1
|
Wu M, Xiao Y, Wu R, Lei J, Li T, Zheng Y. Aggregable gold nanoparticles for cancer photothermal therapy. J Mater Chem B 2024; 12:8048-8061. [PMID: 39046068 DOI: 10.1039/d4tb00403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Photothermal therapy (PTT) is an important non-invasive cancer treatment method. Enhancing the photothermal conversion efficiency (PCE) of photothermal agents (PTAs) and prolonging their tumor accumulation and retention are effective strategies to enhance the efficiency of cancer PTT. Recently, tremendous progress has been made in developing stimuli-responsive aggregable gold nanoparticles as effective PTAs for PTT. In this review, we discuss the chemical principles underlying gold nanoparticle aggregation and highlight the progress in gold nanoparticle aggregation triggered by different stimuli, especially tumor microenvironment-related factors, for cancer PTT. Covalent condensation reactions, click cycloaddition reactions, chelation reactions, and Au-S bonding, as well as non-covalent electrostatic interactions, hydrophobic interactions, hydrogen bonding, and van der Waals forces play key roles in the aggregation of gold nanoparticles. Enzymes, pH, reactive oxygen species, small molecules, salts, and light drive the occurrence of gold nanoparticle aggregation. Targeted aggregation of gold nanoparticles prolongs tumor accumulation and retention of PTAs and improves PCE, resulting in enhanced tumor PTT. Moreover, the major challenges of aggregable gold nanoparticles as PTAs are pointed out and the promising applications are also prospected at the end. With the deepening of research, we expect aggregable gold nanoparticles to become essential PTAs for tumor therapy.
Collapse
Affiliation(s)
- Mingyu Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yao Xiao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Rongkun Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jiaojiao Lei
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Tian Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Zhao Y, Cui C, Fan G, Shi H. Stimuli-triggered Self-Assembly of Gold Nanoparticles: Recent Advances in Fabrication and Biomedical Applications. Chem Asian J 2024; 19:e202400015. [PMID: 38403853 DOI: 10.1002/asia.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Gold nanoparticles have been widely used in engineering, material chemistry, and biomedical applications owing to their ease of synthesis and functionalization, localized surface plasmon resonance (LSPR), great chemical stability, excellent biocompatibility, tunable optical and electronic property. In recent years, the decoration and modification of gold nanoparticles with small molecules, ligands, surfactants, peptides, DNA/RNA, and proteins have been systematically studied. In this review, we summarize the recent approaches on stimuli-triggered self-assembly of gold nanoparticles and introduce the breakthrough of gold nanoparticles in disease diagnosis and treatment. Finally, we discuss the current challenge and future prospective of stimuli-responsive gold nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Xia H, Zhu J, Men C, Wang A, Mao Q, Feng Y, Li J, Xu J, Cheng X, Shi H. Light-initiated aggregation of gold nanoparticles for synergistic chemo-photothermal tumor therapy. NANOSCALE ADVANCES 2023; 5:3053-3062. [PMID: 37260491 PMCID: PMC10228337 DOI: 10.1039/d3na00114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
The combination of chemotherapy with photothermal therapy (PTT) has attracted extensive attention due to its excellent synergetic effect attributing to the fact that hyperthermia can effectively promote the tumor uptake of chemotherapeutic drugs. Herein, we propose a light-initiated gold nanoparticle (AuNP) aggregation boosting the uptake of chemotherapeutic drugs for enhanced chemo-photothermal tumor therapy. Novel light-responsive AuNPs (tm-AuNPs) were rationally designed and fabricated by conjugating both 2,5-diphenyltetrazole (Tz) and methacrylic acid (Ma) onto the surface of AuNPs with small size (∼20 nm). Upon the irradiation of 405 nm laser, AuNPs could be initiated to form aggregates specifically within tumors through the covalent cycloaddition reaction between Tz and Ma. Taking advantage of the controllable photothermal effect of Au aggregates under NIR excitation, improved enrichment of doxorubicin (DOX) in tumor tissues was realized, combined with PTT, resulting in outstanding synergetic anti-tumor efficacy in living mice. We thus believe that this light-initiated AuNP aggregation approach would offer a valuable and powerful tool for precisely synergistic chemo-photothermal tumor therapy.
