunoassay for human C-reactive protein. Analyst 2015; 140:4445-52. [DOI: 10.1039/c5an00690b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A rapid and highly-sensitive surface plasmon resonance (SPR)-based immunoassay (IA) has been developed and validated for detecting human C-reactive protein (CRP), a specific biomarker for inflammatory and metabolic disorders, and infections.
Collapse
Affiliation(s)
- S. K. Vashist
- HSG-IMIT – Institut für Mikro- und Informationstechnik
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- Department of Microsystems Engineering – IMTEK
| | - E. M. Schneider
- Sektion Experimentelle Anaesthesiologie
- University Hospital Ulm
- 89081 Ulm
- Germany
| | - J. H. T. Luong
- Innovative Chromatography Group
- Irish Separation Science Cluster (ISSC)
- Department of Chemistry and Analytical
- Biological Chemistry Research Facility (ABCRF)
- University College Cork
| |
Collapse
|
21
|
Czilwik G, Vashist SK, Klein V, Buderer A, Roth G, von Stetten F, Zengerle R, Mark D. Magnetic chemiluminescent immunoassay for human C-reactive protein on the centrifugal microfluidics platform. RSC Adv 2015. [DOI: 10.1039/c5ra12527h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic of the LabDisk-based hCRP MCIA. The antibody-coated dynabeads are sequentially transported through the immunoassay buffers by magnetic actuation. Finally the chemiluminescence signal is acquired from a detection cavity.
Collapse
Affiliation(s)
| | - S. K. Vashist
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - V. Klein
- Hahn-Schickard
- 79110 Freiburg
- Germany
| | | | - G. Roth
- BIOSS – Center for Biological Signalling Studies
- University of Freiburg
- 79110 Freiburg
- Germany
- Laboratory for Microarray Copying
| | - F. von Stetten
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - R. Zengerle
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - D. Mark
- Hahn-Schickard
- 79110 Freiburg
- Germany
| |
Collapse
|
22
|
Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of Antibodies and Enzymes on 3-Aminopropyltriethoxysilane-Functionalized Bioanalytical Platforms for Biosensors and Diagnostics. Chem Rev 2014; 114:11083-130. [DOI: 10.1021/cr5000943] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sandeep Kumar Vashist
- HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Edmond Lam
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | | | - Keith B. Male
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - John H. T. Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe AT, Lendlein A, Ballauff M, Haag R. Protein Interactions with Polymer Coatings and Biomaterials. Angew Chem Int Ed Engl 2014; 53:8004-31. [DOI: 10.1002/anie.201400546] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Indexed: 01/07/2023]
|
24
|
Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe AT, Lendlein A, Ballauff M, Haag R. Wechselwirkungen von Proteinen mit Polymerbeschichtungen und Biomaterialien. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400546] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Vashist SK, Czilwik G, van Oordt T, von Stetten F, Zengerle R, Marion Schneider E, Luong JH. One-step kinetics-based immunoassay for the highly sensitive detection of C-reactive protein in less than 30min. Anal Biochem 2014; 456:32-7. [DOI: 10.1016/j.ab.2014.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/25/2022]
|
26
|
Protein Microarrays with Novel Microfluidic Methods: Current Advances. MICROARRAYS 2014; 3:180-202. [PMID: 27600343 PMCID: PMC4996363 DOI: 10.3390/microarrays3030180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 01/08/2023]
Abstract
Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection. Later, several microfluidic methods were developed for microarray application. In this review we discuss these novel methods and approaches which leverage the property of microfluidic technologies to significantly improve various physical aspects of microarray technology, such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, decreasing assay times, and reduction of the costs and of the bulky instrumentation.
