1
|
Liu M, Xie DD, Guo YX, Zhao RY, Liu FD, Zhang H, Gao F. TAR RNA selective targeting ruthenium(II) complexes as HIV-1 reverse transcriptase inhibitors: On exploring structure-activity relationships of multiple positions. J Inorg Biochem 2024; 259:112664. [PMID: 39018747 DOI: 10.1016/j.jinorgbio.2024.112664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
HIV-1 reverse transcriptase (RT) inhibitors play a crucial role in the treatment of HIV by preventing the activity of the enzyme responsible for the replication of the virus. The HIV-1 Tat protein binds to transactivation response (TAR) RNA and recruits host factors to stimulate HIV-1 transcription. We have created a small library consisting of 4 × 6 polypyridyl Ru(II) complexes that selectively bind to TAR RNA, with targeting groups specific to HIV-1 TAR RNA. The molecule design was conducted by introducing hydroxyl or methoxy groups into an established potent TAR binder. The potential TAR binding ability was analysis from nature charge population and electrostatic potential by quantum chemistry calculations. Key modifications were found to be R1 and R3 groups. The most potent and selective TAR RNA binder was a3 with R1 = OH, R2 = H and R3 = Me. Through molecular recognition of hydrogen bonds and electrostatic attraction, they were able to firmly and selectively bind HIV-1 TAR RNA. Furthermore, they efficiently obstructed the contact between TAR RNA and Tat protein, and inhibited the reverse transcription activity of HIV-1 RT. The polypyridyl Ru(II) complexes were chemical and photo-stable, and sensitive and selective spectroscopic responses to TAR RNA. They exhibited little toxicity towards normal cells. Hence, this study might offer significant drug design approaches for researching AIDS and other illnesses associated with RT, including HCV, EBOV, and SARS-CoV-2. Moreover, it could contribute to fundamental research on the interactions of inorganic transition metal complexes with biomolecules.
Collapse
Affiliation(s)
- Meng Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China
| | - Dan-Dan Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China
| | - Yuan-Xiao Guo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China
| | - Run-Yu Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China
| | - Fu-Dan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650050, PR China.
| |
Collapse
|
2
|
Antiviral Potential of Selected N-Methyl-N-phenyl Dithiocarbamate Complexes against Human Immunodeficiency Virus (HIV). MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Despite the use of highly active antiretroviral therapy approved by the United States Food and Drug Administration (FDA) for the treatment of human immunodeficiency virus (HIV) infection, HIV remains a public health concern due to the inability of the treatment to eradicate the virus. In this study, N-methyl-N-phenyl dithiocarbamate complexes of indium(III), bismuth(III), antimony(III), silver(I), and copper(II) were synthesized. The complexes were characterized by thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The N-methyl-N-phenyl dithiocarbamate complexes were then evaluated for their antiviral effects against HIV-1 subtypes A (Q168), B (QHO.168), and C (CAP210 and ZM53). The results showed that the copper(II)-bis (N-methyl-N-phenyl dithiocarbamate) complex had a neutralization efficiency of 94% for CAP210, 54% for ZM53, 45% for Q168, and 63% for QHO.168. The silver(I)-bis (N-methyl-N-phenyl dithiocarbamate) complex showed minimal neutralization efficiency against HIV, while indium(III) and antimony(III) N-methyl-N-phenyl dithiocarbamate complexes had no antiviral activity against HIV-1. The findings revealed that copper(II)-bis (N-methyl-N-phenyl dithiocarbamate), with further improvement, could be explored as an alternative entry inhibitor for HIV.
Collapse
|
3
|
Guo YX, Liu M, Zhou YQ, Bi XD, Gao F. Terpyridyl ruthenium complexes as visible spectral probe for poly(A) RNA and bifunctional TAR RNA binders and HIV-1 reverse transcriptase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Wang MF, Li Y, Bi XD, Guo YX, Liu M, Zhang H, Gao F. Polypyridyl ruthenium complexes as bifunctional TAR RNA binders and HIV-1 reverse transcriptase inhibitors. J Inorg Biochem 2022; 234:111880. [DOI: 10.1016/j.jinorgbio.2022.111880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 12/18/2022]
|
5
|
Yang R, Bi XD, Li Y, Liu M, Hu MQ, Zhao LM, Zhang H, Gao F. Scorpion-Shaped Zinc Porphyrins as Tetrafunctional TAR RNA Predators and HIV-1 Reverse Transcriptase Inhibitors. Inorg Chem 2022; 61:10774-10780. [PMID: 35796528 DOI: 10.1021/acs.inorgchem.2c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 reverse transcriptase (RT) inhibitors are fundamental to the discovery and development of anti-HIV drugs. Their main target is RT, and only a tiny number of them can bind to viral RNA. In this paper, five new Zn(II) porphyrin compounds were developed with different characters. ZnTPP4 has both the appearance and the functions of a scorpion with a rigid tail and stinger to selectively hunt HIV-1 TAR RNA based on the molecular recognition of hydrogen bonds, a fierce chelicera to bite RNA by metal coordination, mighty pedipalps to grasp the bound RNA by supramolecular inclusion, and a broad body maintaining the configuration of each functional area so that they can cooperate with each other and providing accommodation space for the bound RNA. This tetrafunctional Zn(II) porphyrin is relatively nontoxic to normal cells and can produce sensitive responses for RNA. Moreover, this work offers practical construction methodologies for medication of AIDS and other diseases closely related to RT like EBOV and SARS-CoV-2.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xu-Dan Bi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Meng Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Man-Qi Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Li-Min Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
6
|
Filho MS, Massi L, Millet A, Michel D, Moussa W, Ronco C, Benhida R. Energy-resolved mass spectrometry to investigate nucleobase triplexes – a study applied to triplex-forming artificial nucleobases. NEW J CHEM 2022. [DOI: 10.1039/d2nj00665k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper discloses the use of an energy-resolved mass spectrometric-based approach to assess the stabilities of base triplexes encompassing artificial nucleobases by using variable energy collision-induced dissociation.
