1
|
Tabatabai TS, Salehi M, Rezakhani L, Arabpour Z, Djalilian AR, Alizadeh M. Decellularization of various tissues and organs through chemical methods. Tissue Cell 2024; 91:102573. [PMID: 39393204 DOI: 10.1016/j.tice.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
Collapse
Affiliation(s)
- Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Mukherjee S, Poudyal M, Dave K, Kadu P, Maji SK. Protein misfolding and amyloid nucleation through liquid-liquid phase separation. Chem Soc Rev 2024; 53:4976-5013. [PMID: 38597222 DOI: 10.1039/d3cs01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Kritika Dave
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Singh A, Ansari VA, Mahmood T, Ahsan F, Maheshwari S. Repercussion of Primary Nucleation Pathway: Dementia and Cognitive Impairment. Curr Aging Sci 2024; 17:196-204. [PMID: 38083895 DOI: 10.2174/0118746098243327231117113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 07/05/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion disease, are characterized by the conversion of normally soluble proteins or peptides into aggregated amyloidal fibrils. These diseases result in the permanent loss of specific types of neurons, making them incurable and devastating. Research on animal models of memory problems mentioned in this article contributes to our knowledge of brain health and functionality. Neurodegenerative disorders, which often lead to cognitive impairment and dementia, are becoming more prevalent as global life expectancy increases. These diseases cause severe neurological impairment and neuronal death, making them highly debilitating. Exploring and understanding these complex diseases offer significant insights into the fundamental processes essential for maintaining brain health. Exploring the intricate mechanisms underlying neurodegenerative diseases not only holds promise for potential treatments but also enhances our understanding of fundamental brain health and functionality. By unraveling the complexities of these disorders, researchers can pave the way for advancements in diagnosis, treatment, and ultimately, improving the lives of individuals affected by neurodegenerative diseases.
Collapse
Affiliation(s)
- Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Vaseem A Ansari
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | | |
Collapse
|
4
|
Strunge K, Burgin T, Golbek TW, Roeters SJ, Pfaendtner J, Weidner T. Umbrella-like Helical Structure of α-Synuclein at the Air-Water Interface Observed with Experimental and Theoretical Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2023; 14:11030-11035. [PMID: 38047768 DOI: 10.1021/acs.jpclett.3c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The misfolding of α-synuclein (αS) into amyloid aggregates is catalyzed by hydrophobic surfaces and associated with severe brain disorders, such as Parkinson's disease. Despite the important role of interfaces, the three-dimensional structure of αS at the interfaces is still not clear. We report interface-specific sum frequency generation (SFG) experiments of monomeric αS binding to the air-water interface, a model system for the important hydrophobic surfaces. We combine the SFG spectra with calculations of theoretical spectra based on molecular dynamics simulations to show that αS, which is an intrinsically disordered protein in solution, folds into a defined, mostly helical secondary structure at the air-water interface. The binding pose resembles an umbrella shape, where the C-terminus protrudes into the water phase, while the N-terminus and the NAC region span the canopy at the interface. In this binding pose, αS is prone to aggregate, which could explain the catalytic effect of hydrophobic interfaces and air bubbles on αS fibrillation.
Collapse
Affiliation(s)
- Kris Strunge
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Tucker Burgin
- Department of Chemical Engineering, University of Washington, Benson Hall 1750, Seattle, Washington 98195-1750, United States
| | - Thaddeus W Golbek
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Steven J Roeters
- Department of Anatomy and Neurosciences, Vrije University, Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Benson Hall 1750, Seattle, Washington 98195-1750, United States
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Department of Chemical Engineering, University of Washington, Benson Hall 1750, Seattle, Washington 98195-1750, United States
| |
Collapse
|
5
|
Singh A, Ansari VA, Ansari TM, Hasan SM, Ahsan F, Singh K, Wasim R, Maheshwari S, Ahmad A. Consequence of Dementia and Cognitive Impairment by Primary Nucleation Pathway. Horm Metab Res 2023; 55:304-314. [PMID: 37130536 DOI: 10.1055/a-2052-8462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An acquired loss of cognition in several cognitive domains that is severe enough to interfere with social or professional functioning is called dementia. As well as a moderately in-depth mental status examination by a clinician to identify impairments in memory, language, attention, visuospatial cognition, such as spatial orientation, executive function, and mood, the diagnosis of dementia requires a history evaluating for cognitive decline and impairment in daily activities, with confirmation from a close friend or family member. The start and organization of the cognitive assessment can be helped by short screening tests for cognitive impairment. Clinical presentations show that neurodegenerative diseases are often incurable because patients permanently lose some types of neurons. It has been determined through an assessment that, at best, our understanding of the underlying processes is still rudimentary, which presents exciting new targets for further study as well as the development of diagnostics and drugs. A growing body of research suggests that they also advance our knowledge of the processes that are probably crucial for maintaining the health and functionality of the brain. We concentrate on a number of the animal models of memory problems that have been mentioned in this review article because dementia has numerous etiologies. Serious neurological impairment and neuronal death are the main features of neurodegenerative illnesses, which are also extremely crippling ailments. The most prevalent neurodegenerative disorders are followed by those primary nucleation pathways responsible for cognitive impairment and dementia.
