1
|
Tor Y. Isomorphic Fluorescent Nucleosides. Acc Chem Res 2024; 57:1325-1335. [PMID: 38613490 PMCID: PMC11079976 DOI: 10.1021/acs.accounts.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
In 1960, Weber prophesied that "There are many ways in which the properties of the excited state can be utilized to study points of ignorance of the structure and function of proteins". This has been realized, illustrating that an intrinsic and highly responsive fluorophore such as tryptophan can alter the course of an entire scientific discipline. But what about RNA and DNA? Adapting Weber's protein photophysics prophecy to nucleic acids requires the development of intrinsically emissive nucleoside surrogates as, unlike Trp, the canonical nucleobases display unusually low emission quantum yields, which render nucleosides, nucleotides, and oligonucleotides practically dark for most fluorescence-based applications.Over the past decades, we have developed emissive nucleoside surrogates that facilitate the monitoring of nucleoside-, nucleotide-, and nucleic acid-based transformations at a nucleobase resolution in real time. The premise underlying our approach is the identification of minimal atomic/structural perturbations that endow the synthetic analogs with favorable photophysical features while maintaining native conformations and pairing. As illuminating probes, the photophysical parameters of such isomorphic nucleosides display sensitivity to microenvironmental factors. Responsive isomorphic analogs that function similarly to their native counterparts in biochemical contexts are defined as isofunctional.Early analogs included pyrimidines substituted with five-membered aromatic heterocycles at their 5 position and have been used to assess the polarity of the major groove in duplexes. Polarized quinazolines have proven useful in assembling FRET pairs with established fluorophores and have been used to study RNA-protein and RNA-small-molecule binding. Completing a fluorescent ribonucleoside alphabet, composed of visibly emissive purine (thA, thG) and pyrimidine (thU, thC) analogs, all derived from thieno[3,4-d]pyrimidine as the heterocyclic nucleus, was a major breakthrough. To further augment functionality, a second-generation emissive RNA alphabet based on an isothiazolo[4,3-d]pyrimidine core (thA, tzG, tzU, and tzC) was fabricated. This single-atom "mutagenesis" restored the basic/coordinating nitrogen corresponding to N7 in the purine skeleton and elevated biological recognition.The isomorphic emissive nucleosides and nucleotides, particularly the purine analogs, serve as substrates for diverse enzymes. Beyond polymerases, we have challenged the emissive analogs with metabolic and catabolic enzymes, opening optical windows into the biochemistry of nucleosides and nucleotides as metabolites as well as coenzymes and second messengers. Real-time fluorescence-based assays for adenosine deaminase, guanine deaminase, and cytidine deaminase have been fabricated and used for inhibitor discovery. Emissive cofactors (e.g., SthAM), coenzymes (e.g., NtzAD+), and second messengers (e.g., c-di-tzGMP) have been enzymatically synthesized, using xyNTPs and native enzymes. Both their biosynthesis and their transformations can be fluorescently monitored in real time.Highly isomorphic and isofunctional emissive surrogates can therefore be fabricated and judiciously implemented. Beyond their utility, side-by-side comparison to established analogs, particularly to 2-aminopurine, the workhorse of nucleic acid biophysics over 5 decades, has proven prudent as they refined the scope and limitations of both the new analogs and their predecessors. Challenges, however, remain. Associated with such small heterocycles are relatively short emission wavelengths and limited brightness. Recent advances in multiphoton spectroscopy and further structural modifications have shown promise for overcoming such barriers.
Collapse
Affiliation(s)
- Yitzhak Tor
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Sood A, Kesavan V. Synthesis and antibacterial activity of 2-benzylidene-3-oxobutanamide derivatives against resistant pathogens. RSC Med Chem 2023; 14:1817-1826. [PMID: 37731706 PMCID: PMC10507797 DOI: 10.1039/d3md00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/21/2023] [Indexed: 09/22/2023] Open
Abstract
Antibiotic resistance evolves naturally through random mutation. Resistance to antimicrobials is an urgent public health crisis that requires coordinated global action. The ESKAPE bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are primarily responsible for the rise in resistant pathogens. There is an immediate requirement to identify a novel molecular scaffold with potent anti-microbial properties. We developed an efficient one-step synthesis of 2-benzylidene-3-oxobutanamide and its derivatives, which allowed the introduction of an α,β-unsaturated ketone moiety in the quest to identify a new molecular scaffold. Seven compounds exhibited very good antibacterial activity in vitro against WHO priority drug-resistant bacteria such as methicillin resistant Staphyloccus aureus (MRSA) and Acinetobacter baumannii-Multi drug resistant (MDR-AB). In cultured human embryonic kidney cells and hemolysis assays, the potent compounds displayed minimal toxicity. These findings suggest that these small molecules with excellent diversity have the potential to combat antibacterial resistance.