Collapse
Affiliation(s)
- Mauro Safir Filho
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Lionel Massi
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Antoine Millet
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Dylan Michel
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Wafa Moussa
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Cyril Ronco
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
- Mohamed VI Polytechnic University, UM6P, 43150, Ben Guerir, Morocco
| |
Collapse
|
7
|
Touzeau J, Seydou M, Maurel F, Tallet L, Mutschler A, Lavalle P, Barbault F. Theoretical and Experimental Elucidation of the Adsorption Process of a Bioinspired Peptide on Mineral Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11374-11385. [PMID: 34516122 DOI: 10.1021/acs.langmuir.1c01994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inorganic materials used for biomedical applications such as implants generally induce the adsorption of proteins on their surface. To control this phenomenon, the bioinspired peptidomimetic polymer 1 (PMP1), which aims to reproduce the adhesion of mussel foot proteins, is commonly used to graft specific proteins on various surfaces and to regulate the interfacial mechanism. To date and despite its wide application, the elucidation at the atomic scale of the PMP1 mechanism of adsorption on surfaces is still unknown. The purpose of the present work was thus to unravel this process through experimental and computational investigations of adsorption of PMP1 on gold, TiO2, and SiO2 surfaces. A common mechanism of adsorption is identified for the adsorption of PMP1 which emphasizes the role of electrostatics to approach the peptide onto the surface followed by a full adhesion process where the entropic desolvation step plays a key role. Besides, according to the fact that mussel naturally controls the oxidation states of its proteins, further investigations were performed for two distinct redox states of PMP1, and we conclude that even if both states are able to allow interaction of PMP1 with the surfaces, the oxidation of PMP1 leads to a stronger interaction.
Collapse
Affiliation(s)
- J Touzeau
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - M Seydou
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - F Maurel
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - L Tallet
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, 11 rue Humann, 67000 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - A Mutschler
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, 11 rue Humann, 67000 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - P Lavalle
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, 11 rue Humann, 67000 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - F Barbault
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| |
Collapse
|
8
|
Kelly ML, Chu CC, Shi H, Ganser LR, Bogerd HP, Huynh K, Hou Y, Cullen BR, Al-Hashimi HM. Understanding the characteristics of nonspecific binding of drug-like compounds to canonical stem-loop RNAs and their implications for functional cellular assays. RNA (NEW YORK, N.Y.) 2021; 27:12-26. [PMID: 33028652 PMCID: PMC7749633 DOI: 10.1261/rna.076257.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/26/2020] [Indexed: 05/30/2023]
Abstract
Identifying small molecules that selectively bind an RNA target while discriminating against all other cellular RNAs is an important challenge in RNA-targeted drug discovery. Much effort has been directed toward identifying drug-like small molecules that minimize electrostatic and stacking interactions that lead to nonspecific binding of aminoglycosides and intercalators to many stem-loop RNAs. Many such compounds have been reported to bind RNAs and inhibit their cellular activities. However, target engagement and cellular selectivity assays are not routinely performed, and it is often unclear whether functional activity directly results from specific binding to the target RNA. Here, we examined the propensities of three drug-like compounds, previously shown to bind and inhibit the cellular activities of distinct stem-loop RNAs, to bind and inhibit the cellular activities of two unrelated HIV-1 stem-loop RNAs: the transactivation response element (TAR) and the rev response element stem IIB (RREIIB). All compounds bound TAR and RREIIB in vitro, and two inhibited TAR-dependent transactivation and RRE-dependent viral export in cell-based assays while also exhibiting off-target interactions consistent with nonspecific activity. A survey of X-ray and NMR structures of RNA-small molecule complexes revealed that aminoglycosides and drug-like molecules form hydrogen bonds with functional groups commonly accessible in canonical stem-loop RNA motifs, in contrast to ligands that specifically bind riboswitches. Our results demonstrate that drug-like molecules can nonspecifically bind stem-loop RNAs most likely through hydrogen bonding and electrostatic interactions and reinforce the importance of assaying for off-target interactions and RNA selectivity in vitro and in cells when assessing novel RNA-binders.
Collapse
Affiliation(s)
- Megan L Kelly
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chia-Chieh Chu
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Honglue Shi
- Department of Chemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Laura R Ganser
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Kelly Huynh
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yuze Hou
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Chemistry, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
9
|
Meyer SM, Williams CC, Akahori Y, Tanaka T, Aikawa H, Tong Y, Childs-Disney JL, Disney MD. Small molecule recognition of disease-relevant RNA structures. Chem Soc Rev 2020; 49:7167-7199. [PMID: 32975549 PMCID: PMC7717589 DOI: 10.1039/d0cs00560f] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeting RNAs with small molecules represents a new frontier in drug discovery and development. The rich structural diversity of folded RNAs offers a nearly unlimited reservoir of targets for small molecules to bind, similar to small molecule occupancy of protein binding pockets, thus creating the potential to modulate human biology. Although the bacterial ribosome has historically been the most well exploited RNA target, advances in RNA sequencing technologies and a growing understanding of RNA structure have led to an explosion of interest in the direct targeting of human pathological RNAs. This review highlights recent advances in this area, with a focus on the design of small molecule probes that selectively engage structures within disease-causing RNAs, with micromolar to nanomolar affinity. Additionally, we explore emerging RNA-target strategies, such as bleomycin A5 conjugates and ribonuclease targeting chimeras (RIBOTACs), that allow for the targeted degradation of RNAs with impressive potency and selectivity. The compounds discussed in this review have proven efficacious in human cell lines, patient-derived cells, and pre-clinical animal models, with one compound currently undergoing a Phase II clinical trial and another that recently garnerd FDA-approval, indicating a bright future for targeted small molecule therapeutics that affect RNA function.