Collapse
Affiliation(s)
- Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | | | | | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Kuldeep Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Rufaida Wasim
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
6
|
Interfacial properties of α-synuclein's Parkinsonian variants. Biophys Chem 2023; 297:107006. [PMID: 37019052 DOI: 10.1016/j.bpc.2023.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Human alpha-synuclein (αS) is associated with the occurrence of Parkinson's disease. In the past decade, six autosomally dominant mutations have been identified in αS (SNCA) gene that translate into A30P, E46K, H50Q, G51D, A53E, and A53T mutations in the protein. These mutations alter the electrostatics and hydrophobicity of a cardinal region of the protein. A comprehensive comparison of interfacial properties of these Parkinsonian αS variants is crucial to understand their membrane dynamics. Here, we investigated the interfacial activity of these αS variants at air-aqueous interface. All the αS variants were found to possess comparable surface activity of ∼20-22 mN/m. Compression/expansion isotherms reveal a very distinct behaviour of the A30P variant compared to others. The Blodgett-deposited films were analysed using CD and LD spectroscopy as well as the atomic force microscopy. All the variants adopted predominantly α-helical conformation in these films. Atomic force microscopy of the Langmuir-Blodgett films revealed self-assembly at the interface. The lipid-penetration activity was also investigated using zwitterionic and negatively charged lipid monolayers.
Collapse
|
7
|
Wang C, Zhou Y, Ewuola C, Akinleye T, Hasegawa T, Leblanc RM. Determine both the conformation and orientation of a specific residue in α-synuclein(61–95) even in monolayer by 13C isotopic label and p-polarized multiple-angle incidence resolution spectrometry (pMAIRS). ANAL SCI 2022; 38:935-940. [PMID: 35633482 PMCID: PMC9206922 DOI: 10.1007/s44211-022-00128-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Protein’s magic function stems from its structure and various analytical techniques have been developed for it. Among proteins, membrane proteins are encoded 20–30% of genomes, whereas cause challenges for many analytical techniques. For example, lots of membrane proteins cannot form single crystal structure required by X-ray crystallography. As for NMR, the measurements were hindered by the low tumbling rates of membrane (i.e., phospholipid bilayers) where membrane proteins exist. In addition, membrane proteins usually lay parallel to the surface of phospholipid bilayers or form transmembrane structure. No matter parallel or perpendicular to phospholipid bilayers surface, membrane proteins form monolayer structure which is also difficult for X-ray and NMR to provide high-resolution results. Because NMR and X-ray crystallography are the two major analytical techniques to address protein’s structure, membrane proteins only contribute 2.4% to the solved protein databank. Surface FT-IR techniques can evaluate the conformation and orientation of membrane proteins by amide I band. Specifically for α-helical peptides/proteins, the orientation of the axis is critical to decide whether proteins form transmembrane structure. Notice that the traditional FT-IR can only provide “low-resolution” results. Here, 13C isotope was introduced into the nonamyloid component (NAC), which spans residues 61–95 of α-synuclein (α-syn). Then, p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) was used to determine the orientation of a specific residue of α-helical NAC in monolayer. In general, pMAIRS is a novel technique to work complementary with X-ray and NMR to address membrane peptides/proteins structure with high resolution even in monolayer.
Collapse
Affiliation(s)
- Chengshan Wang
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA.
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Christopher Ewuola
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA
| | - Toyin Akinleye
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA
| | - Takeshi Hasegawa
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemistry Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA.
| |
Collapse
|
8
|
FT-IR Spectral Signature of Sensitive and Multidrug-Resistant Osteosarcoma Cell-Derived Extracellular Nanovesicles. Cells 2022; 11:cells11050778. [PMID: 35269400 PMCID: PMC8909163 DOI: 10.3390/cells11050778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents. Despite aggressive treatment regimens, the outcome is unsatisfactory, and multidrug resistance (MDR) is a pivotal process in OS treatment failure. OS-derived extracellular vesicles (EVs) promote drug resistance to chemotherapy and target therapy through different mechanisms. The aim of this study was to identify subpopulations of osteosarcoma-EVs by Fourier transform infrared spectroscopy (FT-IR) to define a specific spectral signature for sensitive and multidrug-resistant OS-derived EVs. EVs were isolated from sensitive and MDR OS cells as well as from mesenchymal stem cells by differential centrifugation and ultracentrifugation. EVs size, morphology and protein expression were characterized. FT-IR/ATR of EVs spectra were acquired in the region of 400–4000 cm−1 (resolution 4 cm−1, 128 scans). The FT-IR spectra obtained were consistently different in the EVs compared to cells from which they originate. A specific spectral signature, characterized by a shift and a new band (1601 cm−1), permitted to clearly distinguish EVs isolated by sensitive and multidrug-resistant OS cells. Our data suggest that FT-IR spectroscopy allows to characterize and define a specific spectral signature for sensitive and MDR OS-derived EVs.
