1
|
Ranbir, Singh G, Kaur N, Singh N. Machine learning driven metal oxide-based portable sensor array for on-site detection and discrimination of mycotoxins in corn sample. Food Chem 2024; 464:141869. [PMID: 39515166 DOI: 10.1016/j.foodchem.2024.141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/13/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Cereals, grains, and feedstuffs are prone to contamination by fungi during various stages from growth to storage. These fungi may produce harmful mycotoxins impacting food quality and safety. Thus, the development of quick and reliable methods for on-site application is crucial for ensuring food safety and quality monitoring. Herein, we have developed an efficient sensor array based on hierarchically modified metal oxides with azodye-based metal complexes for on-site detection and segregation of harmful mycotoxins present in corn samples. The functionalized material has been fully characterized utilizing various sophisticated techniques. The sensor array successfully detected and differentiated five different mycotoxins with 100 % efficiency, validated by linear discriminant analysis (LDA) score plots. The limit of detection, as determined from calibration curves, ranges from 0.02 to 0.09 ppm for the respective mycotoxins. Additionally, the sensor array has also demonstrated 100 % accuracy in discriminating binary and ternary ratios of mycotoxins in real sample analyses.
Collapse
Affiliation(s)
- Ranbir
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India; Present Address: Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
2
|
Zheng Y, Cen Y, Du T, Zhu D, Su S, Wang L. A three-in-one point-of-care electrochemical sensing platform for accurate monitoring of diabetes. Chem Commun (Camb) 2024; 60:3942-3945. [PMID: 38497772 DOI: 10.1039/d4cc00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
A three-in-one electrochemical sensing platform was designed for the simultaneous detection of total hemoglobin (tHb), glycated hemoglobin (HbA1c) and HbA1c% by using a dual-aptamer sensing strategy. The developed sensing platform exhibits excellent sensitivity, selectivity, repeatability and long-term stability, and holds promising prospects in the early diagnosis and long-term monitoring of diabetes.
Collapse
Affiliation(s)
- Youwei Zheng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yingying Cen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Tianchen Du
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
3
|
Singh RK, Nayak NP, Behl T, Arora R, Anwer MK, Gulati M, Bungau SG, Brisc MC. Exploring the Intersection of Geophysics and Diagnostic Imaging in the Health Sciences. Diagnostics (Basel) 2024; 14:139. [PMID: 38248016 PMCID: PMC11154438 DOI: 10.3390/diagnostics14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
To develop diagnostic imaging approaches, this paper emphasizes the transformational potential of merging geophysics with health sciences. Diagnostic imaging technology improvements have transformed the health sciences by enabling earlier and more precise disease identification, individualized therapy, and improved patient care. This review article examines the connection between geophysics and diagnostic imaging in the field of health sciences. Geophysics, which is typically used to explore Earth's subsurface, has provided new uses of its methodology in the medical field, providing innovative solutions to pressing medical problems. The article examines the different geophysical techniques like electrical imaging, seismic imaging, and geophysics and their corresponding imaging techniques used in health sciences like tomography, magnetic resonance imaging, ultrasound imaging, etc. The examination includes the description, similarities, differences, and challenges associated with these techniques and how modified geophysical techniques can be used in imaging methods in health sciences. Examining the progression of each method from geophysics to medical imaging and its contributions to illness diagnosis, treatment planning, and monitoring are highlighted. Also, the utilization of geophysical data analysis techniques like signal processing and inversion techniques in image processing in health sciences has been briefly explained, along with different mathematical and computational tools in geophysics and how they can be implemented for image processing in health sciences. The key findings include the development of machine learning and artificial intelligence in geophysics-driven medical imaging, demonstrating the revolutionary effects of data-driven methods on precision, speed, and predictive modeling.
Collapse
Affiliation(s)
- Rahul Kumar Singh
- Energy Cluster, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India; (R.K.S.); (N.P.N.)
| | - Nirlipta Priyadarshini Nayak
- Energy Cluster, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India; (R.K.S.); (N.P.N.)
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali 140306, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 1444411, Punjab, India;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
4
|
Vincy A, Gaikwad Y, Agarwal H, Jain N, Vankayala R. A Label-Free and Ultrasensitive Prussian Blue-Based Dipstick Sensor for Bacterial and Biofilm Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14246-14255. [PMID: 37750674 DOI: 10.1021/acs.langmuir.3c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Water and food contamination has become the major contributor to infections and deaths. However, rapid and sensitive bacterial detection still remains an unmet demand that has attracted widespread attention. Often water and food samples are sent out for laboratory testing to detect the presence of contamination, which is time-consuming and laborious. Herein, we have developed a highly sensitive, tenable, affordable, and robust (STAR) paper-based colorimetric dipstick sensor based on the principle of Prussian blue (PB) synthesis as an indicator of bacterial contamination. In the presence of bacteria, it leads to the formation of PB, a dye that acts as a colorimetric indicator. The intensity of the PB is the direct measure of the degree of contamination. The fabrication of the STAR dipstick sensor involves a simple and cost-effective process. The STAR dipstick sensor is ultrasensitive and can detect up to 101 CFU/mL of bacteria within minutes of contact with the test sample. The STAR dipstick sensor is fabricated using biodegradable components, which is speculated to facilitate quick and environmentally friendly degradation after each use. The sensor has been validated for its properties and capabilities at different pH to detect both Gram-positive and Gram-negative bacterial strains in real-time samples. The stability and degradation were also monitored. Comprehensively, the proposed STAR dipstick sensor can serve as a point-of-care device to detect bacterial contamination in a swift and sensitive manner.
Collapse
Affiliation(s)
- Antony Vincy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Yohan Gaikwad
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Harshita Agarwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
- Centre for Emerging Technologies for Sustainable Development (CETSD), Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
- Interdisciplinary Research Platform, Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
5
|
Liu S, Hou Y, Li Z, Yang C, Liu G. μPADs on Centrifugal Microfluidic Discs for Rapid Sample-to-Answer Salivary Diagnostics. ACS Sens 2023; 8:3520-3529. [PMID: 37669403 DOI: 10.1021/acssensors.3c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A fully integrated device for salivary detection with a sample-in-answer-out fashion is critical for noninvasive point-of-care testing (POCT), especially for the screening of contagious disease infection. Microfluidic paper-based analytical devices (μPADs) have demonstrated their huge potential in POCT due to their low cost and easy adaptation with other components. This study developed a generic POCT platform by integrating a centrifugal microfluidic disc with μPADs to realize sample-to-answer salivary diagnostics. Specifically, a custom centrifugal microfluidic disc integrated with μPADs is fabricated, which demonstrated a high efficiency in saliva treatment. To demonstrate the capability of the integrated device for salivary analysis, the SARS-CoV-2 Nucleocapsid (N) protein, a reliable biomarker for SARS-CoV-2 acute infection, is used as the model analyte. By the chemical treatment of the μPAD surface, and by optimizing the protein immobilization conditions, the on-disc μPADs were able to detect the SARS-CoV-2 N protein down to 10 pg mL-1 with a dynamic range of 10-1000 pg mL-1 and an assay time of 8 min. The integrated device was successfully used for the quantification of the N protein of pseudovirus in saliva with high specificity and demonstrated a comparable performance to the commercial paper lateral flow assay test strips.