Collapse
Affiliation(s)
- Ankur Sood
- Department of Biotechnology, Bhupat & Jyothi Mehta School of Biosciences Building, Indian Institute of Technology Madras Chennai-60036 India
| | - Venkitasamy Kesavan
- Department of Biotechnology, Bhupat & Jyothi Mehta School of Biosciences Building, Indian Institute of Technology Madras Chennai-60036 India
| |
Collapse
|
3
|
Pennetta C, Bono N, Ponti F, Bellucci MC, Viani F, Candiani G, Volonterio A. Multifunctional Neomycin-Triazine-Based Cationic Lipids for Gene Delivery with Antibacterial Properties. Bioconjug Chem 2021; 32:690-701. [PMID: 33470802 PMCID: PMC8154203 DOI: 10.1021/acs.bioconjchem.0c00616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Cationic
lipids (CLs) have gained significant attention among nonviral
gene delivery vectors due to their ease of synthesis and functionalization
with multivalent moieties. In particular, there is an increasing request
for multifunctional CLs having gene delivery capacity and antibacterial
activity. Herein, we describe the design and synthesis of a novel
class of aminoglycoside (AG)-based multifunctional vectors with high
transfection efficiency and noticeable antibacterial properties. Specifically,
cationic amphiphiles were built on a triazine scaffold, allowing for
an easy derivatization with up to three potentially different substituents,
such as neomycin (Neo) that serves as the polar head and one or two
lipophilic tails, namely stearyl (ST) and oleyl (OL) alkyl chains
and cholesteryl (Chol) tail. With the aim to shed more light on the
effect of different types and numbers of lipophilic moieties on the
ability of CLs to condense and transfect cells, the performance of
Neo–triazine-based derivatives as gene delivery vectors was
evaluated and compared. The ability of Neo–triazine-based derivatives
to act as antimicrobial agents was evaluated as well. Neo–triazine-based
CLs invariably exhibited excellent DNA condensation ability, even
at a low charge ratio (CR, +/−). Besides, each derivative showed
very good transfection performance at its optimal CR on two different
cell lines, along with negligible cytotoxicity. CLs bearing symmetric
two-tailed OL proved to be the most effective in transfection. Interestingly,
Neo–triazine-based derivatives, used as either free lipids
or lipoplexes, exhibited strong antibacterial activity against Gram-negative
bacteria, especially in the case of CLs bearing one or two aliphatic
chains. Altogether, these results highlight the potential of Neo–triazine-based
derivatives as effective multifunctional nonviral gene delivery vectors.
Collapse
Affiliation(s)
- Chiara Pennetta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, Milan 20131, Italy
| | - Nina Bono
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, Milan 20131, Italy
| | - Federica Ponti
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, Milan 20131, Italy.,Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, Quebec G1 V 0A6, Canada
| | - Maria Cristina Bellucci
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, Milan 20133, Italy
| | - Fiorenza Viani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), Via Mario Bianco 9, Milan 20131, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, Milan 20131, Italy
| | - Alessandro Volonterio
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, Milan 20131, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), Via Mario Bianco 9, Milan 20131, Italy
| |
Collapse
|
4
|
Abstract
A robust, fluorescence-based analysis and discovery platform is described for bacterial A-site binders. The assay relies on an incorporated isomorphic fluorescent uridine analog, which substitutes the A-site's U1406 and serves as a FRET donor to an A-site bound coumarin-labeled aminoglycoside that serves as the FRET acceptor. Binding efficiency of unlabeled A-site ligands can be determined by competition experiments, where the acceptor-labeled aminoglycoside is displaced. The replacement efficiency is gauged by the concentration-dependent loss of the sensitized FRET acceptor's signal with concomitant restoration of the donor's emission. Plotting the relative emission intensity of both the donor and acceptor as a function of ligand concentration followed by fitting of the data points to a dose-response curve yields IC50 values, one possible measure of the antibiotic potency of new A-site binders.