Collapse
|
9
|
Makasewicz K, Wennmalm S, Stenqvist B, Fornasier M, Andersson A, Jönsson P, Linse S, Sparr E. Cooperativity of α-Synuclein Binding to Lipid Membranes. ACS Chem Neurosci 2021; 12:2099-2109. [PMID: 34076426 PMCID: PMC8291482 DOI: 10.1021/acschemneuro.1c00006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cooperative binding is a key feature of metabolic pathways, signaling, and transport processes. It provides tight regulation over a narrow concentration interval of a ligand, thus enabling switching to be triggered by small concentration variations. The data presented in this work reveal strong positive cooperativity of α-synuclein binding to phospholipid membranes. Fluorescence cross-correlation spectroscopy, confocal microscopy, and cryo-TEM results show that in excess of vesicles α-synuclein does not distribute randomly but binds only to a fraction of all available vesicles. Furthermore, α-synuclein binding to a supported lipid bilayer observed with total internal reflection fluorescence microscopy displays a much steeper dependence of bound protein on total protein concentration than expected for independent binding. The same phenomenon was observed in the case of α-synuclein binding to unilamellar vesicles of sizes in the nm and μm range as well as to flat supported lipid bilayers, ruling out that nonuniform binding of the protein is governed by differences in membrane curvature. Positive cooperativity of α-synuclein binding to lipid membranes means that the affinity of the protein to a membrane is higher where there is already protein bound compared to a bare membrane. The phenomenon described in this work may have implications for α-synuclein function in synaptic transmission and other membrane remodeling events.
Collapse
Affiliation(s)
- Katarzyna Makasewicz
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Stefan Wennmalm
- Department of Applied Physics, Biophysics Group, SciLifeLab, Royal Institute of Technology-KTH, 171 65 Solna, Sweden
| | - Björn Stenqvist
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Marco Fornasier
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Alexandra Andersson
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Peter Jönsson
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Sara Linse
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
10
|
Camino JD, Gracia P, Cremades N. The role of water in the primary nucleation of protein amyloid aggregation. Biophys Chem 2021; 269:106520. [PMID: 33341693 DOI: 10.1016/j.bpc.2020.106520] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
The understanding of the complex conformational landscape of amyloid aggregation and its modulation by relevant physicochemical and cellular factors is a prerequisite for elucidating some of the molecular basis of pathology in amyloid related diseases, and for developing and evaluating effective disease-specific therapeutics to reduce or eliminate the underlying sources of toxicity in these diseases. Interactions of proteins with solvating water have been long considered to be fundamental in mediating their function and folding; however, the relevance of water in the process of protein amyloid aggregation has been largely overlooked. Here, we provide a perspective on the role water plays in triggering primary amyloid nucleation of intrinsically disordered proteins (IDPs) based on recent experimental evidences. The initiation of amyloid aggregation likely results from the synergistic effect between both protein intermolecular interactions and the properties of the water hydration layer of the protein surface. While the self-assembly of both hydrophobic and hydrophilic IDPs would be thermodynamically favoured due to large water entropy contributions, large desolvation energy barriers are expected, particularly for the nucleation of hydrophilic IDPs. Under highly hydrating conditions, primary nucleation is slow, being facilitated by the presence of nucleation-active surfaces (heterogeneous nucleation). Under conditions of poor water activity, such as those found in the interior of protein droplets generated by liquid-liquid phase separation, however, the desolvation energy barrier is significantly reduced, and nucleation can occur very rapidly in the bulk of the solution (homogeneous nucleation), giving rise to structurally distinct amyloid polymorphs. Water, therefore, plays a key role in modulating the transition free energy of amyloid nucleation, thus governing the initiation of the process, and dictating the type of preferred primary nucleation and the type of amyloid polymorph generated, which could vary depending on the particular microenvironment that the protein molecules encounter in the cell.
Collapse
Affiliation(s)
- José D Camino
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Pablo Gracia
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Nunilo Cremades
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
11
|
Mohapatra A, Chaudhary N. N-terminal acetylation does not alter α-synuclein's interfacial properties. Int J Biol Macromol 2021; 174:69-76. [PMID: 33497695 DOI: 10.1016/j.ijbiomac.2021.01.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
Alpha-synuclein (αS) is a membrane-binding protein found predominantly in neurons and erythrocytes. The protein remains unordered in aqueous solutions but folds into an α-helical structure when bound to membranes. Besides, it gets deposited as β-sheet rich aggregates in diseases known as synucleinopathies. The native αS has been reported to be acetylated at the N-terminus. Here, we compare the interfacial properties of the N-terminal acetylated αS (Ac-αS) with non-acetylated αS (NH2-αS) at the air-water interface. Both the protein forms are highly surface-active, with surface pressure reaching up to ~30 mN/m upon compression. The pressure-area isotherms obtained from the repeated compression-expansion cycles display large hysteresis suggesting self-assembly at higher surface pressures. The expansion isotherm is characterized by a rapid decrease in surface pressure followed by a slower transition phase starting around 15-17 mN/m. These data suggest that the compressed monolayer breaks into small clusters upon expansion, followed by these clusters' loosening. The circular dichroism spectroscopic analysis of the Blodgett-deposited films suggests the protein to be in largely α-helical conformation. The linear dichroism investigations suggest the protein to be anisotropically deposited. Blodgett deposition of the Langmuir films, therefore, is a rather simple method for preparing oriented monolayers of surface-active macromolecules.