Collapse
Affiliation(s)
- Shixian Liu
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuting Hou
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zirui Li
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chenyu Yang
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guozhen Liu
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
6
|
El-Naggar NEA, Eltarahony M, Hafez EE, Bashir SI. Green fabrication of chitosan nanoparticles using Lavendula angustifolia, optimization, characterization and in‑vitro antibiofilm activity. Sci Rep 2023; 13:11127. [PMID: 37429892 DOI: 10.1038/s41598-023-37660-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
Chitosan nanoparticles (CNPs) are promising polymeric nanoparticles with exceptional physicochemical, antimicrobial and biological characteristics. The CNPs are preferred for a wide range of applications in the food industry, cosmetics, agriculture, medical, and pharmaceutical fields due to their biocompatibility, biodegradability, eco-friendliness, and non-toxicity. In the current study, a biologically based approach was used to biofabricate CNPs using an aqueous extract of Lavendula angustifolia leaves as a reducing agent. The TEM images show that the CNPs were spherical in shape and ranged in size from 7.24 to 9.77 nm. FTIR analysis revealed the presence of several functional groups, including C-H, C-O, CONH2, NH2, C-OH and C-O-C. The crystalline nature of CNPs is demonstrated by X-ray diffraction. The thermogravimetric analysis revealed that CNPs are thermally stable. The CNPs' surface is positively charged and has a Zeta potential of 10 mV. For optimising CNPs biofabrication, a face-centered central composite design (FCCCD) with 50 experiments was used. The artificial intelligence-based approach was used to analyse, validate, and predict CNPs biofabrication. The optimal conditions for maximum CNPs biofabrication were theoretically determined using the desirability function and experimentally verified. The optimal conditions that maximize CNPs biofabrication (10.11 mg/mL) were determined to be chitosan concentration 0.5%, leaves extract 75%, and initial pH 4.24. The antibiofilm activity of CNPs was evaluated in‑vitro. The results show that 1500 μg/mL of CNPs suppressed P. aeruginosa, S. aureus and C. albicans biofilm formation by 91.83 ± 1.71%, 55.47 ± 2.12% and 66.4 ± 1.76%; respectively. The promising results of the current study in biofilm inhibition by necrotizing biofilm architecture, reducing its significant constituents and inhibiting microbial cell proliferation encourage their use as natural biosafe and biocompatible anti-adherent coating in antibiofouling membranes, medical bandage/tissues and food packaging materials.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Elsayed E Hafez
- Department of Plant Protection and Biomolecular Diagnosis, Arid Land Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt
| | - Shimaa I Bashir
- Department of Plant Protection and Biomolecular Diagnosis, Arid Land Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
7
|
El-Naggar NEA, Dalal SR, Zweil AM, Eltarahony M. Artificial intelligence-based optimization for chitosan nanoparticles biosynthesis, characterization and in‑vitro assessment of its anti-biofilm potentiality. Sci Rep 2023; 13:4401. [PMID: 36928367 PMCID: PMC10019797 DOI: 10.1038/s41598-023-30911-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Chitosan nanoparticles (CNPs) are promising biopolymeric nanoparticles with excellent physicochemical, antimicrobial, and biological properties. CNPs have a wide range of applications due to their unique characteristics, including plant growth promotion and protection, drug delivery, antimicrobials, and encapsulation. The current study describes an alternative, biologically-based strategy for CNPs biosynthesis using Olea europaea leaves extract. Face centered central composite design (FCCCD), with 50 experiments was used for optimization of CNPs biosynthesis. The artificial neural network (ANN) was employed for analyzing, validating, and predicting CNPs biosynthesis using Olea europaea leaves extract. Using the desirability function, the optimum conditions for maximum CNPs biosynthesis were determined theoretically and verified experimentally. The highest experimental yield of CNPs (21.15 mg CNPs/mL) was obtained using chitosan solution of 1%, leaves extract solution of 100%, initial pH 4.47, and incubation time of 60 min at 53.83°C. The SEM and TEM images revealed that CNPs had a spherical form and varied in size between 6.91 and 11.14 nm. X-ray diffraction demonstrates the crystalline nature of CNPs. The surface of the CNPs is positively charged, having a Zeta potential of 33.1 mV. FTIR analysis revealed various functional groups including C-H, C-O, CONH2, NH2, C-OH and C-O-C. The thermogravimetric investigation indicated that CNPs are thermally stable. The CNPs were able to suppress biofilm formation by P. aeruginosa, S. aureus and C. albicans at concentrations ranging from 10 to 1500 µg/mL in a dose-dependent manner. Inhibition of biofilm formation was associated with suppression of metabolic activity, protein/exopolysaccharide moieties, and hydrophobicity of biofilm encased cells (r ˃ 0.9, P = 0.00). Due to their small size, in the range of 6.91 to 11.14 nm, CNPs produced using Olea europaea leaves extract are promising for applications in the medical and pharmaceutical industries, in addition to their potential application in controlling multidrug-resistant microorganisms, especially those associated with post COVID-19 pneumonia in immunosuppressed patients.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Shimaa R Dalal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amal M Zweil
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
8
|
George IE, Cherian T, Ragavendran C, Mohanraju R, Dailah H, Hassani R, Alhazmi HA, Khalid A, Mohan S. One-pot green synthesis of silver nanoparticles using brittle star Ophiocoma scolopendrina: Assessing biological potentialities of antibacterial, antioxidant, anti-diabetic and catalytic degradation of organic dyes. Heliyon 2023; 9:e14538. [PMID: 36967974 PMCID: PMC10031480 DOI: 10.1016/j.heliyon.2023.e14538] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
In the current study, aqueous extract of O. scolopendrina (OSE) was used to synthesize AgNPs in a simple and environmentally friendly manner. The biosynthesized OSE-AgNPs were also assessed for its catalytic, antibacterial, anti-diabetic, antioxidant and dye degradation properties. The techniques like UV-visible spectroscopic examinations, TEM, SEM, TGA, zeta potential and FT-IR were used in the characterization investigations. The bioproduction of OSE-AgNPs was preliminary confirmed by UV-visible spectroscopic based investigation followed by microscopic visualization. The synthesized OSE-AgNPs exhibited a reddish brown colour and nearly spherical forms with sizes between 5 and 50 nm quantified by TEM and SEM. The attendance of functional groups like -OH and -NH present in OSE caps on the AgNPs surface was confirmed by FTIR analysis. Interestingly, in the presence of OSE-AgNPs, the degradation of dyes (CV, 95% and EY, 96% in 15 min) were noticeably accelerated. Further, OSE-AgNPs demonstrated substantial antibacterial activity; robust antioxidant properties andnotable anti-diabetic activities. This is the first account on the biosynthetic process of AgNPs using the aqueous extract of O. scolopendrina.