Collapse
Affiliation(s)
- Renatus W Sinkeldam
- Office of Technology Management, Washington University in St. Louis, St. Louis, MO, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Kong B, Joshi T, Belousoff MJ, Tor Y, Graham B, Spiccia L. Neomycin B-cyclen conjugates and their Zn(II) complexes as RNA-binding agents. J Inorg Biochem 2016; 162:334-342. [DOI: 10.1016/j.jinorgbio.2015.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
|
6
|
Green L, Goff SP. Translational readthrough-promoting drugs enhance pseudoknot-mediated suppression of the stop codon at the Moloney murine leukemia virus gag–pol junction. J Gen Virol 2016; 96:3411-3421. [PMID: 26382736 DOI: 10.1099/jgv.0.000284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Translational readthrough-promoting drugs enhance the incorporation of amino acids at stop codons and can thus bypass premature termination during protein synthesis. The polymerase (Pol) proteins of Moloney murine leukemia virus (MoMLV) are synthesized as a large Gag–Pol fusion protein, formed by the readthrough of a stop codon at the end of the gag ORF. The downstream pol ORF lacks its own start codon, and Pol protein synthesis is wholly dependent on translation of the upstream gag gene and the readthrough event for expression. Here, we explored the effects of readthrough-promoting drugs – aminoglycoside antibiotics and the small molecule ataluren – on the efficiency of readthrough of the stop codon in the context of the MoMLV genome. We showed that these compounds increased readthrough of the stop codon at the MoMLV gag–pol junction in vivo above the already high basal level and that the resulting elevated gag–pol readthrough had deleterious effects on virus replication. We also showed that readthrough efficiency could be driven to even higher levels in vitro, and that the combination of the small molecules and the RNA structure at the MoMLV stop codon could achieve extremely high readthrough efficiencies.
Collapse
Affiliation(s)
- Lisa Green
- Department of Biological Sciences, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.,Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome. Proc Natl Acad Sci U S A 2014; 111:16274-9. [PMID: 25368144 DOI: 10.1073/pnas.1414401111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Negamycin is a natural product with broad-spectrum antibacterial activity and efficacy in animal models of infection. Although its precise mechanism of action has yet to be delineated, negamycin inhibits cellular protein synthesis and causes cell death. Here, we show that single point mutations within 16S rRNA that confer resistance to negamycin are in close proximity of the tetracycline binding site within helix 34 of the small subunit head domain. As expected from its direct interaction with this region of the ribosome, negamycin was shown to displace tetracycline. However, in contrast to tetracycline-class antibiotics, which serve to prevent cognate tRNA from entering the translating ribosome, single-molecule fluorescence resonance energy transfer investigations revealed that negamycin specifically stabilizes near-cognate ternary complexes within the A site during the normally transient initial selection process to promote miscoding. The crystal structure of the 70S ribosome in complex with negamycin, determined at 3.1 Å resolution, sheds light on this finding by showing that negamycin occupies a site that partially overlaps that of tetracycline-class antibiotics. Collectively, these data suggest that the small subunit head domain contributes to the decoding mechanism and that small-molecule binding to this domain may either prevent or promote tRNA entry by altering the initial selection mechanism after codon recognition and before GTPase activation.
Collapse
|
8
|
Fair RJ, McCoy LS, Hensler ME, Aguilar B, Nizet V, Tor Y. Singly modified amikacin and tobramycin derivatives show increased rRNA A-site binding and higher potency against resistant bacteria. ChemMedChem 2014; 9:2164-71. [PMID: 25055981 DOI: 10.1002/cmdc.201402175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Indexed: 01/25/2023]
Abstract
Semisynthetic derivatives of the clinically useful aminoglycosides tobramycin and amikacin were prepared by selectively modifying their 6'' positions with a variety of hydrogen bond donors and acceptors. Their binding to the rRNA A-site was probed using an in vitro FRET-based assay, and their antibacterial activities against several resistant strains (e.g., Pseudomonas aeruginosa, Klebsiella pneumonia, MRSA) were quantified by determining minimum inhibitory concentrations (MICs). The most potent derivatives were evaluated for their eukaryotic cytotoxicity. Most analogues displayed higher affinity for the bacterial A-site than the parent compounds. Although most tobramycin analogues exhibited no improvement in antibacterial activity, several amikacin analogues showed potent and broad-spectrum antibacterial activity against resistant bacteria. Derivatives tested for eukaryotic cytotoxicity exhibited minimal toxicity, similar to the parent compounds.