Collapse
Affiliation(s)
- Anshuman Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India.
| |
Collapse
|
12
|
Camino JD, Gracia P, Chen SW, Sot J, de la Arada I, Sebastián V, Arrondo JLR, Goñi FM, Dobson CM, Cremades N. The extent of protein hydration dictates the preference for heterogeneous or homogeneous nucleation generating either parallel or antiparallel β-sheet α-synuclein aggregates. Chem Sci 2020; 11:11902-11914. [PMID: 33520152 PMCID: PMC7816767 DOI: 10.1039/d0sc05297c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 11/21/2022] Open
Abstract
α-Synuclein amyloid self-assembly is the hallmark of a number of neurodegenerative disorders, including Parkinson's disease, although there is still very limited understanding about the factors and mechanisms that trigger this process. Primary nucleation has been observed to be initiated in vitro at hydrophobic/hydrophilic interfaces by heterogeneous nucleation generating parallel β-sheet aggregates, although no such interfaces have yet been identified in vivo. In this work, we have discovered that α-synuclein can self-assemble into amyloid aggregates by homogeneous nucleation, without the need of an active surface, and with a preference for an antiparallel β-sheet arrangement. This particular structure has been previously proposed to be distinctive of stable toxic oligomers and we here demonstrate that it indeed represents the most stable structure of the preferred amyloid pathway triggered by homogeneous nucleation under limited hydration conditions, including those encountered inside α-synuclein droplets generated by liquid-liquid phase separation. In addition, our results highlight the key role that water plays not only in modulating the transition free energy of amyloid nucleation, and thus governing the initiation of the process, but also in dictating the type of preferred primary nucleation and the type of amyloid polymorph generated depending on the extent of protein hydration. These findings are particularly relevant in the context of in vivo α-synuclein aggregation where the protein can encounter a variety of hydration conditions in different cellular microenvironments, including the vicinity of lipid membranes or the interior of membraneless compartments, which could lead to the formation of remarkably different amyloid polymorphs by either heterogeneous or homogeneous nucleation.
Collapse
Affiliation(s)
- José D Camino
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC) , University of Zaragoza , 50018 Zaragoza , Spain .
| | - Pablo Gracia
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC) , University of Zaragoza , 50018 Zaragoza , Spain .
| | - Serene W Chen
- Centre for Misfolding Diseases , Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , UK
| | - Jesús Sot
- Biofisika Institute (CSIC, UPV/EHU) , University of the Basque Country , Campus Universitario, B. Sarriena , 48940 Leioa , Spain
| | - Igor de la Arada
- Biofisika Institute (CSIC, UPV/EHU) , University of the Basque Country , Campus Universitario, B. Sarriena , 48940 Leioa , Spain
| | - Víctor Sebastián
- Instituto de Nanociencia y Materiales de Aragon (INMA) , CSIC-Universidad de Zaragoza , 50009 Zaragoza , Spain
- Department of Chemical and Enviromental Engineering , Aragon Health Research Institute (IIS Aragon) , University of Zaragoza , 50018 Zaragoza , Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , 28029 Madrid , Spain
| | - José L R Arrondo
- Biofisika Institute (CSIC, UPV/EHU) , University of the Basque Country , Campus Universitario, B. Sarriena , 48940 Leioa , Spain
- Department of Biochemistry and Molecular Biology , University of the Basque Country , Campus Universitario, B. Sarriena , 48940 Leioa , Spain
| | - Félix M Goñi
- Biofisika Institute (CSIC, UPV/EHU) , University of the Basque Country , Campus Universitario, B. Sarriena , 48940 Leioa , Spain
- Department of Biochemistry and Molecular Biology , University of the Basque Country , Campus Universitario, B. Sarriena , 48940 Leioa , Spain
| | - Christopher M Dobson
- Centre for Misfolding Diseases , Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , UK
| | - Nunilo Cremades
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC) , University of Zaragoza , 50018 Zaragoza , Spain .
| |
Collapse
|
13
|
Gracia P, Camino JD, Volpicelli-Daley L, Cremades N. Multiplicity of α-Synuclein Aggregated Species and Their Possible Roles in Disease. Int J Mol Sci 2020; 21:E8043. [PMID: 33126694 PMCID: PMC7663424 DOI: 10.3390/ijms21218043] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein amyloid aggregation is a defining molecular feature of Parkinson's disease, Lewy body dementia, and multiple system atrophy, but can also be found in other neurodegenerative disorders such as Alzheimer's disease. The process of α-synuclein aggregation can be initiated through alternative nucleation mechanisms and dominated by different secondary processes giving rise to multiple amyloid polymorphs and intermediate species. Some aggregated species have more inherent abilities to induce cellular stress and toxicity, while others seem to be more potent in propagating neurodegeneration. The preference for particular types of polymorphs depends on the solution conditions and the cellular microenvironment that the protein encounters, which is likely related to the distinct cellular locations of α-synuclein inclusions in different synucleinopathies, and the existence of disease-specific amyloid polymorphs. In this review, we discuss our current understanding on the nature and structure of the various types of α-synuclein aggregated species and their possible roles in pathology. Precisely defining these distinct α-synuclein species will contribute to understanding the molecular origins of these disorders, developing accurate diagnoses, and designing effective therapeutic interventions for these highly debilitating neurodegenerative diseases.