Collapse
Affiliation(s)
- Samantha M Meyer
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Christopher C Williams
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Yoshihiro Akahori
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Toru Tanaka
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Haruo Aikawa
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Yuquan Tong
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
10
|
Han THL, Camadro JM, Barbault F, Santos R, El Hage Chahine JM, Ha-Duong NT. In Vitro interaction between yeast frataxin and superoxide dismutases: Influence of mitochondrial metals. Biochim Biophys Acta Gen Subj 2019; 1863:883-892. [PMID: 30797804 DOI: 10.1016/j.bbagen.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Friedreich's ataxia results from a decreased expression of the nuclear gene encoding the mitochondrial protein, frataxin. Frataxin participates in the biosynthesis of iron-sulfur clusters and heme cofactors, as well as in iron storage and protection against oxidative stress. How frataxin interacts with the antioxidant defence components is poorly understood. METHODS Therefore, we have investigated by kinetic, thermodynamic and modelling approaches the molecular interactions between yeast frataxin (Yfh1) and superoxide dismutases, Sod1 and Sod2, and the influence of Yfh1 on their enzymatic activities. RESULTS Yfh1 interacts with cytosolic Sod1 with a dissociation constant, Kd = 1.3 ± 0.3 μM, in two kinetic steps. The first step occurs in the 200 ms range and corresponds to the Yfh1-Sod1 interaction, whereas the second is slow and is assumed to be a change in the conformation of the protein-protein adduct. Furthermore, computational investigations confirm the stability of the Yfh1-Sod1 complex. Yfh1 forms two protein complexes with mitochondrial Sod2 with 1:1 and 2:1 Yfh1/Sod2 stoichiometry (Kd1 = 1.05 ± 0.05 and Kd2 = 6.6 ± 0.1 μM). Furthermore, Yfh1 increases the enzymatic activity of Sod1 while slightly affecting that of Sod2. Finally, the stabilities of the protein-protein adducts and the effect of Yfh1 on superoxide dismutase activities depend on the nature of the mitochondrial metal. CONCLUSIONS This work confirms the participation of Yfh1 in cellular defence against oxidative stress.
Collapse
Affiliation(s)
- Thi Hong Lien Han
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Jean-Michel Camadro
- Mitochondries, Métaux et Stress Oxydant, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Florent Barbault
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Renata Santos
- Mitochondries, Métaux et Stress Oxydant, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Jean-Michel El Hage Chahine
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Nguyet-Thanh Ha-Duong
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France.
| |
Collapse
|
11
|
Vo DD, Becquart C, Tran TPA, Di Giorgio A, Darfeuille F, Staedel C, Duca M. Building of neomycin-nucleobase-amino acid conjugates for the inhibition of oncogenic miRNAs biogenesis. Org Biomol Chem 2019; 16:6262-6274. [PMID: 30116813 DOI: 10.1039/c8ob01858h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicates that miRNAs are aberrantly expressed in a variety of human cancers, thus being oncogenic. The inhibition of oncogenic miRNAs (defined as the blocking of miRNAs' production or function) would find application in the therapy of different types of cancer in which these miRNAs are implicated. In this work, we describe the design and synthesis of new small-molecule RNA ligands with the aim of inhibiting Dicer-mediated processing of oncogenic miRNAs. One of the synthesized compound (4b) composed of the aminoglycoside neomycin conjugated to an artificial nucleobase and to amino acid histidine is able to selectively decrease miR-372 levels in gastric adenocarcinoma (AGS) cells and to restore the expression of the target LATS2 protein. This activity led to the inhibition of proliferation of these cells. The study of the interactions of 4b with pre-miR-372 allowed for the elucidation of the molecular mechanism of the conjugate, thus leading to new perspectives for the design of future inhibitors.
Collapse
Affiliation(s)
- Duc Duy Vo
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), Nice, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Simpson GL, Bertrand SM, Borthwick JA, Campobasso N, Chabanet J, Chen S, Coggins J, Cottom J, Christensen SB, Dawson HC, Evans HL, Hobbs AN, Hong X, Mangatt B, Munoz-Muriedas J, Oliff A, Qin D, Scott-Stevens P, Ward P, Washio Y, Yang J, Young RJ. Identification and Optimization of Novel Small c-Abl Kinase Activators Using Fragment and HTS Methodologies. J Med Chem 2019; 62:2154-2171. [PMID: 30689376 DOI: 10.1021/acs.jmedchem.8b01872] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abelson kinase (c-Abl) is a ubiquitously expressed, nonreceptor tyrosine kinase which plays a key role in cell differentiation and survival. It was hypothesized that transient activation of c-Abl kinase via displacement of the N-terminal autoinhibitory "myristoyl latch", may lead to an increased hematopoietic stem cell differentiation. This would increase the numbers of circulating neutrophils and so be an effective treatment for chemotherapy-induced neutropenia. This paper describes the discovery and optimization of a thiazole series of novel small molecule c-Abl activators, initially identified by a high throughput screening. Subsequently, a scaffold-hop, which exploited the improved physicochemical properties of a dihydropyrazole analogue, identified through fragment screening, delivered potent, soluble, cell-active c-Abl activators, which demonstrated the intracellular activation of c-Abl in vivo.
Collapse
Affiliation(s)
- Graham L Simpson
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Sophie M Bertrand
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Jennifer A Borthwick
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Nino Campobasso
- GlaxoSmithKline R&D , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Julien Chabanet
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | | | - Julia Coggins
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Josh Cottom
- GlaxoSmithKline R&D , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | | | - Helen C Dawson
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Helen L Evans
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Andrew N Hobbs
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Xuan Hong
- GlaxoSmithKline R&D , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Biju Mangatt
- GlaxoSmithKline R&D , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Jordi Munoz-Muriedas
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Allen Oliff
- GlaxoSmithKline R&D , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Donghui Qin
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Paul Scott-Stevens
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Paris Ward
- GlaxoSmithKline R&D , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Yoshiaki Washio
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Jingsong Yang
- GlaxoSmithKline R&D , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Robert J Young
- Medicines Research Centre , GlaxoSmithKline R&D , Gunnels Wood Road , Stevenage , Hertfordshire SG1 2NY , U.K
| |
Collapse
|
13
|
Joly JP, Gaysinski M, Zara L, Duca M, Benhida R. Functionalized C-nucleosides as remarkable RNA binders: targeting of prokaryotic ribosomal A-site RNA. Chem Commun (Camb) 2019; 55:10432-10435. [DOI: 10.1039/c9cc04915k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel C-nucleosides as selective binders of prokaryotic ribosomal A-site RNA and promising scaffolds for therapeutic RNA targeting.