Collapse
Affiliation(s)
- Richard J Fair
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | | | | | | | | | | |
Collapse
|
9
|
Sinkeldam RW, McCoy LS, Shin D, Tor Y. Enzymatic interconversion of isomorphic fluorescent nucleosides: adenosine deaminase transforms an adenosine analogue into an inosine analogue. Angew Chem Int Ed Engl 2013; 52:14026-30. [PMID: 24288262 PMCID: PMC3947497 DOI: 10.1002/anie.201307064] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/06/2013] [Indexed: 12/24/2022]
Abstract
Adenosine deaminase, a major enzyme involved in purine metabolism, converts an isomorphic fluorescent analogue of adenosine (thA) to an isomorphic inosine analogue (thI), which possesses distinct spectral features, allowing one to monitor the enzyme-catalyzed reaction and its inhibition in real time. The utility of this sensitive fluorescently-monitored transformation for the high throughput detection and analysis of ADA inhibitors is demonstrated.
Collapse
Affiliation(s)
| | | | | | - Yitzhak Tor
- Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| |
Collapse
|
10
|
Sinkeldam RW, McCoy LS, Shin D, Tor Y. Enzymatic Interconversion of Isomorphic Fluorescent Nucleosides: Adenosine Deaminase Transforms an Adenosine Analogue into an Inosine Analogue. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
McCoy LS, Roberts KD, Nation RL, Thompson PE, Velkov T, Li J, Tor Y. Polymyxins and analogues bind to ribosomal RNA and interfere with eukaryotic translation in vitro. Chembiochem 2013; 14:2083-6. [PMID: 24105917 DOI: 10.1002/cbic.201300496] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 12/20/2022]
Abstract
Looking for targets: while the bactericidal activity of polymyxins is attributed to changes in membrane permeation, we show that these antibiotics can bind prokaryotic and eukaryotic A-sites, domains responsible for translational decoding. Polymyxin B, colistin and analogues also hinder eukaryotic translation in vitro. These new targets and effects might be partially responsible for the plethora of adverse effects by these potent bactericidal agents.
Collapse
Affiliation(s)
- Lisa S McCoy
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA) http://torgroup.ucsd.edu/
| | | | | | | | | | | | | |
Collapse
|
12
|
Tanpure AA, Pawar MG, Srivatsan SG. Fluorescent Nucleoside Analogs: Probes for Investigating Nucleic Acid Structure and Function. Isr J Chem 2013. [DOI: 10.1002/ijch.201300010] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Blair LM, Sperry J. Natural products containing a nitrogen-nitrogen bond. JOURNAL OF NATURAL PRODUCTS 2013; 76:794-812. [PMID: 23577871 DOI: 10.1021/np400124n] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
As of early 2013, over 200 natural products are known to contain a nitrogen-nitrogen (N-N) bond. This report categorizes these compounds by structural class and details their isolation and biological activity.