Collapse
Affiliation(s)
- Pablo Gracia
- Joint Unit BIFI-IQFR (CSIC), Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain; (P.G.); (J.D.C.)
| | - José D. Camino
- Joint Unit BIFI-IQFR (CSIC), Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain; (P.G.); (J.D.C.)
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Nunilo Cremades
- Joint Unit BIFI-IQFR (CSIC), Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain; (P.G.); (J.D.C.)
| |
Collapse
|
14
|
Conformation change of α-synuclein(61-95) at the air-water interface and quantitative measurement of the tilt angle of the axis of its α-helix by multiple angle incidence resolution spectroscopy. Colloids Surf B Biointerfaces 2019; 183:110401. [DOI: 10.1016/j.colsurfb.2019.110401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/16/2019] [Accepted: 07/26/2019] [Indexed: 11/18/2022]
|
15
|
Lin Y, Sahoo BR, Ozawa D, Kinoshita M, Kang J, Lim MH, Okumura M, Huh YH, Moon E, Jang JH, Lee HJ, Ryu KY, Ham S, Won HS, Ryu KS, Sugiki T, Bang JK, Hoe HS, Fujiwara T, Ramamoorthy A, Lee YH. Diverse Structural Conversion and Aggregation Pathways of Alzheimer's Amyloid-β (1-40). ACS NANO 2019; 13:8766-8783. [PMID: 31310506 DOI: 10.1021/acsnano.9b01578] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Complex amyloid aggregation of amyloid-β (1-40) (Aβ1-40) in terms of monomer structures has not been fully understood. Herein, we report the microscopic mechanism and pathways of Aβ1-40 aggregation with macroscopic viewpoints through tuning its initial structure and solubility. Partial helical structures of Aβ1-40 induced by low solvent polarity accelerated cytotoxic Aβ1-40 amyloid fibrillation, while predominantly helical folds did not aggregate. Changes in the solvent polarity caused a rapid formation of β-structure-rich protofibrils or oligomers via aggregation-prone helical structures. Modulation of the pH and salt concentration transformed oligomers to protofibrils, which proceeded to amyloid formation. We reveal diverse molecular mechanisms underlying Aβ1-40 aggregation with conceptual energy diagrams and propose that aggregation-prone partial helical structures are key to inducing amyloidogenesis. We demonstrate that context-dependent protein aggregation is comprehensively understood using the macroscopic phase diagram, which provides general insights into differentiation of amyloid formation and phase separation from unfolded and folded structures.
Collapse
Affiliation(s)
- Yuxi Lin
- Department of Chemistry , Sookmyung Women's University , Cheongpa-ro 47-gil 100 , Yongsan-gu, Seoul 04310 , South Korea
| | - Bikash R Sahoo
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Daisaku Ozawa
- Department of Neurotherapeutics , Osaka University Graduate School of Medicine , 2-2 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Misaki Kinoshita
- Frontier Research Institute for Interdisciplinary Sciences , Tohoku University , 6-3 Aramaki-Aza-Aoba , Aoba-ku, Sendai 980-8578 , Japan
| | - Juhye Kang
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea
- Department of Chemistry , Ulsan National Institute of Science and Technology , Ulsan 44919 , South Korea
| | - Mi Hee Lim
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences , Tohoku University , 6-3 Aramaki-Aza-Aoba , Aoba-ku, Sendai 980-8578 , Japan
| | | | | | | | - Hyun-Ju Lee
- Department of Neural Development and Disease , Korea Brain Research Institute , 61 Cheomdan-ro , Dong-gu, Daegu 41068 , South Korea
| | - Ka-Young Ryu
- Department of Neural Development and Disease , Korea Brain Research Institute , 61 Cheomdan-ro , Dong-gu, Daegu 41068 , South Korea
| | - Sihyun Ham
- Department of Chemistry , Sookmyung Women's University , Cheongpa-ro 47-gil 100 , Yongsan-gu, Seoul 04310 , South Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute and College of Biomedical and Health Science , Konkuk University , Chungju , Chungbuk 27478 , South Korea
| | | | - Toshihiko Sugiki
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
| | | | - Hyang-Sook Hoe
- Department of Neural Development and Disease , Korea Brain Research Institute , 61 Cheomdan-ro , Dong-gu, Daegu 41068 , South Korea
| | - Toshimichi Fujiwara
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Young-Ho Lee
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
- Bio-Analytical Science , University of Science and Technology , Daejeon 34113 , South Korea
| |
Collapse
|
16
|
Cheung DL. The air-water interface stabilizes α-helical conformations of the insulin B-chain. J Chem Phys 2019. [DOI: 10.1063/1.5100253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- David L. Cheung
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
Maldonado Vidaurri E, Chavez-Montes A, Garza Tapia M, Castro-Rios R, Gonzalez-Horta A. Differential interaction of α-synuclein N-terminal segment with mitochondrial model membranes. Int J Biol Macromol 2018; 119:1286-1293. [DOI: 10.1016/j.ijbiomac.2018.08.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 01/27/2023]
|
18
|
Choi TS, Han JY, Heo CE, Lee SW, Kim HI. Electrostatic and hydrophobic interactions of lipid-associated α-synuclein: The role of a water-limited interfaces in amyloid fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1854-1862. [DOI: 10.1016/j.bbamem.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
|
19
|
