1
|
Wei S, Li H, Li K, Zhang R, Wang G, Liu R. Design of Prussian Blue Analogue-Derived Magnetic Binary Ce–Fe Oxide Catalysts for the Selective Oxidation of Cyclohexane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Shuang Wei
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Hao Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Kexin Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Ruirui Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Guosheng Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, P. R. China
| | - Ruixia Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| |
Collapse
|
2
|
Büker J, Alkan B, Chabbra S, Kochetov N, Falk T, Schnegg A, Schulz C, Wiggers H, Muhler M, Peng B. Liquid-Phase Cyclohexene Oxidation with O 2 over Spray-Flame-Synthesized La 1-x Sr x CoO 3 Perovskite Nanoparticles. Chemistry 2021; 27:16912-16923. [PMID: 34590747 PMCID: PMC9293428 DOI: 10.1002/chem.202103381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 11/24/2022]
Abstract
La1−xSrxCoO3 (x=0, 0.1, 0.2, 0.3, 0.4) nanoparticles were prepared by spray‐flame synthesis and applied in the liquid‐phase oxidation of cyclohexene with molecular O2 as oxidant under mild conditions. The catalysts were systematically characterized by state‐of‐the‐art techniques. With increasing Sr content, the concentration of surface oxygen vacancy defects increases, which is beneficial for cyclohexene oxidation, but the surface concentration of less active Co2+ was also increased. However, Co2+ cations have a superior activity towards peroxide decomposition, which also plays an important role in cyclohexene oxidation. A Sr doping of 20 at. % was found to be the optimum in terms of activity and product selectivity. The catalyst also showed excellent reusability over three catalytic runs; this can be attributed to its highly stable particle size and morphology. Kinetic investigations revealed first‐order reaction kinetics for temperatures between 60 and 100 °C and an apparent activation energy of 68 kJ mol−1 for cyclohexene oxidation. Moreover, the reaction was not affected by the applied O2 pressure in the range from 10 to 20 bar. In situ attenuated total reflection infrared spectroscopy was used to monitor the conversion of cyclohexene and the formation of reaction products including the key intermediate cyclohex‐2‐ene‐1‐hydroperoxide; spin trap electron paramagnetic resonance spectroscopy provided strong evidence for a radical reaction pathway by identifying the cyclohexenyl alkoxyl radical.
Collapse
Affiliation(s)
- Julia Büker
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Baris Alkan
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Sonia Chabbra
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Nikolai Kochetov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Tobias Falk
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Christof Schulz
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Hartmut Wiggers
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Enhanced stability and activity for solvent-free selective oxidation of cyclohexane over Cu2O/CuO fabricated by facile alkali etching method. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Wang X, Feng Z, Liu J, Huang Z, Zhang J, Mai J, Fang Y. In-situ preparation of molybdenum trioxide-silver composites for the improved photothermal catalytic performance of cyclohexane oxidation. J Colloid Interface Sci 2020; 580:377-388. [PMID: 32688127 DOI: 10.1016/j.jcis.2020.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/25/2023]
Abstract
The selective catalytic oxidation of cyclohexane has important theoretical and practical application value. However, high conversion rate and high selectivity are difficult to achieve simultaneously by conventional catalytic system. In this work, blue molybdenum trioxide (MoO3) nanorods with oxygen vacancies were prepared by hydrothermal method using hydrated molybdic acid as a precursor under the reduction of formic acid, and in-situ produced MoO3-silver (MoO3-Ag) composites were further used in the photothermal catalytic oxidation of cyclohexane with high conversion and high selectivity using dry air as oxidant. The results showed that the best conversion rate of cyclohexanone and cyclohexanol (KA oil) could reach 8.6% with the selectivity of 99.0%. The excellent catalytic performance of MoO3-Ag composites can be attributed to the significantly increased visible and near-infrared light absorption caused by the plasma resonance effect of Ag nanoparticles and oxygen vacancies, and the prevented charge recombination by MoO3-Ag Schottky heterojunction. This work provides new reference solutions for the design and preparation of high-performance photothermal catalysts for the selective oxidation of hydrocarbons.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Light Industry and Chemical Engineering, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhen Feng