Collapse
|
27
|
One-step antibody immobilization-based rapid and highly-sensitive sandwich ELISA procedure for potential in vitro diagnostics. Sci Rep 2014; 4:4407. [PMID: 24638258 PMCID: PMC3957147 DOI: 10.1038/srep04407] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/03/2014] [Indexed: 12/15/2022] Open
Abstract
An improved enzyme-linked immunosorbent (ELISA) assay using one-step antibody immobilization has been developed for the detection of human fetuin A (HFA), a specific biomarker for atherosclerosis and hepatocellular carcinoma. The anti-HFA formed a stable complex with 3-aminopropyltriethoxysilane (APTES) by ionic and hydrophobic interactions. The complex adsorbed on microtiter plates exhibited a detection range of 4.9 pg mL(-1) to 20 ng mL(-1) HFA, with a limit of detection of 7 pg mL(-1). Furthermore, an analytical sensitivity of 10 pg mL(-1) was achieved, representing a 51-fold increase in sensitivity over the commercial sandwich ELISA kit. The results obtained for HFA spiked in diluted human whole blood and plasma showed the same precision as the commercial kit. When stored at 4°C in 0.1 M phosphate-buffered saline (PBS, pH 7.4), the anti-HFA bound microtiter plates displayed no significant decrease in their functional activity after two months. The new ELISA procedure was extended for the detection of C-reactive protein, human albumin and human lipocalin-2 with excellent analytical performance.
Collapse
|
28
|
Graphene-based immunoassay for human lipocalin-2. Anal Biochem 2014; 446:96-101. [DOI: 10.1016/j.ab.2013.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/09/2013] [Accepted: 10/15/2013] [Indexed: 02/02/2023]
|
29
|
Stejskal K, Potěšil D, Zdráhal Z. Suppression of Peptide Sample Losses in Autosampler Vials. J Proteome Res 2013; 12:3057-62. [DOI: 10.1021/pr400183v] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Karel Stejskal
- Research
Group Proteomics, Central European Institute of Technology and ‡National Centre
for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - David Potěšil
- Research
Group Proteomics, Central European Institute of Technology and ‡National Centre
for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Zbyněk Zdráhal
- Research
Group Proteomics, Central European Institute of Technology and ‡National Centre
for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| |
Collapse
|
30
|
A sub-picogram sensitive rapid chemiluminescent immunoassay for the detection of human fetuin A. Biosens Bioelectron 2013; 40:297-302. [DOI: 10.1016/j.bios.2012.07.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/05/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022]
|
31
|
Statistical thermodynamics of molecules with multiple adsorption states: Application to protein adsorption. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Zheng D, Vashist SK, Al-Rubeaan K, Luong JH, Sheu FS. Mediatorless amperometric glucose biosensing using 3-aminopropyltriethoxysilane-functionalized graphene. Talanta 2012; 99:22-8. [DOI: 10.1016/j.talanta.2012.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
33
|
Vashist SK. Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications. Diagnostics (Basel) 2012; 2:23-33. [PMID: 26859395 PMCID: PMC4665462 DOI: 10.3390/diagnostics2030023] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/14/2012] [Accepted: 08/22/2012] [Indexed: 01/27/2023] Open
Abstract
1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) alone, and in combination with N-hydroxysuccinimide (NHS) or sulfoNHS were employed for crosslinking anti-human fetuin A (HFA) antibodies on 3-aminopropyltriethoxysilane (APTES)-functionalized surface plasmon resonance (SPR) gold chip and 96-well microtiter plate. The SPR immunoassay and sandwich enzyme linked immunosorbent immunoassay (ELISA) for HFA clearly demonstrated that EDC crosslinks anti-HFA antibodies to APTES-functionalized bioanalytical platforms more efficiently than EDC/NHS and EDC/sulfoNHS at a normal pH of 7.4. Similar results were obtained by sandwich ELISAs for human Lipocalin-2 and human albumin, and direct ELISA for horseradish peroxidase. The more efficient crosslinking of antibodies by EDC to the APTES-functionalized platforms increased the cost-effectiveness and analytical performance of our immunoassays. This study will be of wide interest to researchers developing immunoassays on APTES-functionalized platforms that are being widely used in biomedical diagnostics, biosensors, lab-on-a-chip and point-of-care-devices. It stresses a critical need of an intensive investigation into the mechanisms of EDC-based amine-carboxyl coupling under various experimental conditions.