Bénarouche A, Habchi J, Cagna A, Maniti O, Girard-Egrot A, Cavalier JF, Longhi S, Carrière F. Interfacial Properties of N TAIL, an Intrinsically Disordered Protein. Biophys J 2018; 113:2723-2735. [PMID: 29262365 DOI: 10.1016/j.bpj.2017.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) lack stable secondary and tertiary structure under physiological conditions in the absence of their biological partners and thus exist as dynamic ensembles of interconverting conformers, often highly soluble in water. However, in some cases, IDPs such as the ones involved in neurodegenerative diseases can form protein aggregates and their aggregation process may be triggered by the interaction with membranes. Although the interfacial behavior of globular proteins has been extensively studied, experimental data on IDPs at the air/water (A/W) and water/lipid interfaces are scarce. We studied here the intrinsically disordered C-terminal domain of the Hendra virus nucleoprotein (NTAIL) and compared its interfacial properties to those of lysozyme that is taken as a model globular protein of similar molecular mass. Adsorption of NTAIL at the A/W interface was studied in the absence and presence of phospholipids using Langmuir films, polarization modulated-infrared reflection-absorption spectroscopy, and an automated drop tensiometer for interfacial tension and elastic modulus determination with oscillating bubbles. NTAIL showed a significant surface activity, with a higher adsorption capacity at the A/W interface and penetration into egg phosphatidylcholine monolayer compared to lysozyme. Whereas lysozyme remains folded upon compression of the protein layer at the A/W interface and shows a quasi-pure elastic behavior, NTAIL shows a much higher molecular area and forms a highly viscoelastic film with a high dilational modulus. To our knowledge, a new disorder-to-order transition is thus observed for the NTAIL protein that folds into an antiparallel β-sheet at the A/W interface and presents strong intermolecular interactions.
Collapse
Affiliation(s)
- Anaïs Bénarouche
- Aix-Marseille University, CNRS, Enzymologie Interfaciale et Physiologie de la Lipolyse UMR 7282, Marseille, France; TECLIS Scientific, Tassin, France
| | - Johnny Habchi
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France
| | | | - Ofelia Maniti
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE Lyon, UMR 5246 Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Equipe Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Villeurbanne, France
| | - Agnès Girard-Egrot
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE Lyon, UMR 5246 Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Equipe Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Villeurbanne, France
| | - Jean-François Cavalier
- Aix-Marseille University, CNRS, Enzymologie Interfaciale et Physiologie de la Lipolyse UMR 7282, Marseille, France
| | - Sonia Longhi
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, Marseille, France.
| | - Frédéric Carrière
- Aix-Marseille University, CNRS, Enzymologie Interfaciale et Physiologie de la Lipolyse UMR 7282, Marseille, France.
| |
Collapse
|
20
|
Buell AK. The Nucleation of Protein Aggregates - From Crystals to Amyloid Fibrils. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 329:187-226. [DOI: 10.1016/bs.ircmb.2016.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Structural Ensembles of Membrane-bound α-Synuclein Reveal the Molecular Determinants of Synaptic Vesicle Affinity. Sci Rep 2016; 6:27125. [PMID: 27273030 PMCID: PMC4897633 DOI: 10.1038/srep27125] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/05/2016] [Indexed: 01/05/2023] Open
Abstract
A detailed characterisation of the molecular determinants of membrane binding by α-synuclein (αS), a 140-residue protein whose aggregation is associated with Parkinson's disease, is of fundamental significance to clarify the manner in which the balance between functional and dysfunctional processes are regulated for this protein. Despite its biological relevance, the structural nature of the membrane-bound state αS remains elusive, in part because of the intrinsically dynamic nature of the protein and also because of the difficulties in studying this state in a physiologically relevant environment. In the present study we have used solid-state NMR and restrained MD simulations to refine structure and topology of the N-terminal region of αS bound to the surface of synaptic-like membranes. This region has fundamental importance in the binding mechanism of αS as it acts as to anchor the protein to lipid bilayers. The results enabled the identification of the key elements for the biological properties of αS in its membrane-bound state.
Collapse
|
22
|
Li S, Combs JD, Alharbi OE, Kong J, Wang C, Leblanc RM. The (13)C amide I band is still sensitive to conformation change when the regular amide I band cannot be distinguished at the typical position in H2O. Chem Commun (Camb) 2015; 51:12537-9. [PMID: 26153570 DOI: 10.1039/c5cc02263k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The attenuated total reflection technique was utilized to obtain FTIR spectra of (13)C-labeled peptides with a sequence of (AAAAK)4AAAAY in H2O. The regular amide I band was not at the typical position as reported in globular proteins, whereas the (13)C amide I band was still sensitive to conformation change.