Collapse
Affiliation(s)
- Huawei Xia
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University 199 Renai Road Suzhou 215123 China
| | - Jinfeng Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University 199 Renai Road Suzhou 215123 China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata Roma 00133 Italy
| | - Changhe Men
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University 199 Renai Road Suzhou 215123 China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University 199 Renai Road Suzhou 215123 China
| | - Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University 199 Renai Road Suzhou 215123 China
| | - Yali Feng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University 199 Renai Road Suzhou 215123 China
| | - Jiachen Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University 199 Renai Road Suzhou 215123 China
| | - Jingwei Xu
- Department of Cardiothoracic Surgery, Suzhou Municipal Hospital Institution Suzhou 215002 P. R. China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University 199 Renai Road Suzhou 215123 China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University 199 Renai Road Suzhou 215123 China
| |
Collapse
|
4
|
Wang J, Peled TS, Klajn R. Photocleavable Anionic Glues for Light-Responsive Nanoparticle Aggregates. J Am Chem Soc 2023; 145:4098-4108. [PMID: 36757850 PMCID: PMC9951211 DOI: 10.1021/jacs.2c11973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 02/10/2023]
Abstract
Integrating light-sensitive molecules within nanoparticle (NP) assemblies is an attractive approach to fabricate new photoresponsive nanomaterials. Here, we describe the concept of photocleavable anionic glue (PAG): small trianions capable of mediating interactions between (and inducing the aggregation of) cationic NPs by means of electrostatic interactions. Exposure to light converts PAGs into dianionic products incapable of maintaining the NPs in an assembled state, resulting in light-triggered disassembly of NP aggregates. To demonstrate the proof-of-concept, we work with an organic PAG incorporating the UV-cleavable o-nitrobenzyl moiety and an inorganic PAG, the photosensitive trioxalatocobaltate(III) complex, which absorbs light across the entire visible spectrum. Both PAGs were used to prepare either amorphous NP assemblies or regular superlattices with a long-range NP order. These NP aggregates disassembled rapidly upon light exposure for a specific time, which could be tuned by the incident light wavelength or the amount of PAG used. Selective excitation of the inorganic PAG in a system combining the two PAGs results in a photodecomposition product that deactivates the organic PAG, enabling nontrivial disassembly profiles under a single type of external stimulus.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tzuf Shay Peled
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
5
|
Ritaine D, Adronov A. Decoration of Polyfluorene-Wrapped Carbon Nanotubes with Photocleavable Side-Chains. Molecules 2023; 28:1471. [PMID: 36771137 PMCID: PMC9920975 DOI: 10.3390/molecules28031471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Functionalizing polyfluorene-wrapped carbon nanotubes without damaging their properties is effective via Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC). However, the length and nature of polymer side-chains can impact the conductivity of polyfluorene-SWNT films by preventing close contact between the nanotubes. Here, we investigate the functionalization of a polyfluorene-SWNT complex using photocleavable side-chains that can be removed post-processing. The cleavage of the side-chains containing an ortho-nitrobenzyl ether derivative is efficient when exposed to a UV lamp at 365 nm. The photoisomerization of the o-nitrobenzyl ether linker into the corresponding o-nitrosobenzaldehyde was first monitored via UV-Vis absorption spectroscopy and 1H-NMR spectroscopy on the polymer, which showed efficient cleavage after 2 h. We next investigated the cleavage on the polyfluorene-SWNT complex via UV-Vis-NIR absorption spectroscopy. The precipitation of the nanotube dispersion and the broad absorption peaks after overnight irradiation also indicated effective cleavage. In addition, Raman spectroscopy post-irradiation showed that the nanotubes were not damaged upon irradiation. This paper reports a proof of concept that may find applications for SWNT-based materials in which side-chain removal could lead to higher device performance.
Collapse
Affiliation(s)
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
6
|
Xu X, Zhang M, Li Z, Ye D, Gou L, Zou Q, Zhu L. Highly efficient light-induced self-assembly of gold nanoparticles promoted by photoexcitation-induced aggregatable ligands. Chem Commun (Camb) 2023; 59:418-421. [PMID: 36515095 DOI: 10.1039/d2cc06188k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are numerous ways to achieve light-induced self-assembly of gold nanoparticles, but most of them are through chemical reaction and slow. Ligands that can perform photoexcitation-induced aggregation were synthesized and modified onto gold nanoparticles. The leading functionalized nanoparticles exhibit highly efficient light-induced self-assembly properties and show high-contrast color fading in tens of seconds.