Collapse
|
9
|
Li Q, Sun T, Salentijn GI, Ning B, Han D, Bai J, Peng Y, Gao Z, Wang Z. Bifunctional ligand-mediated amplification of polydiacetylene response to biorecognition of diethylstilbestrol for on-site smartphone detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128692. [PMID: 35316640 DOI: 10.1016/j.jhazmat.2022.128692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Polydiacetylene (PDA) is very suited for sensitively detecting large biomolecules, and its unique chromatic properties enable visual read-out. However, application to the selective detection of small molecules remains challenging. Here, bifunctional ligands are studied to amplify the color change of PDA for biorecognition of small molecules for the smartphone-based detection of diethylstilbestrol (DES). PDA is decorated with streptavidin (PDA-SA, blue), and biotin-modified DES (bio-DES) is prepared as a bifunctional ligand to couple with PDA-SA and DES antibody. Since multiple bio-DES can bind to a single SA, then multiple SAs on PDA lead to an increased surface coverage of the vesicle. In samples without DES, PDA-SA-bio-DES-DES antibody complexes will form, leading to a color transition (blue to red); this color transition is greatly amplified by antibody-induced aggregation of the complexes. When DES is present, aggregation is inhibited due to competition for the antibody and PDA-SA-bio-DES retains its blue color. A linear relationship (0.4-1250 ng mL-1) is found between the colorimetric response and the logarithmic DES concentration, with adequate selectivity, accuracy (82.24-118.64%), and precision (below 8.24%). Finally, a paper-based DES PDA biosensor is developed with visual and smartphone-based detection limits of 10 ng mL-1 and 0.85 ng mL-1 in water, respectively.
Collapse
Affiliation(s)
- Qiaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Gert Ij Salentijn
- Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; Laboratory of Organic Chemistry, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
A low cost yet highly sensitive silver nanoprobe for naked eye detection and determination of bisulphate (HSO4-) in a few real samples. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Zhao H, Qiu X, Su E, Huang L, Zai Y, Liu Y, Chen H, Wang Z, Chen Z, Li S, Jin L, Deng Y, He N. Multiple chemiluminescence immunoassay detection of the concentration ratio of glycosylated hemoglobin A1c to total hemoglobin in whole blood samples. Anal Chim Acta 2022; 1192:339379. [DOI: 10.1016/j.aca.2021.339379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
|
12
|
Singh R, Singh AK, Yadav M, Sharma M, Tiwari I, Upadhyay KK. Naked-eye detection of cysteine/homocysteine through silver nano-resonators and specific identification of homocysteine through nanoresonator–thiosulphate conjugate. NEW J CHEM 2022. [DOI: 10.1039/d2nj01789j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The citrate capped AgNPs synthesized through a modified previous report exhibit naked eye sensing towards cysteine/homocysteine along with SERS characteristics. Their thiosulphate conjugate detects selectively only homocysteine.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anurag Kumar Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Minu Yadav
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Manish Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi 110054, India
| | - Ida Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - K. K. Upadhyay
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
13
|
Direct and Label-Free Determination of Human Glycated Hemoglobin Levels Using Bacteriorhodopsin as the Biosensor Transducer. SENSORS 2020; 20:s20247274. [PMID: 33353006 PMCID: PMC7765918 DOI: 10.3390/s20247274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
Glycated hemoglobin (HbA1c) levels are an important index for the diagnosis and long-term control of diabetes. This study is the first to use a direct and label-free photoelectric biosensor to determine HbA1c using bacteriorhodopsin-embedded purple membranes (PM) as a transducer. A biotinylated PM (b-PM) coated electrode that is layered with protein A-oriented antibodies against hemoglobin (Hb) readily captures non-glycated Hb (HbA0) and generates less photocurrent. The spectra of bacteriorhodopsin and Hb overlap so the photocurrent is reduced because of the partial absorption of the incident light by the captured Hb molecules. Two HbA0 and HbA1c aptasensors that are prepared by conjugating specific aptamers on b-PM coated electrodes single-step detect HbA0 and HbA1c in 15 min, without cross reactivity, with detection limits of ≤0.1 μg/mL and a dynamic range of 0.1–100 μg/mL. Both aptasensors exhibit high selectivity and long-term stability. For the clinical samples, HbA0 concentrations and HbA1c levels that are measured with aptasensors correlate well with total Hb concentrations and the HbA1c levels that are determined using standard methods (correlation gradient = 0.915 ± 0.004 and 0.981 ± 0.001, respectively). The use of these aptasensors for diabetes care is demonstrated.
Collapse
|
14
|
Li B, Qin L, Zhou J, Cai X, Lai G, Yu A. Hybridization chain reaction-enhanced enzyme biomineralization for ultrasensitive colorimetric biosensing of a protein biomarker. Analyst 2019; 144:5003-5009. [PMID: 31332403 DOI: 10.1039/c9an00898e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
By employment of an aptamer-initiated hybridization chain reaction (HCR) to enhance the enzyme biomineralization of cupric subcarbonate, this work develops a novel colorimetric biosensing method for protein analysis. The HCR product was used to specifically attach a large amount of urease-functionalized gold nanoparticles (Au NPs) for the preparation of a gold nanoprobe. After the sandwich biorecognition reactions, this nanoprobe could be quantitatively captured onto the antibody-functionalized magnetic bead (MB) platform. Then, numerous copper ions would be enriched onto the MB surface through the urease-induced biomineralization of cupric subcarbonate. Based on the complete release of Cu2+ ions for the sensitive copper chromogenic reaction, convenient colorimetric signal transduction was thus achieved for the quantitative analysis of the target analyte of the carcinoembryonic antigen. The HCR product provides a large number of biotin sites for the attachment of Au NP nanotags. The biomineralization reaction of high-content urease loaded onto Au NPs leads to highly efficient Cu2+ enrichment for signal amplification. So this method features excellent performance including a very wide linear range and a low detection limit down to 0.071 pg mL-1. In addition, the satisfactory results of real sample experiments reveal that this method possesses huge potential for practical applications.