Collapse
Affiliation(s)
- Jean-Patrick Joly
- Université Côte d’Azur
- CNRS
- Institute of Chemistry of Nice (ICN)
- Nice
- France
| | - Marc Gaysinski
- Université Côte d’Azur
- CNRS
- Institute of Chemistry of Nice (ICN)
- Nice
- France
| | - Lorena Zara
- Université Côte d’Azur
- CNRS
- Institute of Chemistry of Nice (ICN)
- Nice
- France
| | - Maria Duca
- Université Côte d’Azur
- CNRS
- Institute of Chemistry of Nice (ICN)
- Nice
- France
| | - Rachid Benhida
- Université Côte d’Azur
- CNRS
- Institute of Chemistry of Nice (ICN)
- Nice
- France
| |
Collapse
|
14
|
Ronco C, Millet A, Plaisant M, Abbe P, Hamouda-Tekaya N, Rocchi S, Benhida R. Structure activity relationship and optimization of N-(3-(2-aminothiazol-4-yl)aryl)benzenesulfonamides as anti-cancer compounds against sensitive and resistant cells. Bioorg Med Chem Lett 2017; 27:2192-2196. [PMID: 28372910 DOI: 10.1016/j.bmcl.2017.03.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
We recently described a new family of bioactive molecules with interesting anti-cancer activities: the N-(4-(3-aminophenyl)thiazol-2-yl)acetamides. The lead compound of the series (1) displays significant anti-proliferative and cytotoxic activities against a panel of cancer cell lines, either sensitive or resistant to standard treatments. This molecule also shows a good pharmacological profile and high in vivo potency towards mice xenografts, without signs of toxicity on the animals. In the present article, we disclose the structure-activity relationships of this lead compound, which have provided clear information about the replacement of the acetamide function and the substitution pattern of the benzenesulfonamide ring. An improved high-yielding synthetic procedure towards these compounds has also been developed. Our drug design resulted in potency enhancement of 1, our new optimized lead compound being 19. These findings are of great interest to further improve this scaffold for the development of future clinical candidates.
Collapse
Affiliation(s)
- Cyril Ronco
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
| | - Antoine Millet
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
| | - Magali Plaisant
- Université Côte d'Azur, INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des cellules mélanocytaires: de la pigmentation cutanée au mélanome, 151 Route de Saint-Antoine, 06200 Nice, France
| | - Patricia Abbe
- Université Côte d'Azur, INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des cellules mélanocytaires: de la pigmentation cutanée au mélanome, 151 Route de Saint-Antoine, 06200 Nice, France
| | - Nedra Hamouda-Tekaya
- Université Côte d'Azur, INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des cellules mélanocytaires: de la pigmentation cutanée au mélanome, 151 Route de Saint-Antoine, 06200 Nice, France
| | - Stéphane Rocchi
- Université Côte d'Azur, INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des cellules mélanocytaires: de la pigmentation cutanée au mélanome, 151 Route de Saint-Antoine, 06200 Nice, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France.
| |
Collapse
|
15
|
Affiliation(s)
- Amanda L. Garner
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan USA
| |
Collapse
|
16
|
Ruan M, Seydou M, Noel V, Piro B, Maurel F, Barbault F. Molecular Dynamics Simulation of a RNA Aptasensor. J Phys Chem B 2017; 121:4071-4080. [PMID: 28363022 DOI: 10.1021/acs.jpcb.6b12544] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-stranded RNA aptamers have emerged as novel biosensor tools. However, the immobilization procedure of the aptamer onto a surface generally induces a loss of affinity. To understand this molecular process, we conducted a complete simulation study for the Flavin mononucleotide aptamer for which experimental data are available. Several molecular dynamics simulations (MD) of the Flavin in complex with its RNA aptamer were conducted in solution, linked with six thymidines (T6) and, finally, immobilized on an hexanol-thiol-functionalized gold surface. First, we demonstrated that our MD computations were able to reproduce the experimental solution structure and to provide a meaningful estimation of the Flavin free energy of binding. We also demonstrated that the T6 linkage, by itself, does not generate a perturbation of the Flavin recognition process. From the simulation of the complete biosensor system, we observed that the aptamer stays oriented parallel to the surface at a distance around 36 Å avoiding, this way, interaction with the surface. We evidenced a structural reorganization of the Flavin aptamer binding mode related to the loss of affinity and induced by an anisotropic distribution of sodium cationic densities. This means that ionic diffusion is different between the surface and the aptamer than above this last one. We suggest that these findings might be extrapolated to other nucleic acids systems for the future design of biosensors with higher efficiency and selectivity.
Collapse
Affiliation(s)
- Min Ruan
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France.,School of Materials and Metallurgy, Hubei Polytechnic University , Huangshi, Hubei, China
| | - Mahamadou Seydou
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - Vincent Noel
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - Benoit Piro
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - François Maurel
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - Florent Barbault
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| |
Collapse
|
17
|
Safir Filho M, Martin AR, Benhida R. Assessment of new triplet forming artificial nucleobases as RNA ligands directed towards HCV IRES IIId loop. Bioorg Med Chem Lett 2017; 27:1780-1783. [PMID: 28274634 DOI: 10.1016/j.bmcl.2017.02.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/23/2022]
Abstract
We report the synthesis of two new artificial nucleobase scaffolds, 1 and 2, featuring adequate hydrogen bonding donors and acceptors for the molecular recognition of U:A and C:G base pairs, respectively. The tethering of these structures to various amino acids and the assessment of these artificial nucleobase-amino acid conjugates as RNA ligands against a model of HCV IRES IIId domain are also reported. Compound 1e displayed the highest affinity (Kd twice lower than neomycin - control). Moreover, it appears that this interaction is enthalpically and entropically favored.