Collapse
Affiliation(s)
- Lachlan M Blair
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | | |
Collapse
|
14
|
Frolov L, Dix A, Tor Y, Tesler AB, Chaikin Y, Vaskevich A, Rubinstein I. Direct observation of aminoglycoside-RNA binding by localized surface plasmon resonance spectroscopy. Anal Chem 2013; 85:2200-7. [PMID: 23368968 DOI: 10.1021/ac3029079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA is involved in fundamental biological functions when bacterial pathogens replicate. Identifying and studying small molecules that can interact with bacterial RNA and interrupt cellular activities is a promising path for drug design. Aminoglycoside (AMG) antibiotics, prominent natural products that recognize RNA specifically, exert their biological functions by binding to prokaryotic ribosomal RNA and interfering with protein translation, ultimately resulting in bacterial cell death. The decoding site, a small internal loop within the 16S rRNA, is the molecular target for the AMG antibiotics. The specificity of neomycin B, a highly potent AMG antibiotic, to the ribosomal decoding RNA site, was previously studied by observing AMG-RNA complexes in solution. Here, we study this interaction using localized surface plasmon resonance (LSPR) transducers comprising gold island films prepared by evaporation on glass and annealing. Small molecule AMG receptors were immobilized on the Au islands via polyethylene glycol (PEG)-thiol linkers, and the interaction with target RNA in solution was studied by monitoring the change in the LSPR optical response upon binding. The results show high-affinity binding of neomycin to 27-nucleotide model A-site RNA sequence in the nanomolar range, while no specific binding is observed for synthetic RNA oligomers (e.g., poly-U). The impact of specific base substitutions in the A-site RNA constructs on binding affinity and selectivity is determined quantitatively. It is concluded that LSPR is a powerful tool for providing molecular insight into small molecule-RNA interactions and for the design and screening of selective antimicrobial drugs.
Collapse
Affiliation(s)
- Ludmila Frolov
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Guo P, Xu X, Qiu X, Zhou Y, Yan S, Wang C, Lu C, Ma W, Weng X, Zhang X, Zhou X. Synthesis and spectroscopic properties of fluorescent 5-benzimidazolyl-2′-deoxyuridines 5-fdU probes obtained from o-phenylenediamine derivatives. Org Biomol Chem 2013; 11:1610-3. [DOI: 10.1039/c3ob27519a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Blakeley BD, DePorter SM, Mohan U, Burai R, Tolbert BS, McNaughton BR. Methods for identifying and characterizing interactions involving RNA. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Fair RJ, Hensler ME, Thienphrapa W, Dam QN, Nizet V, Tor Y. Selectively guanidinylated aminoglycosides as antibiotics. ChemMedChem 2012; 7:1237-44. [PMID: 22639134 PMCID: PMC3383777 DOI: 10.1002/cmdc.201200150] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Indexed: 11/07/2022]
Abstract
The emergence of virulent, drug-resistant bacterial strains coupled with a minimal output of new pharmaceutical agents to combat them makes this a critical time for antibacterial research. Aminoglycosides are a well-studied, highly potent class of naturally occurring antibiotics with scaffolds amenable to modification, and therefore, they provide an excellent starting point for the development of semisynthetic, next-generation compounds. To explore the potential of this approach, we synthesized a small library of aminoglycoside derivatives selectively and minimally modified at one or two positions with a guanidine group replacing the corresponding amine or hydroxy functionality. Most guanidino-aminoglycosides showed increased affinity for the ribosomal decoding rRNA site, the cognate biological target of the natural products, when compared with their parent antibiotics, as measured by an in vitro fluorescence resonance energy transfer (FRET) A-site binding assay. Additionally, certain analogues showed improved minimum inhibitory concentration (MIC) values against resistant bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA). An amikacin derivative holds particular promise with activity greater than or equal to the parent antibiotic in the majority of bacterial strains tested.
Collapse
Affiliation(s)
- Richard J. Fair
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Mary E. Hensler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Wdee Thienphrapa
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Quang N. Dam
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Yitzhak Tor
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| |
Collapse
|
18
|
Noé MS, Ríos AC, Tor Y. Design, synthesis, and spectroscopic properties of extended and fused pyrrolo-dC and pyrrolo-C analogs. Org Lett 2012; 14:3150-3. [PMID: 22646728 PMCID: PMC3426657 DOI: 10.1021/ol3012327] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The syntheses of four fluorescent nucleoside analogs, related to pyrrolo-C (PyC) and pyrrolo-dC (PydC) through the conjugation or fusion of a thiophene moiety, are described. A thorough photophysical analysis of the nucleosides, in comparison to PyC, is reported.