Collapse
Affiliation(s)
- Bo Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | | | | | | | | | | |
Collapse
|
15
|
Lizoń A, Wytrwal-Sarna M, Gajewska M, Drożdż R. Silver Nanoparticle-Based Assay for the Detection of Immunoglobulin Free Light Chains. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2981. [PMID: 31540144 PMCID: PMC6766345 DOI: 10.3390/ma12182981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
There is a wide spectrum of malignant diseases that are connected with the clonal proliferation of plasma cells, which cause the production of complete immunoglobulins or their fragments (heavy or light immunoglobulin chains). These proteins may accumulate in tissues, leading to end organ damage. The quantitative determination of immunoglobulin free light chains (FLCs) is considered to be the gold standard in the detection and treatment of multiple myeloma (MM) and amyloid light-chain (AL) amyloidosis. In this study, a silver nanoparticle-based diagnostic tool for the quantitation of FLCs is presented. The optimal test conditions were achieved when a metal nanoparticle (MNP) was covered with 10 particles of an antibody and conjugated by 5-50 protein antigen particles (FLCs). The formation of the second antigen protein corona was accompanied by noticeable changes in the surface plasmon resonance spectra of the silver nanoparticles (AgNPs), which coincided with an increase of the hydrodynamic diameter and increase in the zeta potential, as demonstrated by dynamic light scattering (DLS). A decrease of repulsion forces and the formation of antigen-antibody bridges resulted in the agglutination of AgNPs, as demonstrated by transmission electron microscopy and the direct formation of AgNP aggregates. Antigen-conjugated AgNPs clusters were also found by direct observation using green laser light scattering. The parameters of the specific immunochemical aggregation process consistent with the sizes of AgNPs and the protein particles that coat them were confirmed by four physical methods, yielding complementary data concerning a clinically useful AgNPs aggregation test.
Collapse
Affiliation(s)
- Anna Lizoń
- Department of Medical Diagnostics, Faculty of Farmacy, Jagiellonian University Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland.
| | - Magdalena Wytrwal-Sarna
- Academic Centre for Materials and Nanotechnology, University of Science and Technology, 30 Kawiory, 30-055 Kraków, Poland.
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, University of Science and Technology, 30 Kawiory, 30-055 Kraków, Poland.
| | - Ryszard Drożdż
- Department of Medical Diagnostics, Faculty of Farmacy, Jagiellonian University Collegium Medicum, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
16
|
Dong PT, Lin H, Huang KC, Cheng JX. Label-free quantitation of glycated hemoglobin in single red blood cells by transient absorption microscopy and phasor analysis. SCIENCE ADVANCES 2019; 5:eaav0561. [PMID: 31093524 PMCID: PMC6510558 DOI: 10.1126/sciadv.aav0561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
As a stable and accurate biomarker, glycated hemoglobin (HbA1c) is clinically used to diagnose diabetes with a threshold of 6.5% among total hemoglobin (Hb). Current methods such as boronate affinity chromatography involve complex processing of large-volume blood samples. Moreover, these methods cannot measure HbA1c fraction at single-red blood cell (RBC) level, thus unable to separate the contribution from other factors such as RBC lifetime. Here, we demonstrate a spectroscopic transient absorption imaging approach that is able to differentiate HbA1c from Hb on the basis of their distinct excited-state dynamics. HbA1c fraction inside a single RBC is derived quantitatively through phasor analysis. HbA1c fraction distribution of diabetic blood is apparently different from that of healthy blood. A mathematical model is developed to derive the long-term blood glucose concentration. Our technology provides a unique way to study heme modification and to derive clinically important information void of bloodstream glucose fluctuation.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Haonan Lin
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kai-Chih Huang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
17
|
Yusof NAA, Zain NM, Pauzi N. Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Int J Biol Macromol 2019; 124:1132-1136. [DOI: 10.1016/j.ijbiomac.2018.11.228] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/18/2018] [Accepted: 11/25/2018] [Indexed: 11/17/2022]
|
18
|
Oza G, Krishnajyothi K, Merupo VI, Bracamontes KAC, Olmos PC, Garrido E, Velumani S, Sridharan M, Sharma A, Arriaga LG, Ramirez JT. Gold-Iron oxide yolk-shell nanoparticles (YSNPs) as magnetic probe for fluorescence-based detection of 3 base mismatch DNA. Colloids Surf B Biointerfaces 2019; 176:431-438. [PMID: 30665097 DOI: 10.1016/j.colsurfb.2019.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 01/26/2023]
Abstract
Seed-mediated Gold-Iron oxide yolk-shell nanoparticles (YSNPs) were synthesized and functionalized with cy5 attached- thiolated single strand DNA probe for the detection of mutated DNA. The optimum concentration of thiolated DNA determined from a bathochromic shift of surface plasmon resonance (SPR) peak, was 0.177μM. The effect of pH (2-10), temperature (4, 37, 60 and 100 °C), and ionic strengths (1 M to 4 M) on the stability of ssDNA probe tethered YSNPs, studied with the assistance of flocculation parameter. The detection of mutation in DNA was possible using such ssDNA probe functionalized and stabilized nanoparticles. The hybridization of the oligonucleotide probe with the complementary, non-complementary and mutated DNA strands are determined via their respective intensities of the fluorescence of cy5, an efficient fluorescent marker. The intensities help in the comprehension of the specificity of the system. The report predicts controlled efficiency of hybridization with the aid of Hamaker constant, which is determined as 1.15 × 10-20 J for DNA functionalized YSNPs. The minimum concentration of target DNA detected using this methodology was 1.2 × 10-11 mol/L.