Collapse
Affiliation(s)
- Shanghao Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Schach D, Globisch C, Roeters SJ, Woutersen S, Fuchs A, Weiss CK, Backus EHG, Landfester K, Bonn M, Peter C, Weidner T. Sticky water surfaces: Helix–coil transitions suppressed in a cell-penetrating peptide at the air-water interface. J Chem Phys 2014; 141:22D517. [DOI: 10.1063/1.4898711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Denise Schach
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Christoph Globisch
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Steven J. Roeters
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Adrian Fuchs
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Clemens K. Weiss
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Life Sciences and Engineering, Universtiy of Applied Sciences Bingen, 55411 Bingen, Germany
| | | | | | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Tobias Weidner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
24
|
Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc Natl Acad Sci U S A 2014; 111:7671-6. [PMID: 24817693 DOI: 10.1073/pnas.1315346111] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of amyloid fibrils by the intrinsically disordered protein α-synuclein is a hallmark of Parkinson disease. To characterize the microscopic steps in the mechanism of aggregation of this protein we have used in vitro aggregation assays in the presence of preformed seed fibrils to determine the molecular rate constant of fibril elongation under a range of different conditions. We show that α-synuclein amyloid fibrils grow by monomer and not oligomer addition and are subject to higher-order assembly processes that decrease their capacity to grow. We also find that at neutral pH under quiescent conditions homogeneous primary nucleation and secondary processes, such as fragmentation and surface-assisted nucleation, which can lead to proliferation of the total number of aggregates, are undetectable. At pH values below 6, however, the rate of secondary nucleation increases dramatically, leading to a completely different balance between the nucleation and growth of aggregates. Thus, at mildly acidic pH values, such as those, for example, that are present in some intracellular locations, including endosomes and lysosomes, multiplication of aggregates is much faster than at normal physiological pH values, largely as a consequence of much more rapid secondary nucleation. These findings provide new insights into possible mechanisms of α-synuclein aggregation and aggregate spreading in the context of Parkinson disease.
Collapse
|
25
|
Campioni S, Carret G, Jordens S, Nicoud L, Mezzenga R, Riek R. The presence of an air-water interface affects formation and elongation of α-Synuclein fibrils. J Am Chem Soc 2014; 136:2866-75. [PMID: 24460028 DOI: 10.1021/ja412105t] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aggregation of human α-Synuclein (α-Syn) into amyloid fibrils is related to the onset of multiple diseases termed synucleinopathies. Substantial evidence suggests that hydrophobic-hydrophilic interfaces promote the aggregation of amyloidogenic proteins and peptides in vitro. In this work the effect of the air-water interface (AWI) on α-Syn aggregation is investigated by means of thioflavin T binding measurements, dynamic light scattering, size-exclusion chromatography, electron microscopy, and atomic force microscopy. Measurements were performed with the monomeric protein alone or together with preformed seeds. In presence of the AWI, α-Syn aggregates readily into amyloid fibrils that remain adsorbed to the AWI. Instead, when the AWI is removed from the samples by replacing it with a solid-liquid interface, the interfacial aggregation of monomeric α-Syn is greatly reduced and no significant increase in ThT fluorescence is detected in the bulk, even at 900 μM concentration. Bulk aggregation is observed only when a sufficient amount of preformed seeds is added, and the initial slope of the kinetics scales with the amount of seeds as expected for first order kinetics. By contrast, in seeded experiments with the AWI, the initial slope is one order of magnitude lower and secondary nucleation pathways appear instead to be dominant. Thus, interfaces play multiple roles in the aggregation of α-Syn, influencing primary nucleation, aggregate elongation, and secondary nucleation processes. Interfacial effects must therefore be taken into account to achieve a complete understanding of protein aggregation events in vitro as well as in vivo.