Collapse
Affiliation(s)
- Mauro Safir Filho
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France; CAPES Foundation, Ministry of Education of Brazil, Brasília DF 70040-020, Brazil
| | - Anthony R Martin
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France.
| |
Collapse
|
18
|
Qi L, Zhang J, He T, Huo Y, Zhang ZQ. Probing interaction of a fluorescent ligand with HIV TAR RNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:93-98. [PMID: 27611591 DOI: 10.1016/j.saa.2016.08.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/15/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Trans-activator of Transcription (Tat) antagonists could block the interaction between Tat protein and its target, trans-activation responsive region (TAR) RNA, to inhibit Tat function and prevent human immunodeficiency virus type 1 (HIV-1) replication. For the first time, a small fluorescence ligand, ICR 191, was found to interact with TAR RNA at the Tat binding site and compete with Tat. It was also observed that the fluorescence of ICR 191 could be quenched when binding to TAR RNA and recovered when discharged via competition with Tat peptide or a well-known Tat inhibitor, neomycin B. The binding parameters of ICR 191 to TAR RNA were determined through theoretical calculations. Mass spectrometry, circular dichroism and molecular docking were used to further confirm the interaction of ICR 191 with TAR RNA. Inspired by these discoveries, a primary fluorescence model for the discovery of Tat antagonists was built using ICR 191 as a fluorescence indicator and the feasibility of this model was evaluated. This ligand-RNA interaction could provide a new strategy for research aimed at discovering Tat antagonists.
Collapse
MESH Headings
- Aminacrine/analogs & derivatives
- Aminacrine/chemistry
- Aminacrine/metabolism
- Aminacrine/pharmacology
- Binding, Competitive
- Circular Dichroism
- Drug Evaluation, Preclinical/methods
- Fluorescent Dyes/chemistry
- Fluorescent Dyes/metabolism
- Framycetin/chemistry
- Framycetin/metabolism
- HIV Long Terminal Repeat
- Models, Molecular
- Molecular Docking Simulation
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Spectrometry, Fluorescence
- Spectrometry, Mass, Electrospray Ionization
- tat Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors
- tat Gene Products, Human Immunodeficiency Virus/chemistry
- tat Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Liang Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Tian He
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yuan Huo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, China.
| |
Collapse
|
19
|
Millet A, Plaisant M, Ronco C, Cerezo M, Abbe P, Jaune E, Cavazza E, Rocchi S, Benhida R. Discovery and Optimization of N-(4-(3-Aminophenyl)thiazol-2-yl)acetamide as a Novel Scaffold Active against Sensitive and Resistant Cancer Cells. J Med Chem 2016; 59:8276-92. [PMID: 27575313 DOI: 10.1021/acs.jmedchem.6b00547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer is the second cause of deaths worldwide and is forecasted to affect more that 22 million people in 2020. Despite dramatic improvement in its care over the last two decades, the treatment of resistant forms of cancer is still an unmet challenge. Thus, innovative and efficient treatments are still needed. In this context, we report herein the synthesis and the evaluation of a new class of bioactive molecules belonging to the N-(4-(3-aminophenyl(thiazol-2-yl)acetamide family. Structure-activity relationships could be driven and resulted in the discovery of lead compound 6b. The latter display high in vitro potency against both sensitive and resistant cancer cell lines on three models: melanoma, pancreatic cancer, and chronic myeloid leukemia (CML). 6b leads to cell death by concomitant induction of apoptosis and autophagy, shows good pharmacokinetic properties, and demonstrates a significant reduction of tumor growth in vivo on A375 xenograft model in mice.
Collapse
Affiliation(s)
- Antoine Millet
- Institut de Chimie de Nice, Université Nice Sophia Antipoils, UMR UNS-CNRS 7272 , 06108 Nice Cedex 2, France
| | - Magali Plaisant
- Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des Cellules Mélanocytaires: De La Pigmentation Cutanée au Mélanome, INSERM, U1065 , Parc Valrose, 06108 Nice Cedex 2, France.,UFR de Médecine, Université de Nice Sophia Antipolis , 06107 Nice, France
| | - Cyril Ronco
- Institut de Chimie de Nice, Université Nice Sophia Antipoils, UMR UNS-CNRS 7272 , 06108 Nice Cedex 2, France
| | - Michaël Cerezo
- Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des Cellules Mélanocytaires: De La Pigmentation Cutanée au Mélanome, INSERM, U1065 , Parc Valrose, 06108 Nice Cedex 2, France.,UFR de Médecine, Université de Nice Sophia Antipolis , 06107 Nice, France
| | - Patricia Abbe
- Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des Cellules Mélanocytaires: De La Pigmentation Cutanée au Mélanome, INSERM, U1065 , Parc Valrose, 06108 Nice Cedex 2, France.,UFR de Médecine, Université de Nice Sophia Antipolis , 06107 Nice, France
| | - Emilie Jaune
- Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des Cellules Mélanocytaires: De La Pigmentation Cutanée au Mélanome, INSERM, U1065 , Parc Valrose, 06108 Nice Cedex 2, France.,UFR de Médecine, Université de Nice Sophia Antipolis , 06107 Nice, France
| | - Elisa Cavazza
- Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des Cellules Mélanocytaires: De La Pigmentation Cutanée au Mélanome, INSERM, U1065 , Parc Valrose, 06108 Nice Cedex 2, France.,UFR de Médecine, Université de Nice Sophia Antipolis , 06107 Nice, France
| | - Stéphane Rocchi
- Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des Cellules Mélanocytaires: De La Pigmentation Cutanée au Mélanome, INSERM, U1065 , Parc Valrose, 06108 Nice Cedex 2, France.,UFR de Médecine, Université de Nice Sophia Antipolis , 06107 Nice, France.,Service de Dermatologie, Hôpital Archet II, CHU , 06200 Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice, Université Nice Sophia Antipoils, UMR UNS-CNRS 7272 , 06108 Nice Cedex 2, France
| |
Collapse
|
20
|
Hermann T. Small molecules targeting viral RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:726-743. [PMID: 27307213 PMCID: PMC7169885 DOI: 10.1002/wrna.1373] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