Collapse
Affiliation(s)
- Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Querétaro s/n, Sanfandila, Pedro Escobedo, C.P. 76703, Querétaro, Qro, Mexico.
| | - Kaligotla Krishnajyothi
- Centre for Nanotechnology and Advanced Biomaterials, SASTRA Deemed to be University, Thanjavur, India
| | - Victor Ishrayelu Merupo
- Institut catholique d'arts et métiers-Nantes, 35 Avenue du Champ de Manœuvre, 44470, Carquefou, France
| | - Karen A Chavez Bracamontes
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio González No. 500, Fracc. San Pablo, Queretaro CP 76130, Mexico
| | - Pedro Chavez Olmos
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Avenida IPN 6508, San Pedro Zacatenco, Mexico
| | - Efrain Garrido
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Avenida IPN 6508, San Pedro Zacatenco, Mexico
| | - S Velumani
- Program on Nanoscience and Nanotechnology, Department of Electrical Engineering (SEES), CINVESTAV-IPN, Avenida IPN 6508, San Pedro Zacatenco, Mexico
| | - M Sridharan
- Centre for Nanotechnology and Advanced Biomaterials, SASTRA Deemed to be University, Thanjavur, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio González No. 500, Fracc. San Pablo, Queretaro CP 76130, Mexico
| | - L G Arriaga
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Querétaro s/n, Sanfandila, Pedro Escobedo, C.P. 76703, Querétaro, Qro, Mexico
| | - Jose Tapia Ramirez
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Avenida IPN 6508, San Pedro Zacatenco, Mexico.
| |
Collapse
|
19
|
Jazayeri MH, Aghaie T, Avan A, Vatankhah A, Ghaffari MRS. Colorimetric detection based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
20
|
Batistela DM, Stevani CV, Freire RS. Immunoassay for Human IgG Using Antibody-functionalized Silver Nanoparticles. ANAL SCI 2018; 33:1111-1114. [PMID: 28993583 DOI: 10.2116/analsci.33.1111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple colorimetric immunoassay for quantification of human immunoglobulin G (hIgG) is herein described. The assay is based on the aggregation inhibition of silver nanoparticles (AgNP) functionalized with hIgG antibody (anti-hIgG) on the surface. The aggregation is measured in terms of attenuance values ratio at 400 and 530 nm (A400/A530). A linear response between A400/A530 and hIgG concentration is observed in the range 25 - 200 ng mL-1, and the detection limit is estimated as 11 ng mL-1 hIgG.
Collapse
Affiliation(s)
- Daniela M Batistela
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP)
| | - Cassius V Stevani
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP)
| | - Renato S Freire
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP)
| |
Collapse
|
21
|
Yang JK, Lee HR, Hwang IJ, Kim HI, Yim D, Kim JH. Fluorescent 2D WS 2 Nanosheets Bearing Chemical Affinity Elements for the Recognition of Glycated Hemoglobin. Adv Healthc Mater 2018; 7:e1701496. [PMID: 29761643 DOI: 10.1002/adhm.201701496] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/22/2018] [Indexed: 12/14/2022]
Abstract
It is required to exfoliate and functionalize 2D transition metal dichalcogenides (TMDs) in an aqueous solution for biological and medical applications. Herein, the approach for the simultaneous exfoliation and functionalization of 2D WS2 nanosheets using boronic acid-modified poly(vinyl alcohol) (B-PVA) in an aqueous solution is reported, and the B-PVA-functionalized WS2 nanosheets (B-PVA-WS2 ) are exploited as a fluorescent biosensor for the detection of glycated hemoglobin, HbA1c. The synthetic B-PVA polymer facilitates the exfoliation and functionalization of WS2 nanosheets from the bulk counterpart in the aqueous solution via a pulsed sonication process, resulting in fluorescent B-PVA-WS2 nanohybrids with a specific recognition of HbA1c. The fluorescence of the B-PVA-WS2 is quenched in the presence of HbA1c, whereas PVA-functionalized WS2 (PVA-WS2 ), not bearing boronic acid as a recognition moiety, shows no fluorescence changes upon the addition of the target. The B-PVA-WS2 is able to selectively detect HbA1c at the concentration as low as 3.3 × 10-8 m based on its specific fluorescence quenching.
Collapse
Affiliation(s)
- Jin-Kyoung Yang
- Department of Chemical Engineering; Hanyang University; Ansan 426-791 Republic of Korea
| | - Hye-Rim Lee
- Department of Chemical Engineering; Hanyang University; Ansan 426-791 Republic of Korea
| | - In-Jun Hwang
- Department of Chemical Engineering; Hanyang University; Ansan 426-791 Republic of Korea
| | - Hye-In Kim
- Department of Chemical Engineering; Hanyang University; Ansan 426-791 Republic of Korea
| | - DaBin Yim
- Department of Chemical Engineering; Hanyang University; Ansan 426-791 Republic of Korea
| | - Jong-Ho Kim
- Department of Chemical Engineering; Hanyang University; Ansan 426-791 Republic of Korea
| |
Collapse
|
22
|
Kaur J, Jiang C, Liu G. Different strategies for detection of HbA1c emphasizing on biosensors and point-of-care analyzers. Biosens Bioelectron 2018; 123:85-100. [PMID: 29903690 DOI: 10.1016/j.bios.2018.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
Abstract
Measurement of glycosylated hemoglobin (HbA1c) is a gold standard procedure for assessing long term glycemic control in individuals with diabetes mellitus as it gives the stable and reliable value of blood glucose levels for a period of 90-120 days. HbA1c is formed by the non-enzymatic glycation of terminal valine of hemoglobin. The analysis of HbA1c tends to be complicated because there are more than 300 different assay methods for measuring HbA1c which leads to variations in reported values from same samples. Therefore, standardization of detection methods is recommended. The review outlines the current research activities on developing assays including biosensors for the detection of HbA1c. The pros and cons of different techniques for measuring HbA1c are outlined. The performance of current point-of-care HbA1c analyzers available on the market are also compared and discussed. The future perspectives for HbA1c detection and diabetes management are proposed.
Collapse
Affiliation(s)
- Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, Australia
| | - Cheng Jiang
- Nuffield Department of Clinical Neurosciences, Department of Chemistry, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, Australia; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
23
|
Synthesis and pH-dependent assembly of isotropic and anisotropic gold nanoparticles functionalized with hydroxyl-bearing amino acids. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0714-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Colorimetric sensors for rapid detection of various analytes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1231-1245. [PMID: 28575962 DOI: 10.1016/j.msec.2017.05.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/23/2017] [Accepted: 05/04/2017] [Indexed: 01/14/2023]
Abstract
Sensor technology for the rapid detection of the analytes with high sensitivity and selectivity has several challenges. Despite the challenges, colorimetric sensors have been widely accepted for its high sensitive and selective response towards various analytes. In this review, colorimetric sensors for the detection of biomolecules like protein, DNA, pathogen and chemical compounds like heavy metal ions, toxic gases and organic compounds have been elaborately discussed. The visible sensing mechanism based on Surface Plasmon Resonance (SPR) using metal nanoparticles like Au, Ag, thin film interference using SiO2 and colorimetric array-based technique have been highlighted. The optical property of metal nanoparticles enables a visual color change during its interaction with the analytes owing to the dispersion and aggregation of nanoparticles. Recently, colorimetric changes using silica substrate for detection of protein and small molecules by thin film interference as a visible sensing mechanism has been developed without the usage of fluorescent or radioisotopes labels. Multilayer of biomaterials were used as a platform where reflection and interference of scattering light occur due to which color change happens leading to rapid sensing. Colorimetric array-based technique for the detection of organic compounds using chemoresponsive dyes has also been focused wherein the interaction of the analytes with the substrate coated with chemoresponsive dyes gives colorimetric change.