- Central and Southern China Municipal Engineering Design & Research Institute Co., Ltd., Wuhan 430010, China
| | - Jincheng Liu
- School of Light Industry and Chemical Engineering, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhilin Huang
- School of Light Industry and Chemical Engineering, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinhong Zhang
- School of Light Industry and Chemical Engineering, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jijin Mai
- School of Light Industry and Chemical Engineering, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanxiong Fang
- School of Light Industry and Chemical Engineering, Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Jiang J, Chen HY, Zhou XT, Chen YJ, Xue C, Ji HB. Biomimetic Aerobic Epoxidation of Alkenes Catalyzed by Cobalt Porphyrin under Ambient Conditions in the Presence of Sunflower Seeds Oil as a Co-Substrate. ACS OMEGA 2020; 5:4890-4899. [PMID: 32201774 PMCID: PMC7081295 DOI: 10.1021/acsomega.9b03714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/19/2020] [Indexed: 05/04/2023]
Abstract
In this work, a mild and sustainable catalytic aerobic epoxidation of alkenes catalyzed by cobalt porphyrin was performed in the presence of sunflower seeds oil. Under ambient conditions, the conversion rate of trans-stilbene reached 99%, and selectivity toward epoxide formation was 88%. The kinetic studies showed that the aerobic epoxidation followed the Michaelis-Menten kinetics. Mass spectroscopy and in situ electron spin resonance indicated that linoleic acid was converted to fatty aldehydes via hydroperoxide intermediates. A plausible mechanism of epoxidation of alkenes was accordingly proposed.
Collapse
Affiliation(s)
- Jun Jiang
- Fine
Chemical Industry Research Institute, the Key Laboratory of Low-carbon
Chemistry & Energy Conservation of Guangdong Province, School
of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong-Yu Chen
- Fine
Chemical Industry Research Institute, the Key Laboratory of Low-carbon
Chemistry & Energy Conservation of Guangdong Province, School
of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xian-Tai Zhou
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- E-mail: (X.-T. Zhou)
| | - Ya-Ju Chen
- School
of Chemical Engineering, Guangdong University
of Petrochemical Technology, Maoming 525000, P.R. China
| | - Can Xue
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Hong-Bing Ji
- Fine
Chemical Industry Research Institute, the Key Laboratory of Low-carbon
Chemistry & Energy Conservation of Guangdong Province, School
of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- School
of Chemical Engineering, Guangdong University
of Petrochemical Technology, Maoming 525000, P.R. China
- E-mail: . Tel.: +86-20-84113658. Fax: +86-20-84113654 (H.-B. Ji)
| |
Collapse
|
6
|
Zhang MN, Zhao MN, Chen M, Ren ZH, Wang YY, Guan ZH. Copper-catalyzed radical coupling of 1,3-dicarbonyl compounds with terminal alkenes for the synthesis of tetracarbonyl compounds. Chem Commun (Camb) 2016; 52:6127-30. [PMID: 27071461 DOI: 10.1039/c6cc01942k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient copper-catalyzed radical cross-coupling of 1,3-dicarbonyl compounds with terminal alkenes for the synthesis of tetracarbonyl compounds with a quaternary carbon atom has been developed. Mechanistically, this transformation involves the construction of two C-C bonds and two C[double bond, length as m-dash]O bonds in a one-pot process. The reaction tolerates a wide range of functional groups and proceeds under mild conditions.
Collapse
Affiliation(s)
- Mei-Na Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | | | | | | | | | | |
Collapse
|
7
|
Insights into the Reaction Mechanism of Cyclohexane Oxidation Catalysed by Molybdenum Blue Nanorings. Catal Letters 2015. [DOI: 10.1007/s10562-015-1660-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Liu X, Conte M, Weng W, He Q, Jenkins RL, Watanabe M, Morgan DJ, Knight DW, Murphy DM, Whiston K, Kiely CJ, Hutchings GJ. Molybdenum blue nano-rings: an effective catalyst for the partial oxidation of cyclohexane. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01213e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum blue (MB), a multivalent molybdenum oxide with a nano-ring morphology is well-known in analytical chemistry but, to date it has been largely ignored in other applications.