Collapse
Affiliation(s)
- Xiaoyan Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Danfeng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Lizhen Gou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China. .,Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
7
|
Mao Q, Fang J, Wang A, Zhang Y, Cui C, Ye S, Zhao Y, Feng Y, Li J, Shi H. Aggregation of Gold Nanoparticles Triggered by Hydrogen Peroxide‐Initiated Chemiluminescence for Activated Tumor Theranostics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Yali Feng
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Jiachen Li
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
8
|
Mao Q, Fang J, Wang A, Zhang Y, Cui C, Ye S, Zhao Y, Feng Y, Li J, Shi H. Aggregation of Gold Nanoparticles Triggered by Hydrogen Peroxide-Initiated Chemiluminescence for Activated Tumor Theranostics. Angew Chem Int Ed Engl 2021; 60:23805-23811. [PMID: 34472168 DOI: 10.1002/anie.202109863] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/28/2021] [Indexed: 12/13/2022]
Abstract
Developing endogenous photo-activated theranostic platforms to overcome the limitation of low tissue-penetration from external light sources is highly significant for cancer diagnosis and treatment. We report a H2 O2 -initiated chemiluminescence (CL)-triggered nanoparticle aggregation strategy to activate theranostic functions of gold nanoparticles (AuNPs) for effective tumor imaging and therapy. Two types of AuNPs (tAuNP & mAuNP) were designed and fabricated by conjugating 2,5-diphenyltetrazole and methacrylic acid onto the surface of AuNPs, respectively. Luminol was adsorbed onto the mAuNPs to afford self-illuminating mAuNP/Lu NPs that could produce strong CL by reaction with H2 O2 in the tumor microenvironment, which triggers significant aggregation of AuNPs resulting in enhanced accumulation and retention of AuNPs for activated photoacoustic imaging and photothermal therapy of tumors. We thus believe that this approach may offer a promising tool for effective tumor treatment.
Collapse
Affiliation(s)
- Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Yali Feng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Jiachen Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
9
|
Wu X, Deng J, Guo G, Zheng Y, Xiong Q, Zheng T, Zhao X, Yu Z. Spatiotemporal Resolved Live Cell Membrane Tracking through Photo-click Reactions Enriched in Lipid Phase. Chemistry 2021; 27:11957-11965. [PMID: 34057766 DOI: 10.1002/chem.202101653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 01/04/2023]
Abstract
A set of photo-switchable monopeptides derived from cis-β-dibenzodiazocine-l-alanine (cis-DBDAA) have been designed and synthesized, which are capable of photo-click reacting with diaryltetrazoles or diarylsydnones in a hydrophobic phospholipid bilayer environment. The DBDAA monopeptides include both a hydrophobic tail on C-terminal, providing high affinity toward lipid membrane, and a modularized functional moiety on N-terminal, enabling rapid optimization of the self-assembly strength to form multifunctional supramolecules. With the cis-DBDAA monopeptides photo-switched into trans-configuration, we were able to disrupt the supramolecular assembly through an efficient photo-click reaction across the lipid bilayer of liposomes. We reveal that the performance of the photo-click reactions between the monopeptides and photo-generated nitrile imine intermediates is significantly enhanced by enrichment of both reactants in the hydrophobic membrane lamel of liposomes. Enrichment of the DBDAA monopeptide in lipid phase serves as a convenient method to introduce bioorthogonal chemical handles on live cell membranes, which enables fluorescence labelling of single cell's membrane with high spatiotemporal resolution to facilitate the studies on cell membrane dynamics.
Collapse
Affiliation(s)
- Xueting Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiajie Deng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Guiling Guo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yuanqin Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qin Xiong
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tingting Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaohu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
10
|
Dietler J, Liang C, Frank S, Müller AK, Greiner A, Möglich A. Photobiologically Directed Assembly of Gold Nanoparticles. Adv Biol (Weinh) 2021; 5:e2000179. [PMID: 34028211 DOI: 10.1002/adbi.202000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/22/2020] [Indexed: 11/09/2022]
Abstract
In nature, photoreceptor proteins undergo molecular responses to light, that exhibit supreme fidelity in time and space and generally occur under mild reaction conditions. To unlock these traits for material science, the light-induced homodimerization of light-oxygen-voltage (LOV) photoreceptors is leveraged to control the assembly of gold nanoparticles. Conjugated to genetically encodable LOV proteins, the nanoparticles are monodispersed in darkness but rapidly assemble into large aggregates upon blue-light exposure. The study establishes a new modality for reaction control in macromolecular chemistry and thus augurs enhanced precision in space and time in diverse applications of gold nanoparticles.