Collapse
|
25
|
Li B, Lai G, Zhang H, Hu S, Yu A. Copper chromogenic reaction based colorimetric immunoassay for rapid and sensitive detection of a tumor biomarker. Anal Chim Acta 2017; 963:106-111. [DOI: 10.1016/j.aca.2017.01.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 01/06/2023]
|
26
|
Boonyasit Y, Laiwattanapaisal W, Chailapakul O, Emnéus J, Heiskanen AR. Boronate-Modified Interdigitated Electrode Array for Selective Impedance-Based Sensing of Glycated Hemoglobin. Anal Chem 2016; 88:9582-9589. [DOI: 10.1021/acs.analchem.6b02234] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yuwadee Boonyasit
- Graduate
Program in Clinical Biochemistry and Molecular Medicine, Faculty of
Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department
of Micro- and Nanotechnology, Technical University of Denmark, Kongens
Lyngby, 2800, Denmark
| | - Wanida Laiwattanapaisal
- Department
of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry
and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jenny Emnéus
- Department
of Micro- and Nanotechnology, Technical University of Denmark, Kongens
Lyngby, 2800, Denmark
| | - Arto R. Heiskanen
- Department
of Micro- and Nanotechnology, Technical University of Denmark, Kongens
Lyngby, 2800, Denmark
- Department
of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
27
|
Boonyasit Y, Chailapakul O, Laiwattanapaisal W. A multiplexed three-dimensional paper-based electrochemical impedance device for simultaneous label-free affinity sensing of total and glycated haemoglobin: The potential of using a specific single-frequency value for analysis. Anal Chim Acta 2016; 936:1-11. [DOI: 10.1016/j.aca.2016.05.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
|
28
|
Mars A, Parolo C, de la Escosura-Muñiz A, Raouafi N, Merkoçi A. Control of Electron-transfer in Immunonanosensors by Using Polyclonal and Monoclonal Antibodies. ELECTROANAL 2016. [DOI: 10.1002/elan.201500646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Abdelmoneim Mars
- Catalan Institute of Nanoscience and Nanotechnology (ICN2); CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra; 08193 Barcelona Spain
- Département de Chimie; Université de Tunis El-Manar, Faculté des Sciences, Campus universitaire de Tunis El-Manar; Tunis 2092 Tunisia
| | - Claudio Parolo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2); CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra; 08193 Barcelona Spain
| | - Alfredo de la Escosura-Muñiz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2); CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra; 08193 Barcelona Spain
| | - Noureddine Raouafi
- Département de Chimie; Université de Tunis El-Manar, Faculté des Sciences, Campus universitaire de Tunis El-Manar; Tunis 2092 Tunisia
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2); CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra; 08193 Barcelona Spain
- ICREA; Barcelona, Catalonia Spain
| |
Collapse
|
29
|
Mahajan PG, Bhopate DP, Kolekar GB, Patil SR. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff. J Fluoresc 2016; 26:1467-78. [DOI: 10.1007/s10895-016-1839-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/09/2016] [Indexed: 01/03/2023]
|
30
|
Wangoo N, Swami A, Kaur S, Bansal K, Sharma RK. Development of a Colloidal Gold-Based Nanobioprobe for the Detection of Glycated Albumin. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0203-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Jo EJ, Mun H, Kim MG. Homogeneous Immunosensor Based on Luminescence Resonance Energy Transfer for Glycated Hemoglobin Detection Using Upconversion Nanoparticles. Anal Chem 2016; 88:2742-6. [DOI: 10.1021/acs.analchem.5b04255] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Eun-Jung Jo
- Department of Chemistry,
School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Hyoyoung Mun
- Department of Chemistry,
School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry,
School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| |
Collapse
|
32
|
Zhang X, Wen K, Wang Z, Jiang H, Beier RC, Shen J. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M 1 in milk. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.08.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Zhao Y, Zheng Y, Zhao C, You J, Qu F. Hollow PDA-Au nanoparticles-enabled signal amplification for sensitive nonenzymatic colorimetric immunodetection of carbohydrate antigen 125. Biosens Bioelectron 2015; 71:200-206. [DOI: 10.1016/j.bios.2015.04.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/20/2015] [Accepted: 04/05/2015] [Indexed: 01/19/2023]
|
34
|
Wu J, Kwon B, Liu W, Anslyn EV, Wang P, Kim JS. Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chem Rev 2015; 115:7893-943. [DOI: 10.1021/cr500553d] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiasheng Wu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bomi Kwon
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| | - Weimin Liu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Eric V. Anslyn
- Department
of Chemistry, The University of Texas at Austin, 105 E. 24th,
Street-Stop A5300, Austin, Texas 78712-1224, United States
| | - Pengfei Wang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| |
Collapse
|
35
|
Boonyasit Y, Heiskanen A, Chailapakul O, Laiwattanapaisal W. Selective label-free electrochemical impedance measurement of glycated haemoglobin on 3-aminophenylboronic acid-modified eggshell membranes. Anal Bioanal Chem 2015; 407:5287-97. [PMID: 25956596 DOI: 10.1007/s00216-015-8680-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 02/02/2023]
Abstract
We propose a novel alternative approach to long-term glycaemic monitoring using eggshell membranes (ESMs) as a new immobilising platform for the selective label-free electrochemical sensing of glycated haemoglobin (HbA1c), a vital clinical index of the glycaemic status in diabetic individuals. Due to the unique features of a novel 3-aminophenylboronic acid-modified ESM, selective binding was obtained via cis-diol interactions. This newly developed device provides clinical applicability as an affinity membrane-based biosensor for the identification of HbA1c over a clinically relevant range (2.3 - 14 %) with a detection limit of 0.19%. The proposed membrane-based biosensor also exhibited good reproducibility. When analysing normal and abnormal HbA1c levels, the within-run coefficients of variation were 1.68 and 1.83%, respectively. The run-to-run coefficients of variation were 1.97 and 2.02%, respectively. These results demonstrated that this method achieved the precise and selective measurement of HbA1c. Compared with a commercial HbA1c kit, the results demonstrated excellent agreement between the techniques (n = 15), demonstrating the clinical applicability of this sensor for monitoring glycaemic control. Thus, this low-cost sensing platform using the proposed membrane-based biosensor is ideal for point-of-care diagnostics.