Collapse
Affiliation(s)
- Xi Liu
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Marco Conte
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Weihao Weng
- Department of Materials Science and Engineering
- Lehigh University
- Bethlehem
- USA
| | - Qian He
- Department of Materials Science and Engineering
- Lehigh University
- Bethlehem
- USA
| | - Robert L. Jenkins
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Masashi Watanabe
- Department of Materials Science and Engineering
- Lehigh University
- Bethlehem
- USA
| | - David J. Morgan
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - David W. Knight
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | - Damien M. Murphy
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff
- UK
| | | | | | | |
Collapse
|
9
|
Liu X, Ryabenkova Y, Conte M. Catalytic oxygen activation versus autoxidation for industrial applications: a physicochemical approach. Phys Chem Chem Phys 2014; 17:715-31. [PMID: 25259662 DOI: 10.1039/c4cp03568b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The activation and use of oxygen for the oxidation and functionalization of organic substrates are among the most important reactions in a chemist's toolbox. Nevertheless, despite the vast literature on catalytic oxidation, the phenomenon of autoxidation, an ever-present background reaction that occurs in virtually every oxidation process, is often neglected. In contrast, autoxidation can affect the selectivity to a desired product, to those dictated by pure free-radical chain pathways, thus affecting the activity of any catalyst used to carry out a reaction. This critical review compares catalytic oxidation routes by transition metals versus autoxidation, particularly focusing on the industrial context, where highly selective and "green" processes are needed. Furthermore, the application of useful tests to discriminate between different oxygen activation routes, especially in the area of hydrocarbon oxidation, with the aim of an enhanced catalyst design, is described and discussed. In fact, one of the major targets of selective oxidation is the use of molecular oxygen as the ultimate oxidant, combined with the development of catalysts capable of performing the catalytic cycle in a real energy and cost effective manner on a large scale. To achieve this goal, insights from metallo-proteins that could find application in some areas of industrial catalysis are presented, as well as considering the physicochemical principles that are fundamental to oxidation and autoxidation processes.
Collapse
Affiliation(s)
- Xi Liu
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | | | | |
Collapse
|
10
|
Kromer A, Roduner E. Catalytic Oxidation of Benzene on Liquid Ion-Exchanged Cu,H(Na)/ZSM-5 and Cu,H(Na)/Y Zeolites: Spin Trapping of Transient Radical Intermediates. Chempluschem 2013. [DOI: 10.1002/cplu.201200285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Conte M, Liu X, Murphy DM, Whiston K, Hutchings GJ. Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism. Phys Chem Chem Phys 2012; 14:16279-85. [PMID: 23132082 DOI: 10.1039/c2cp43363j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The liquid phase oxidation of cyclohexane was undertaken using Au/MgO and the reaction mechanism was investigated by means of continuous wave (CW) EPR spectroscopy employing the spin trapping technique. Activity tests aimed to determine the conversion and selectivity of Au/MgO catalyst showed that Au was capable of selectivity control to cyclohexanol formation up to 70%, but this was accompanied by a limited enhancement in conversion when compared with the reaction in the absence of catalyst. In contrast, when radical initiators were used, in combination with Au/MgO, an activity comparable to that observed in industrial processes at ca. 5% conversion was found, with retained high selectivity. By studying the free radical autoxidation of cyclohexane and the cyclohexyl hydroperoxide decomposition in the presence of spin traps, we show that Au nanoparticles are capable of an enhanced generation of cyclohexyl alkoxy radicals, and the role of Au is identified as a promoter of the catalytic autoxidation processes, therefore demonstrating that the reaction proceeds via a radical chain mechanism.
Collapse
Affiliation(s)
- Marco Conte
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | | | | | | | | |
Collapse
|