Collapse
Affiliation(s)
- Julia Dietler
- Department of Biochemistry, Photobiochemistry, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Chen Liang
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Saskia Frank
- Department of Biochemistry, Photobiochemistry, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Ann-Kathrin Müller
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Andreas Möglich
- Department of Biochemistry, Photobiochemistry, University of Bayreuth, Bayreuth, D-95440, Germany
| |
Collapse
|
11
|
Krajczewski J, Ambroziak R, Kudelski A. Photo-assembly of plasmonic nanoparticles: methods and applications. RSC Adv 2021; 11:2575-2595. [PMID: 35424232 PMCID: PMC8694033 DOI: 10.1039/d0ra09337h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022] Open
Abstract
In this review article, various methods for the light-induced manipulation of plasmonic nanoobjects are described, and some sample applications of this process are presented. The methods of the photo-induced nanomanipulation analyzed include methods based on: the light-induced isomerization of some compounds attached to the surface of the manipulated object causing formation of electrostatic, host-guest or covalent bonds or other structural changes, the photo-response of a thermo-responsive material attached to the surface of the manipulated nanoparticles, and the photo-catalytic process enhanced by the coupled plasmons in manipulated nanoobjects. Sample applications of the process of the photo-aggregation of plasmonic nanosystems are also presented, including applications in surface-enhanced vibrational spectroscopies, catalysis, chemical analysis, biomedicine, and more. A detailed comparative analysis of the methods that have been applied so far for the light-induced manipulation of nanostructures may be useful for researchers planning to enter this fascinating field.
Collapse
Affiliation(s)
- Jan Krajczewski
- University of Warsaw, Faculty of Chemistry 1 Pasteur St. 02-093 Warsaw Poland
| | - Robert Ambroziak
- University of Warsaw, Faculty of Chemistry 1 Pasteur St. 02-093 Warsaw Poland
| | - Andrzej Kudelski
- University of Warsaw, Faculty of Chemistry 1 Pasteur St. 02-093 Warsaw Poland
| |
Collapse
|
12
|
Guo AD, Wei D, Nie HJ, Hu H, Peng C, Li ST, Yan KN, Zhou BS, Feng L, Fang C, Tan M, Huang R, Chen XH. Light-induced primary amines and o-nitrobenzyl alcohols cyclization as a versatile photoclick reaction for modular conjugation. Nat Commun 2020; 11:5472. [PMID: 33122644 PMCID: PMC7596520 DOI: 10.1038/s41467-020-19274-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022] Open
Abstract
The advent of click chemistry has had a profound impact on many fields and fueled a need for reliable reactions to expand the click chemistry toolkit. However, developing new systems to fulfill the click chemistry criteria remains highly desirable yet challenging. Here, we report the development of light-induced primary amines and o-nitrobenzyl alcohols cyclization (PANAC) as a photoclick reaction via primary amines as direct click handle, to rapid and modular functionalization of diverse small molecules and native biomolecules. With intrinsic advantages of temporal control, good biocompatibility, reliable chemoselectivity, excellent efficiency, readily accessible reactants, operational simplicity and mild conditions, the PANAC photoclick is robust for direct diversification of pharmaceuticals and biorelevant molecules, lysine-specific modifications of unprotected peptides and native proteins in vitro, temporal profiling of endogenous kinases and organelle-targeted labeling in living systems. This strategy provides a versatile platform for organic synthesis, bioconjugation, medicinal chemistry, chemical biology and materials science.