Collapse
Affiliation(s)
- Mary S Noé
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | | | |
Collapse
|
19
|
Abstract
A fluorescent ribonucleoside alphabet consisting of highly emissive purine ((th)A, (th)G) and pyrimidine ((th)U, (th)C) analogues, all derived from thieno[3,4-d]pyrimidine as the heterocyclic nucleus, is described. Structural and biophysical analyses demonstrated that the emissive analogues are faithful isomorphic nucleoside surrogates. Photophysical analysis established that the nucleosides offer highly desirable qualities, including visible emission, high quantum yield, and responsiveness to environmental perturbations, traits entirely lacking in their native counterparts.
Collapse
Affiliation(s)
- Dongwon Shin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | | | | |
Collapse
|
20
|
Shukla GC, Haque F, Tor Y, Wilhelmsson LM, Toulmé JJ, Isambert H, Guo P, Rossi JJ, Tenenbaum SA, Shapiro BA. A boost for the emerging field of RNA nanotechnology. ACS NANO 2011; 5:3405-18. [PMID: 21604810 PMCID: PMC3102291 DOI: 10.1021/nn200989r] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This Nano Focus article highlights recent advances in RNA nanotechnology as presented at the First International Conference of RNA Nanotechnology and Therapeutics, which took place in Cleveland, OH, USA (October 23-25, 2010) ( http://www.eng.uc.edu/nanomedicine/RNA2010/ ), chaired by Peixuan Guo and co-chaired by David Rueda and Scott Tenenbaum. The conference was the first of its kind to bring together more than 30 invited speakers in the frontier of RNA nanotechnology from France, Sweden, South Korea, China, and throughout the United States to discuss RNA nanotechnology and its applications. It provided a platform for researchers from academia, government, and the pharmaceutical industry to share existing knowledge, vision, technology, and challenges in the field and promoted collaborations among researchers interested in advancing this emerging scientific discipline. The meeting covered a range of topics, including biophysical and single-molecule approaches for characterization of RNA nanostructures; structure studies on RNA nanoparticles by chemical or biochemical approaches, computation, prediction, and modeling of RNA nanoparticle structures; methods for the assembly of RNA nanoparticles; chemistry for RNA synthesis, conjugation, and labeling; and application of RNA nanoparticles in therapeutics. A special invited talk on the well-established principles of DNA nanotechnology was arranged to provide models for RNA nanotechnology. An Administrator from National Institutes of Health (NIH) National Cancer Institute (NCI) Alliance for Nanotechnology in Cancer discussed the current nanocancer research directions and future funding opportunities at NCI. As indicated by the feedback received from the invited speakers and the meeting participants, this meeting was extremely successful, exciting, and informative, covering many groundbreaking findings, pioneering ideas, and novel discoveries.
Collapse
Affiliation(s)
- Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Farzin Haque
- Nanobiomedical Center, College of Engineering and Applied Science, and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Yitzhak Tor
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - L. Marcus Wilhelmsson
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Jean-Jacques Toulmé
- Université Bordeaux Segalen, INSERM U869, Bâtiment 3A 1er étage, 33076 Bordeaux Cedex, France
| | - Hervé Isambert
- Institut Curie, Research Division, CNRS UMR 168, 11 rue P. & M. Curie, 75005 Paris, France
| | - Peixuan Guo
- Nanobiomedical Center, College of Engineering and Applied Science, and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Scott A. Tenenbaum
- College of Nanoscale Science & Engineering, University at Albany-SUNY, Albany, New York 12203, United States
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| |
Collapse
|
21
|
Xie Y, Maxson T, Tor Y. Fluorescent ribonucleoside as a FRET acceptor for tryptophan in native proteins. J Am Chem Soc 2010; 132:11896-7. [PMID: 20690779 DOI: 10.1021/ja105244t] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new fluorescent ribonucleoside analogue, containing 5-aminoquinazoline-2,4(1H,3H)-dione, acts as a Forster resonance energy transfer acceptor for tryptophan (R(0) = 22 A) and displays visible emission (440 nm). As tryptophan is frequently found at or near the recognition domains of RNA binding proteins, this FRET pair facilitates the study of RNA binding to native proteins and peptides, which is demonstrated here for the HIV-1 Rev association with the Rev Response Element (RRE).
Collapse
Affiliation(s)
- Yun Xie
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
22
|
McCoy LS, Xie Y, Tor Y. Antibiotics that target protein synthesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:209-32. [DOI: 10.1002/wrna.60] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|