Collapse
Affiliation(s)
- Sandeep Kumar Vashist
- Centre for Bioanalytical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
- Bristol-Myers Squibb (BMS), Swords Laboratories, Watery Lane, Swords, Co. Dublin, Ireland.
| |
Collapse
|
34
|
Scarano S, Vestri A, Ermini ML, Minunni M. SPR detection of human hepcidin-25: a critical approach by immuno- and biomimetic-based biosensing. Biosens Bioelectron 2012; 40:135-40. [PMID: 22835525 DOI: 10.1016/j.bios.2012.06.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/22/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
The human hepcidin-25 hormone has a key role in iron regulation in blood. The clinical relevance of this hepatic ~2.8 kDa cysteine-rich peptide is rapidly increasing, since altered levels can be associated with inflammatory events and iron dysfunctions, such as hereditary hemochromatosis and iron overload. Moreover, hepcidin has also attracted the anti-doping field for its possible role as indirect marker of erythropoietin blood doping. Methods currently reported are based on immunoassays (ELISA and RIA), or various types of mass spectroscopy (MS)-based protocols, semi-quantitative or quantitative. Despite the great effort in optimizing robust and simple assays measuring hepcidin in real matrices, at present this challenge remains still an open issue. To explore the possibility to face hepcidin detection through the development of affinity-based biosensors, we set up a comparative study by surface plasmon resonance (SPR) technology. An immuno-based, on anti-hepcidin-25 IgG, and a biomimetic-based, on a synthetic peptide corresponding to the hepcidin-binding site on ferroportin (HBD), biosensors were developed. Here we report behaviors and analytical performances of the two systems, discussing limits and potentialities.
Collapse
Affiliation(s)
- S Scarano
- Dipartimento di Chimica Ugo Schiff e CSGI, Università di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | | | | | | |
Collapse
|
35
|
Zheng D, Vashist SK, Al-Rubeaan K, Luong JHT, Sheu FS. Rapid and simple preparation of a reagentless glucose electrochemical biosensor. Analyst 2012; 137:3800-5. [PMID: 22763782 DOI: 10.1039/c2an35128e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid and simple procedure was developed for the preparation of a highly stable and leach-proof glucose oxidase (GOx)-bound glassy carbon electrode (GCE). Crosslinked GOx via glutaraldehyde was drop-cast on a KOH-pretreated GCE followed by drop-casting of 3-aminopropyltriethoxysilane (APTES) to form a stable bioactive layer. At -0.45 V, the biosensor exhibited a wide dynamic detection range of 0.5-48 mM for commercial glucose and 1.3-28.2 mM for Sugar-Chex blood glucose linearity standards. Several endogenous electroactive substances and drug metabolites commonly found in blood were tested and provoked no signal response. To our knowledge, the developed procedure is the most rapid method for preparing a glucose biosensor. The biosensor suffered no biofouling after 7 days of immersion in Sugar-Chex blood glucose. With excellent production reproducibility, GOx-bound electrodes stored dry at room temperature retained their initial activity after several weeks.
Collapse
Affiliation(s)
- Dan Zheng
- NUSNNI-NanoCore, National University of Singapore, T-Lab Level 11, 5A Engineering Drive 1, Singapore 117580
| | | | | | | | | |
Collapse
|
36
|
Vashist SK, Saraswat M, Holthšfer H. Comparative Study of the Developed Chemiluminescent, ELISA and SPR Immunoassay Formats for the Highly Sensitive Detection of Human Albumin. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proche.2012.10.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Denisin AK, Karns K, Herr AE. Post-collection processing of Schirmer strip-collected human tear fluid impacts protein content. Analyst 2012; 137:5088-96. [DOI: 10.1039/c2an35821b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of Care Diagnostics: Status and Future. Anal Chem 2011; 84:487-515. [DOI: 10.1021/ac2030199] [Citation(s) in RCA: 832] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vladimir Gubala
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Leanne F. Harris
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Antonio J. Ricco
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Ming X. Tan
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - David E. Williams
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
39
|
Vashist SK, Dixit CK, MacCraith BD, O'Kennedy R. Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay. Analyst 2011; 136:4431-6. [DOI: 10.1039/c1an15325k] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|