Collapse
Affiliation(s)
- An-Di Guo
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Dan Wei
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Hui-Jun Nie
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chengyuan Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shao-Tong Li
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Ke-Nian Yan
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Bin-Shan Zhou
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Feng
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Chao Fang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ruimin Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Hua Chen
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
13
|
Tuten BT, Wiedbrauk S, Barner-Kowollik C. Contemporary catalyst-free photochemistry in synthetic macromolecular science. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101183] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Kim CJ, Jeong EH, Lee H, Park SJ. A dynamic DNA nanostructure with switchable and size-selective molecular recognition properties. NANOSCALE 2019; 11:2501-2509. [PMID: 30672552 DOI: 10.1039/c8nr09341e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, we report a dynamic DNA nanostructure exhibiting switchable and size-selective molecular recognition properties. A DNA block copolymer, polystyrene-b-DNA (PS-b-DNA), and a thermo-responsive block copolymer, PS-b-poly(N-isopropylacrylamide) (PS-b-PNIPAM), were simultaneously assembled to form hybrid micelles composed of a PS core and a DNA/PNIPAM corona. PNIPAM strands did not significantly hinder the binding of molecular DNA for a broad range of PNIPAM lengths. On the other hand, they exerted significant steric hindrance for interactions with nanoscale species, which can be reversibly turned off by increasing the temperature above the lower critical solution temperature (LCST) of PNIPAM. Owing to the switchable and size-selective steric hindrance, the hybrid DNA micelles showed thermally controllable enzymatic degradation and cellular uptake. These results demonstrate that the binary self-assembly of two different responsive block copolymers is a promising approach to prepare dynamic nanostructures with controllable biological recognition properties.
Collapse
Affiliation(s)
- Chan-Jin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | | | | | | |
Collapse
|
15
|
Xia H, Gao Y, Yin L, Cheng X, Wang A, Zhao M, Ding J, Shi H. Light-Triggered Covalent Coupling of Gold Nanoparticles for Photothermal Cancer Therapy. Chembiochem 2019; 20:667-671. [PMID: 30447100 DOI: 10.1002/cbic.201800648] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 01/31/2023]
Abstract
Manipulating the cross-coupling of gold nanoparticles (AuNPs) to maximize the photothermal effect is a promising strategy for cancer therapy. Here, by taking advantage of the well-known tetrazole/alkene photoclick chemistry, we have demonstrated for the first time that small AuNPs (23 nm) decorated with both 2,5-diphenyltetrazole and methacrylic acid on their surfaces can form covalently crosslinked aggregates upon laser irradiation (λ=405 nm). In vitro studies indicated that the light-triggered assembling shifted the surface plasmon resonance of AuNPs significantly to near-infrared (NIR) regions, which as a consequence effectively enhanced the efficacy of photothermal therapy for 4T1 breast cancer cells. We thus believe that this new light-triggered cross-coupling approach might offer a valuable tool for cancer treatment.
Collapse
Affiliation(s)
- Huawei Xia
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yinjia Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ling Yin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.,Department of Chemistry and Chemical Engineering, Jining University, Qufu, 273155, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Meng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jianan Ding
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
16
|
Nie HJ, Guo AD, Lin HX, Chen XH. Rapid and halide compatible synthesis of 2- N-substituted indazolone derivatives via photochemical cyclization in aqueous media. RSC Adv 2019; 9:13249-13253. [PMID: 35520758 PMCID: PMC9063774 DOI: 10.1039/c9ra02466b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022] Open
Abstract
A straightforward protocol for the rapid construction of privileged indazolone architectures suggests a new avenue of great importance to medicinal chemistry.
Collapse
Affiliation(s)
- Hui-Jun Nie
- Department of Chemistry
- Innovative Drug Research Center
- College of Sciences Shanghai University
- Shanghai
- China
| | - An-Di Guo
- Chinese Academy of Sciences Key Laboratory of Receptor Research
- Synthetic Organic & Medicinal Chemistry Laboratory
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Hai-Xia Lin
- Department of Chemistry
- Innovative Drug Research Center
- College of Sciences Shanghai University
- Shanghai
- China
| | - Xiao-Hua Chen
- Chinese Academy of Sciences Key Laboratory of Receptor Research
- Synthetic Organic & Medicinal Chemistry Laboratory
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| |
Collapse
|
17
|
Kim CJ, Hu X, Park SJ. Multimodal Shape Transformation of Dual-Responsive DNA Block Copolymers. J Am Chem Soc 2016; 138:14941-14947. [PMID: 27791376 DOI: 10.1021/jacs.6b07985] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the self-assembly and multimodal shape transformation of dual-responsive DNA di- and triblock copolymers. Dual-responsive DNA diblock copolymer was synthesized by coupling a thermoresponsive polymer, poly(N-isopropylacrylamide (PNIPAM), and an oligonucleotide. DNA-b-PNIPAM possesses thermoresponsive properties of PNIPAM as well as molecular recognition properties of DNA. Thus, they undergo reversible temperature-triggered transition at lower critical solution temperature (LCST) between molecular DNA and polymer micelles with high density DNA corona. The hybridization of DNA-b-PNIPAM and DNA-modified nanoparticles generates functional nanoparticles showing unique temperature-dependent aggregation and disaggregation behaviors due to the dual-responsive nature of DNA-b-PNIPAM. DNA triblock copolymers of DNA-b-PNIPAM-b-PMA were synthesized by introducing a hydrophobic block, poly(methyl acrylate) (PMA), to DNA/PNIPAM block copolymers, which form spherical micelles at room temperature. They are capable of nanoscale shape transformation through the combination of thermal trigger and DNA binding. DNA-b-PNIPAM-b-PMA micelles undergo sphere-to-cylinder shape changes above LCST due to the conformational change of PNIPAM. The shape change is reversible, and fast cylinder-to-sphere transition occurs when the temperature is lowered below LCST. The low temperature spherical morphology can also be accessed while keeping the temperature above LCST by introducing complementary DNA strands with single stranded overhang regions. These results demonstrate the multidimensional shape changing capability of DNA-b-PNIPAM-b-PMA enabled by the dual-responsive property.