Highly conserved noncoding RNA (ncRNA) elements in viral genomes and transcripts offer new opportunities to expand the repertoire of drug targets for the development of antiinfective therapy. Ligands binding to ncRNA architectures are able to affect interactions, structural stability or conformational changes and thereby block processes essential for viral replication. Proof of concept for targeting functional RNA by small molecule inhibitors has been demonstrated for multiple viruses with RNA genomes. Strategies to identify antiviral compounds as inhibitors of ncRNA are increasingly emphasizing consideration of drug‐like properties of candidate molecules emerging from screening and ligand design. Recent efforts of antiviral lead discovery for RNA targets have provided drug‐like small molecules that inhibit viral replication and include inhibitors of human immunodeficiency virus (HIV), hepatitis C virus (HCV), severe respiratory syndrome coronavirus (SARS CoV), and influenza A virus. While target selectivity remains a challenge for the discovery of useful RNA‐binding compounds, a better understanding is emerging of properties that define RNA targets amenable for inhibition by small molecule ligands. Insight from successful approaches of targeting viral ncRNA in HIV, HCV, SARS CoV, and influenza A will provide a basis for the future exploration of RNA targets for therapeutic intervention in other viral pathogens which create urgent, unmet medical needs. Viruses for which targeting ncRNA components in the genome or transcripts may be promising include insect‐borne flaviviruses (Dengue, Zika, and West Nile) and filoviruses (Ebola and Marburg). WIREs RNA 2016, 7:726–743. doi: 10.1002/wrna.1373 This article is categorized under:
RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Small Molecule–RNA Interactions Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs
Collapse
Affiliation(s)
- Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA. .,Center for Drug Discovery Innovation, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Tran TPA, Vo DD, Di Giorgio A, Duca M. Ribosome-targeting antibiotics as inhibitors of oncogenic microRNAs biogenesis: Old scaffolds for new perspectives in RNA targeting. Bioorg Med Chem 2015; 23:5334-44. [PMID: 26264847 DOI: 10.1016/j.bmc.2015.07.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression at the post-transcriptional level. It is now well established that the overexpression of some miRNAs (oncogenic miRNAs) is responsible for initiation and progression of human cancers and the discovery of new molecules able to interfere with their production and/or function represents one of the most important challenges of current medicinal chemistry of RNA ligands. In this work, we studied the ability of 18 different antibiotics, known as prokaryotic ribosomal RNA, to bind to oncogenic miRNA precursors (stem-loop structured pre-miRNAs) in order to inhibit miRNAs production. In vitro inhibition, binding constants, thermodynamic parameters and binding sites were investigated and highlighted that aminoglycosides and tetracyclines represent interesting pre-miRNA ligands with the ability to inhibit Dicer processing.
Collapse
Affiliation(s)
- Thi Phuong Anh Tran
- Institute of Chemistry of Nice, UMR7272 CNRS-University Nice Sophia Antipolis, Parc Valrose, 06100 Nice, France
| | - Duc Duy Vo
- Institute of Chemistry of Nice, UMR7272 CNRS-University Nice Sophia Antipolis, Parc Valrose, 06100 Nice, France
| | - Audrey Di Giorgio
- Institute of Chemistry of Nice, UMR7272 CNRS-University Nice Sophia Antipolis, Parc Valrose, 06100 Nice, France
| | - Maria Duca
- Institute of Chemistry of Nice, UMR7272 CNRS-University Nice Sophia Antipolis, Parc Valrose, 06100 Nice, France.
| |
Collapse
|
22
|
Paolantoni D, Cantel S, Dumy P, Ulrich S. A dynamic combinatorial approach for identifying side groups that stabilize DNA-templated supramolecular self-assemblies. Int J Mol Sci 2015; 16:3609-25. [PMID: 25667976 PMCID: PMC4346916 DOI: 10.3390/ijms16023609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 12/16/2022] Open
Abstract
DNA-templated self-assembly is an emerging strategy for generating functional supramolecular systems, which requires the identification of potent multi-point binding ligands. In this line, we recently showed that bis-functionalized guanidinium compounds can interact with ssDNA and generate a supramolecular complex through the recognition of the phosphodiester backbone of DNA. In order to probe the importance of secondary interactions and to identify side groups that stabilize these DNA-templated self-assemblies, we report herein the implementation of a dynamic combinatorial approach. We used an in situ fragment assembly process based on reductive amination and tested various side groups, including amino acids. The results reveal that aromatic and cationic side groups participate in secondary supramolecular interactions that stabilize the complexes formed with ssDNA.
Collapse
Affiliation(s)
- Delphine Paolantoni
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier, ENSCM, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, Montpellier Cedex 5 34296, France.
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier, ENSCM, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, Montpellier Cedex 5 34296, France.
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier, ENSCM, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, Montpellier Cedex 5 34296, France.
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier, ENSCM, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, Montpellier Cedex 5 34296, France.
| |
Collapse
|
23
|
Marzag H, Robert G, Dufies M, Bougrin K, Auberger P, Benhida R. FeCl3-promoted and ultrasound-assisted synthesis of resveratrol O-derived glycoside analogs. ULTRASONICS SONOCHEMISTRY 2015; 22:15-21. [PMID: 24961448 DOI: 10.1016/j.ultsonch.2014.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
Phenol derived O-glycosides were synthesized using a direct and convenient O-glycosidation, starting from acetylated sugars in the presence of FeCl3, an inexpensive, mild and benign Lewis acid catalyst. The reactions were carried out under both conventional and ultrasonic irradiation conditions. In general, improvement in rates and yields were observed when reactions were carried out under sonication compared with conventional conditions leading to the corresponding β-O-glycosides as the major anomer. Post-synthetic transformations of iodophenol intermediates led to new resveratrol O-glycoside analogs in good overall yields.