Collapse
Affiliation(s)
- Silvia Campioni
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich , Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Li S, Potana S, Keith DJ, Wang C, Leblanc RM. Isotope-edited FTIR in H2O: determination of the conformation of specific residues in a model α-helix peptide by 13C labeled carbonyls. Chem Commun (Camb) 2014; 50:3931-3. [DOI: 10.1039/c4cc00991f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Palmer MR, Hagerman JM, Matano LM, DeWitt KM, Zhang Y. Thermodynamic analysis and fluorescence imaging of homochiral amino acid–amino acid interactions at the air/water interface. J Colloid Interface Sci 2013; 408:235-41. [DOI: 10.1016/j.jcis.2013.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 01/25/2023]
|
28
|
Conversion of natively unstructured α-synuclein to its α-helical conformation significantly attenuates production of reactive oxygen species. J Inorg Biochem 2012; 118:68-73. [PMID: 23123341 DOI: 10.1016/j.jinorgbio.2012.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/01/2012] [Accepted: 09/01/2012] [Indexed: 01/01/2023]
Abstract
The intracellular α-synuclein (α-syn) protein, whose conformational change and aggregation have been closely linked to the pathology of Parkingson's disease (PD), is highly populated at the presynaptic termini and remains there in the α-helical conformation. In this study, circular dichroism confirmed that natively unstructured α-syn in aqueous solution was transformed to its α-helical conformation upon addition of trifluoroethanol (TFE). Electrochemical and UV-visible spectroscopic experiments reveal that both Cu (I) and Cu (II) are stabilized, with the former being stabilized by about two orders of magnitude. Compared to unstructured α-syn (Binolfi et al., J. Am. Chem. Soc. 133 (2011) 194-196), α-helical α-syn stabilizes Cu (I) by more than three orders of magnitude. Through the measurements of H(2)O(2) and hydroxyl radicals (OH) in solutions containing different forms of Cu (II) (free and complexed by unstructured or α-helical α-syn), we demonstrate that the significantly enhanced Cu (I) binding affinity helps inhibit the production of highly toxic reactive oxygen species, especially the hydroxyl radicals. Our study provides strong evidence that, as a possible means to prevent neuronal cell damage, conversion of the natively unstructured α-syn to its α-helical conformation in vivo could significantly attenuate the copper-modulated ROS production.
Collapse
|
29
|
Das TK. Protein particulate detection issues in biotherapeutics development--current status. AAPS PharmSciTech 2012; 13:732-46. [PMID: 22566174 PMCID: PMC3364383 DOI: 10.1208/s12249-012-9793-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 04/16/2012] [Indexed: 01/09/2023] Open
Abstract
Formation of aggregates and particulates in biopharmaceutical formulation continues to be one of the major quality concerns in biotherapeutics development. The presence of large quantities of aggregates is believed to be one of the causes of unwanted immunogenic responses. Protein particulates can form in a wide range of sizes and shapes. Therefore, a comprehensive characterization of particulates in biologics formulation continues to be challenging. The quantity of small size aggregates (e.g., dimer) in a stable biologics formulation is well controlled using precision analytical techniques (e.g., high-performance liquid chromatography). Particulate in clinical and commercial formulations is monitored using visual inspection and subvisible particulate counting assays. While visual inspection (by human eye or automated systems) is intended to detect particulates (intrinsic and extrinsic) of ~100 μm or larger, the subvisible counting methods cover smaller size ranges down to 10 μm. It is well recognized that research of particulates in the submicron (<1 μm) and low-micron (1-10 μm) ranges may provide important clues to understand the mechanism of particulate formation. The recent years have seen a significant increase in the development of newer technologies for more comprehensive characterization of particulates. This is attributed to increased awareness in this field of research over the past 5 years, stimulated by scholarly articles, commentaries, and robust discussions in various forums. This article provides an overview of emerging detection technologies that provide complementary characterization data encompassing a wider size range of particulates. It also discusses their advantages and limitations in the context of applications in biotherapeutics development.
Collapse
Affiliation(s)
- Tapan K Das
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, USA.
| |
Collapse
|
30
|
Ta HP, Berthelot K, Coulary-Salin B, Desbat B, Géan J, Servant L, Cullin C, Lecomte S. Comparative studies of nontoxic and toxic amyloids interacting with membrane models at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4797-4807. [PMID: 21405042 DOI: 10.1021/la103788r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many in vitro studies have pointed out the interaction between amyloids and membranes, and their potential involvement in amyloid toxicity. In a previous study, we generated a yeast toxic mutant (M8) of the harmless model amyloid protein HET-s((218-289)). In this study, we compared the self-assembling process of the nontoxic wild-type (WT) and toxic (M8) protein at the air-water interface and in interaction with various phospholipid monolayers (DOPE, DOPC, DOPI, DOPS and DOPG). We first demonstrate using ellipsometry measurements and polarization-modulated infrared reflection absorption spectroscopy (PMIRRAS) that the air-water interface promotes and modifies the assembly of WT since an amyloid-like film was instantaneously formed at the interface with an antiparallel β-sheet structuration instead of the parallel β-sheet commonly observed for amyloid fibers generated in solution. The toxic mutant (M8) behaves in a similar manner at the air-water interface or in bulk, with a fast self-assembling and an antiparallel β-sheet organization. The transmission electron microscopy (TEM) images established the fibrillous morphology of the protein films formed at the air-water interface. Second, we demonstrate for the first time that the main driving force between this particular fungus amyloid and membrane interaction is based on electrostatic interactions with negatively charged phospholipids (DOPG, DOPI, DOPS). Interestingly, the toxic mutant (M8) clearly induces perturbations of the negatively charged phospholipid monolayers, leading to a massive surface aggregation, whereas the nontoxic (WT) exhibits a slight effect on the membrane models. This study allows concluding that the toxicity of the M8 mutant could be due to its high propensity to interact with membranes.
Collapse
Affiliation(s)
- Ha Phuong Ta
- Chimie et Biologie des Membranes et Nano-objets, Université de Bordeaux-CNRS, 2 rue Robert Escarpit, 33607 Pessac, France
| | | | | | | | | | | | | | | |
Collapse
|