Collapse
Affiliation(s)
- Yuwadee Boonyasit
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | | |
Collapse
|
36
|
Zeng Y, Pei JJ, Wang LH, Shen AG, Hu JM. A sensitive sequential ‘on/off’ SERS assay for heparin with wider detection window and higher reliability based on the reversed surface charge changes of functionalized Au@Ag nanoparticles. Biosens Bioelectron 2015; 66:55-61. [DOI: 10.1016/j.bios.2014.10.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/29/2014] [Indexed: 11/30/2022]
|
37
|
Wang B, Anzai JI. Recent Progress in Electrochemical HbA1c Sensors: A Review. MATERIALS (BASEL, SWITZERLAND) 2015; 8:1187-1203. [PMID: 28787996 PMCID: PMC5455452 DOI: 10.3390/ma8031187] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022]
Abstract
This article reviews recent progress made in the development of electrochemical glycated hemoglobin (HbA1c) sensors for the diagnosis and management of diabetes mellitus. Electrochemical HbA1c sensors are divided into two categories based on the detection protocol of the sensors. The first type of sensor directly detects HbA1c by binding HbA1c on the surface of an electrode through bio-affinity of antibody and boronic acids, followed by an appropriate mode of signal transduction. In the second type of sensor, HbA1c is indirectly determined by detecting a digestion product of HbA1c, fructosyl valine (FV). Thus, the former sensors rely on the selective binding of HbA1c to the surface of the electrodes followed by electrochemical signaling in amperometric, voltammetric, impedometric, or potentiometric mode. Redox active markers, such as ferrocene derivatives and ferricyanide/ferrocyanide ions, are often used for electrochemical signaling. For the latter sensors, HbA1c must be digested in advance by proteolytic enzymes to produce the FV fragment. FV is electrochemically detected through catalytic oxidation by fructosyl amine oxidase or by selective binding to imprinted polymers. The performance characteristics of HbA1c sensors are discussed in relation to their use in the diagnosis and control of diabetic mellitus.
Collapse
Affiliation(s)
- Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan 250012, Shandong, China.
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
38
|
Chaudhary A, Gupta A, Nandi CK. Anisotropic gold nanoparticles for the highly sensitive colorimetric detection of glucose in human urine. RSC Adv 2015. [DOI: 10.1039/c4ra16690f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PEDOT:PSS modified anisotropic gold nanoparticles (GNP) for the colorimetric detection of glucose in urine.
Collapse
Affiliation(s)
| | - Abhishek Gupta
- School of Basic Sciences
- Indian Institute of Technology
- Mandi
- India
| | | |
Collapse
|
39
|
Lai W, Tang D, Zhuang J, Chen G, Yang H. Magnetic Bead-Based Enzyme-Chromogenic Substrate System for Ultrasensitive Colorimetric Immunoassay Accompanying Cascade Reaction for Enzymatic Formation of Squaric Acid-Iron(III) Chelate. Anal Chem 2014; 86:5061-8. [DOI: 10.1021/ac500738a] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenqiang Lai
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Junyang Zhuang
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Guonan Chen
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Huanghao Yang
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| |
Collapse
|
40
|
Mu B, Zhang J, McNicholas TP, Reuel NF, Kruss S, Strano MS. Recent advances in molecular recognition based on nanoengineered platforms. Acc Chem Res 2014; 47:979-88. [PMID: 24467652 DOI: 10.1021/ar400162w] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticles and nanoengineered platforms have great potential for technologies involving biomoleuclar detection or cell-related biosensing, and have provided effective chemical interfaces for molecular recognition. Typically, chemists work on the modification of synthetic polymers or macromolecules, which they link to the nanoparticles by covalent or noncovalent approaches. The motivation for chemical modification is to enhance the selectivity and sensitivity, and to improve the biocompatibility for the in vivo applications. In this Account, we present recent advances in the development and application of chemical interfaces for molecular recognition for nanoparticles and nanoengineered platforms, in particular single-walled carbon nanotubes (SWNTs). We discuss emerging approaches for recognizing small molecules, glycosylated proteins, and serum biomarkers. For example, we compare and discuss detection methods for ATP, NO, H2O2, and monosaccharides for recent nanomaterials. Fluorometric detection appears to have great potential for quantifying concentration gradients and determining their location in living cells. For macromolecular detection, new methods for glycoprofiling using such interfaces appear promising, and benefit specifically from the potential elimination of cumbersome labeling and liberation steps during conventional analysis of glycans, augmenting the currently used mass spectrometry (MS), capillary electrophoresis (CE), and liquid chromatography (LC) methods. In particular, we demonstrated the great potential of fluorescent SWNTs for glycan-lectin interactions sensing. In this case, SWNTs are noncovalently functionalized to introduce a chelated nickel group. This group provides a docking site for the His-tagged lectin and acts as the signal modulator. As the nickel proximity to the SWNT surface changes, the fluorescent signal is increased or attenuated. When a free glycan or glycosylated probe interacts with the lectin, the signal increases and they are able to obtain loading curves similar to surface plasmon resonance measurements. They demonstrate the sensitivity and specificity of this platform with two higher-affined glycan-lectin pairs: fucose (Fuc) to PA-IIL and N-acetylglucosamine (GlcNAc) to GafD. Lastly, we discuss how developments in protein biomarker detection in general are benefiting specifically from label-free molecular recognition. Electrical field effect transistors, chemi-resistive and fluorometric nanosensors based on various nanomaterials have demonstrated substantial progress in recent years in addressing this challenging problem. In this Account, we compare the balance between sensitivity, selectivity, and nonspecific adsorption for various applications. In particular, our group has utilized SWNTs as fluorescence sensors for label-free protein-protein interaction measurements. In this assay, we have encapsulated each nanotube in a biocompatible polymer, chitosan, which has been further modified to conjugate nitrilotriacetic acid (NTA) groups. After Ni(2+) chelation, NTA Ni(2+) complexes bind to his-tagged proteins, resulting in a local environment change of the SWNT array, leading to optical fluorescence modulation with detection limit down to 100 nM. We have further engineered the platform to monitor single protein binding events, with an even lower detection limit down to 10 pM.