Collapse
Affiliation(s)
- Hamid Marzag
- Institut de Chimie de Nice UMR CNRS 7272, Université Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France; Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Université Mohammed V-Agdal, Faculté des Sciences, B.P. 1014 Rabat, Morocco
| | - Guillaume Robert
- Centre Méditérranéen de Médecine Moléculaire UMR INSERM U1065, Equipe 2 Cell Death Differentiation and Cancer, Equipe Labellisée par la Ligue Nationale contre le Cancer, Université de Nice-Sophia Antipolis, C3M - Bâtiment ARCHIMED 151 route Saint Antoine de Ginestière, 06204 Nice, France
| | - Maeva Dufies
- Centre Méditérranéen de Médecine Moléculaire UMR INSERM U1065, Equipe 2 Cell Death Differentiation and Cancer, Equipe Labellisée par la Ligue Nationale contre le Cancer, Université de Nice-Sophia Antipolis, C3M - Bâtiment ARCHIMED 151 route Saint Antoine de Ginestière, 06204 Nice, France
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Université Mohammed V-Agdal, Faculté des Sciences, B.P. 1014 Rabat, Morocco
| | - Patrick Auberger
- Centre Méditérranéen de Médecine Moléculaire UMR INSERM U1065, Equipe 2 Cell Death Differentiation and Cancer, Equipe Labellisée par la Ligue Nationale contre le Cancer, Université de Nice-Sophia Antipolis, C3M - Bâtiment ARCHIMED 151 route Saint Antoine de Ginestière, 06204 Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice UMR CNRS 7272, Université Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France.
| |
Collapse
|
24
|
Marzag H, Alaoui S, Amdouni H, Martin AR, Bougrin K, Benhida R. Efficient and selective azidation of per-O-acetylated sugars using ultrasound activation: application to the one-pot synthesis of 1,2,3-triazole glycosides. NEW J CHEM 2015. [DOI: 10.1039/c5nj00624d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new protocol was developed for the selective transformation of acetyl-sugars to triazolyl nucleosides using in situ generated SO2(N3)2, iron/copper cocatalysis and ultrasound activation.
Collapse
Affiliation(s)
- Hamid Marzag
- Institut de Chimie de Nice UMR UNS-CNRS 7272
- Université Nice Sophia Antipolis
- 06108 Nice Cedex 2
- France
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique
| | - Soukaina Alaoui
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique
- URAC23
- Université Mohammed V
- Faculté des Sciences
- B.P. 1014 Rabat
| | - Hella Amdouni
- Institut de Chimie de Nice UMR UNS-CNRS 7272
- Université Nice Sophia Antipolis
- 06108 Nice Cedex 2
- France
| | - Anthony R. Martin
- Institut de Chimie de Nice UMR UNS-CNRS 7272
- Université Nice Sophia Antipolis
- 06108 Nice Cedex 2
- France
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique
- URAC23
- Université Mohammed V
- Faculté des Sciences
- B.P. 1014 Rabat
| | - Rachid Benhida
- Institut de Chimie de Nice UMR UNS-CNRS 7272
- Université Nice Sophia Antipolis
- 06108 Nice Cedex 2
- France
| |
Collapse
|
25
|
Blond A, Ennifar E, Tisné C, Micouin L. The design of RNA binders: targeting the HIV replication cycle as a case study. ChemMedChem 2014; 9:1982-96. [PMID: 25100137 DOI: 10.1002/cmdc.201402259] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Indexed: 01/08/2023]
Abstract
The human immunodeficiency virus 1 (HIV-1) replication cycle is finely tuned with many important steps involving RNA-RNA or protein-RNA interactions, all of them being potential targets for the development of new antiviral compounds. This cycle can also be considered as a good benchmark for the evaluation of early-stage strategies aiming at designing drugs that bind to RNA, with the possibility to correlate in vitro activities with antiviral properties. In this review, we highlight different approaches developed to interfere with four important steps of the HIV-1 replication cycle: the early stage of reverse transcription, the transactivation of viral transcription, the nuclear export of partially spliced transcripts and the dimerization step.
Collapse
Affiliation(s)
- Aurélie Blond
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 Rue des Saints Pères, 75006 Paris (France)
| | | | | | | |
Collapse
|
26
|
Vo DD, Staedel C, Zehnacker L, Benhida R, Darfeuille F, Duca M. Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules. ACS Chem Biol 2014; 9:711-21. [PMID: 24359019 DOI: 10.1021/cb400668h] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicates that miRNAs are aberrantly expressed in a variety of human cancers and revealed to be oncogenic and to play a pivotal role in initiation and progression of these pathologies. It is now clear that the inhibition of oncogenic miRNAs, defined as blocking their biosynthesis or their function, could find an application in the therapy of different types of cancer in which these miRNAs are implicated. Here we report the design, synthesis, and biological evaluation of new small-molecule RNA ligands targeting the production of oncogenic microRNAs. In this work we focused our attention on miR-372 and miR-373 that are implicated in the tumorigenesis of different types of cancer such as gastric cancer. These two oncogenic miRNAs are overexpressed in gastric cancer cells starting from their precursors pre-miR-372 and pre-miR-373, two stem-loop structured RNAs that lead to mature miRNAs after cleavage by the enzyme Dicer. The small molecules described herein consist of the conjugation of two RNA binding motives, i.e., the aminoglycoside neomycin and different natural and artificial nucleobases, in order to obtain RNA ligands with increased affinity and selectivity compared to that of parent compounds. After the synthesis of this new series of RNA ligands, we demonstrated that they are able to inhibit the production of the oncogenic miRNA-372 and -373 by binding their pre-miRNAs and inhibiting the processing by Dicer. Moreover, we proved that some of these compounds bear anti-proliferative activity toward gastric cancer cells and that this activity is likely linked to a decrease in the production of targeted miRNAs. To date, only few examples of small molecules targeting oncogenic miRNAs have been reported, and such inhibitors could be extremely useful for the development of new anticancer therapeutic strategies as well as useful biochemical tools for the study of miRNAs' pathways and mechanisms. Furthermore, this is the first time that a design based on current knowledge about RNA targeting is proposed in order to target miRNAs' production with small molecules.