Collapse
Affiliation(s)
- Bin Mu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jingqing Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas P. McNicholas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nigel F. Reuel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sebastian Kruss
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Wu Y, Li Q, Deng F, Liang X, Liu H. Solvent effect on ζ potential at an aqueous/oil interface in surfactant-free emulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1926-1931. [PMID: 24499416 DOI: 10.1021/la403900e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The present study prepared a size-controllable, uniform, and surfactant-free emulsification to investigate the ζ potential of the solvent effect. The results showed that the ratio of electrophoretic mobility changed with droplet diameter, and the correct factor of the ζ potential was determined. The effect of functional groups on the ζ potential was further studied in the presence of an organic hydrophilic solvent. The study characterized the effects of pH, ionic strength, and ionic type on the ζ potential and indicated that the solvents were able to modulate the local electrochemical environment, thus leading to the redistribution of interface charges.
Collapse
Affiliation(s)
- Yong Wu
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | | | |
Collapse
|
42
|
Bhopate DP, Mahajan PG, Garadkar KM, Kolekar GB, Patil SR. Pyrene nanoparticles as a novel FRET probe for detection of rhodamine 6G: spectroscopic ruler for textile effluent. RSC Adv 2014. [DOI: 10.1039/c4ra13555e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hydrophobic force of interaction between R6G and SDS stabilized PyNPs involving FRET was demonstrated by measuring fluorescence of nanoparticles as a function of concentration of R6G.
Collapse
Affiliation(s)
- Dhanaji P. Bhopate
- Fluorescence Spectroscopy Laboratory
- Department of Chemistry
- Shivaji University
- Kolhapur-416 004
- India
| | - Prasad G. Mahajan
- Fluorescence Spectroscopy Laboratory
- Department of Chemistry
- Shivaji University
- Kolhapur-416 004
- India
| | - Kalyanrao M. Garadkar
- Fluorescence Spectroscopy Laboratory
- Department of Chemistry
- Shivaji University
- Kolhapur-416 004
- India
| | - Govind B. Kolekar
- Fluorescence Spectroscopy Laboratory
- Department of Chemistry
- Shivaji University
- Kolhapur-416 004
- India
| | - Shivajirao R. Patil
- Fluorescence Spectroscopy Laboratory
- Department of Chemistry
- Shivaji University
- Kolhapur-416 004
- India
| |
Collapse
|
43
|
Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS. Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 2013; 65:1933-50. [PMID: 23906934 DOI: 10.1016/j.addr.2013.07.015] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/11/2023]
Abstract
Biosensors are important tools in biomedical research. Moreover, they are becoming an essential part of modern healthcare. In the future, biosensor development will become even more crucial due to the demand for personalized-medicine, point-of care devices and cheaper diagnostic tools. Substantial advances in sensor technology are often fueled by the advent of new materials. Therefore, nanomaterials have motivated a large body of research and such materials have been implemented into biosensor devices. Among these new materials carbon nanotubes (CNTs) are especially promising building blocks for biosensors due to their unique electronic and optical properties. Carbon nanotubes are rolled-up cylinders of carbon monolayers (graphene). They can be chemically modified in such a way that biologically relevant molecules can be detected with high sensitivity and selectivity. In this review article we will discuss how carbon nanotubes can be used to create biosensors. We review the latest advancements of optical carbon nanotube based biosensors with a special focus on near-infrared (NIR)-fluorescence, Raman-scattering and fluorescence quenching.
Collapse
Affiliation(s)
- Sebastian Kruss
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | | | | | | | | |
Collapse
|
44
|
CdTe nanobioprobe based optoelectrochemical immunodetection of diabetic marker HbA1c. Biosens Bioelectron 2013; 44:132-5. [DOI: 10.1016/j.bios.2013.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/21/2022]
|
45
|
He P, Oncescu V, Lee S, Choi I, Erickson D. Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors. Anal Chim Acta 2012; 759:74-80. [PMID: 23260679 DOI: 10.1016/j.aca.2012.10.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/17/2012] [Accepted: 10/20/2012] [Indexed: 11/24/2022]
Abstract
Vasopressin is an indicating biomarker for blood pressure in the human body and low vasopressin levels can be indicative of late-phase hemorrhagic shock or other traumatic injuries. In this paper we have developed an aptamer-based label-free microfluidic biosensor for the electrochemical detection of vasopressin. The detection area consists of aptamers immobilized on carbon nanotubes which specifically capture the vasopressin molecules in solution resulting in changes in conductivity across the sensor. We report a limit of detection of 43 pM in standard solutions and demonstrate high detection specificity toward vasopressin when different interferents are present. The miniaturized microfluidic biosensor offers continuous monitoring of different vasopressin levels with good potential for portability. Ultimately such a system could serve as a point-of-care diagnostics tool for patients with excessive bleeding when standard medical infrastructure is not available.
Collapse
Affiliation(s)
- Peng He
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, United States
| | | | | | | | | |
Collapse
|
46
|
Nangia Y, Kumar B, Kaushal J, Raman Suri C. Palladium@gold bimetallic nanostructures as peroxidase mimic for development of sensitive fluoroimmunoassay. Anal Chim Acta 2012; 751:140-5. [DOI: 10.1016/j.aca.2012.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/31/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
|
47
|
Liu G, Iyengar SG, Gooding JJ. An Electrochemical Impedance Immunosensor Based on Gold Nanoparticle-Modified Electrodes for the Detection of HbA1c in Human Blood. ELECTROANAL 2012. [DOI: 10.1002/elan.201200233] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Larguinho M, Baptista PV. Gold and silver nanoparticles for clinical diagnostics — From genomics to proteomics. J Proteomics 2012; 75:2811-23. [DOI: 10.1016/j.jprot.2011.11.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/30/2011] [Accepted: 11/06/2011] [Indexed: 12/11/2022]
|
49
|
Cui Y, Tang D, Liu B, Chen H, Zhang B, Chen G. Biofunctionalized dendritic polyaniline nanofibers for sensitive electrochemical immunoassay of biomarkers. Analyst 2012; 137:1656-62. [DOI: 10.1039/c2an15848e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Liu G, Khor SM, Iyengar SG, Gooding JJ. Development of an electrochemical immunosensor for the detection of HbA1c in serum. Analyst 2012; 137:829-32. [DOI: 10.1039/c2an16034j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|