Collapse
Affiliation(s)
- Duc Duy Vo
- Institut de Chimie
de Nice UMR7272 CNRS, University of Nice, Parc Valrose, 06100 Nice, France
| | - Cathy Staedel
- ARNA
Laboratory, INSERM U869, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Laura Zehnacker
- Institut de Chimie
de Nice UMR7272 CNRS, University of Nice, Parc Valrose, 06100 Nice, France
| | - Rachid Benhida
- Institut de Chimie
de Nice UMR7272 CNRS, University of Nice, Parc Valrose, 06100 Nice, France
| | - Fabien Darfeuille
- ARNA
Laboratory, INSERM U869, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Maria Duca
- Institut de Chimie
de Nice UMR7272 CNRS, University of Nice, Parc Valrose, 06100 Nice, France
| |
Collapse
|
27
|
Joly JP, Mata G, Eldin P, Briant L, Fontaine-Vive F, Duca M, Benhida R. Artificial Nucleobase-Amino Acid Conjugates: A New Class of TAR RNA Binding Agents. Chemistry 2014; 20:2071-9. [DOI: 10.1002/chem.201303664] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Indexed: 12/23/2022]
|
28
|
Borzęcka W, Lavandera I, Gotor V. Synthesis of Enantiopure Fluorohydrins Using Alcohol Dehydrogenases at High Substrate Concentrations. J Org Chem 2013; 78:7312-7. [DOI: 10.1021/jo400962c] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wioleta Borzęcka
- Departamento de Química Orgánica e Inorgánica, University of Oviedo, C/Julián Clavería
8, 33006 Oviedo, Spain
| | - Iván Lavandera
- Departamento de Química Orgánica e Inorgánica, University of Oviedo, C/Julián Clavería
8, 33006 Oviedo, Spain
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica, University of Oviedo, C/Julián Clavería
8, 33006 Oviedo, Spain
| |
Collapse
|
29
|
Driowya M, Puissant A, Robert G, Auberger P, Benhida R, Bougrin K. Ultrasound-assisted one-pot synthesis of anti-CML nucleosides featuring 1,2,3-triazole nucleobase under iron-copper catalysis. ULTRASONICS SONOCHEMISTRY 2012; 19:1132-1138. [PMID: 22595539 DOI: 10.1016/j.ultsonch.2012.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/29/2012] [Accepted: 04/08/2012] [Indexed: 05/31/2023]
Abstract
A simple and efficient synthesis of modified 1,2,3-triazole nucleosides was developed. The strategy involved sequential one-pot acetylation-azidation-cycloaddition procedure and was found to be highly effective under a cooperative effect of ultrasound activation and iron/copper catalysis. The reactions were carried out under both conventional and ultrasonic irradiation conditions. In general, improvement in rates and yields were observed when reactions were carried out under sonication compared with conventional conditions. This one-pot procedure provides several advantages such as operational simplicity, high yield, safety and environment friendly protocol. The resulting substituted nucleosides were evaluated for their anticancer activity against K562 chronic myelogenous leukemia (CML) cell line.
Collapse
Affiliation(s)
- Mohsine Driowya
- Institut de Chimie de Nice UMR CNRS 7272, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
30
|
Moumné R, Catala M, Larue V, Micouin L, Tisné C. Fragment-based design of small RNA binders: Promising developments and contribution of NMR. Biochimie 2012; 94:1607-19. [DOI: 10.1016/j.biochi.2012.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/01/2012] [Indexed: 02/06/2023]
|
31
|
Zhao W, Wang WG, Li XN, Du X, Zhan R, Zou J, Li Y, Zhang HB, He F, Pu JX, Sun HD. Neoadenoloside A, a highly functionalized diterpene C-glycoside, from Isodon adenolomus. Chem Commun (Camb) 2012; 48:7723-5. [DOI: 10.1039/c2cc33656a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Lu K, Heng X, Summers MF. Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol 2011; 410:609-33. [PMID: 21762803 DOI: 10.1016/j.jmb.2011.04.029] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 11/30/2022]
Abstract
Like all retroviruses, the human immunodeficiency virus selectively packages two copies of its unspliced RNA genome, both of which are utilized for strand-transfer-mediated recombination during reverse transcription-a process that enables rapid evolution under environmental and chemotherapeutic pressures. The viral RNA appears to be selected for packaging as a dimer, and there is evidence that dimerization and packaging are mechanistically coupled. Both processes are mediated by interactions between the nucleocapsid domains of a small number of assembling viral Gag polyproteins and RNA elements within the 5'-untranslated region of the genome. A number of secondary structures have been predicted for regions of the genome that are responsible for packaging, and high-resolution structures have been determined for a few small RNA fragments and protein-RNA complexes. However, major questions regarding the RNA structures (and potentially the structural changes) that are responsible for dimeric genome selection remain unanswered. Here, we review efforts that have been made to identify the molecular determinants and mechanism of human immunodeficiency virus type 1 genome packaging.
Collapse
Affiliation(s)
- Kun Lu
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
33
|
Maciagiewicz I, Zhou S, Bergmeier SC, Hines JV. Structure-activity studies of RNA-binding oxazolidinone derivatives. Bioorg Med Chem Lett 2011; 21:4524-7. [PMID: 21733684 DOI: 10.1016/j.bmcl.2011.05.130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
The structure-activity relationship of a series of oxazolidinones binding to T-box riboswitch antiterminator RNA has been investigated. Oxazolidinones differentially substituted at C-5 were prepared and the ligand-induced fluorescence resonance energy transfer (FRET) changes in FRET-labeled antiterminator model RNA were assayed. Both qualitative and quantitative analysis of the structure-activity relationship indicate that hydrogen bonding and hydrophobic properties play a significant role in ligand binding.
Collapse
Affiliation(s)
- Iwona Maciagiewicz
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | |
Collapse
|