Collapse
Affiliation(s)
- Chan-Jin Kim
- Department of Chemistry and Nano Science, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Xiaole Hu
- Department of Chemistry and Nano Science, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - So-Jung Park
- Department of Chemistry and Nano Science, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|
18
|
Lai J, Yu A, Yang L, Zhang Y, Shah BP, Lee KB. Development of Photoactivated Fluorescent N-Hydroxyoxindoles and Their Application for Cell-Selective Imaging. Chemistry 2016; 22:6361-7. [PMID: 27004772 PMCID: PMC5808866 DOI: 10.1002/chem.201600547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 01/07/2023]
Abstract
Photoactivatable fluorophores are essential tools for studying the dynamic molecular interactions within important biological systems with high spatiotemporal resolution. However, currently developed photoactivatable fluorophores based on conventional dyes have several limitations including reduced photoactivation efficiency, cytotoxicity, large molecular size, and complicated organic synthesis. To overcome these challenges, we herein report a class of photoactivatable fluorescent N-hydroxyoxindoles formed through the intramolecular photocyclization of substituted o-nitrophenyl ethanol (ONPE). These oxindole fluorophores afford excellent photoactivation efficiency with ultra-high fluorescence enhancement (up to 800-fold) and are small in size. Furthermore, the oxindole derivatives show exceptional biocompatibility by generating water as the only photolytic side product. Moreover, structure-activity relationship analysis clearly revealed the strong correlation between the fluorescent properties and the substituent groups, which can serve as a guideline for the further development of ONPE-based fluorescent probes with desired photophysical and biological properties. As a proof-of-concept, we demonstrated the capability of a new substituted ONPE that has an uncaging wavelength of 365-405 nm and an excitation/emission at 515 and 620 nm, for the selective imaging of a cancer cell line (Hela cells) and a human neural stem cell line (hNSCs).
Collapse
Affiliation(s)
- Jinping Lai
- Department of Chemistry and Chemical Biology, Institute for Advanced Materials, Devices and Nanotechnology (IAMDN), Rutgers University, Piscataway, NJ, 08854, USA
| | - An Yu
- Department of Chemistry and Chemical Biology, Institute for Advanced Materials, Devices and Nanotechnology (IAMDN), Rutgers University, Piscataway, NJ, 08854, USA
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Institute for Advanced Materials, Devices and Nanotechnology (IAMDN), Rutgers University, Piscataway, NJ, 08854, USA
| | - Yixiao Zhang
- Department of Chemistry and Chemical Biology, Institute for Advanced Materials, Devices and Nanotechnology (IAMDN), Rutgers University, Piscataway, NJ, 08854, USA
| | - Birju P Shah
- Department of Chemistry and Chemical Biology, Institute for Advanced Materials, Devices and Nanotechnology (IAMDN), Rutgers University, Piscataway, NJ, 08854, USA
| | - Ki Bum Lee
- Department of Chemistry and Chemical Biology, Institute for Advanced Materials, Devices and Nanotechnology (IAMDN), Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
19
|
Chae S, Lee S, Kim K, Jang SW, Sohn BH. Fluorescent supracolloidal polymer chains with quantum dots. Chem Commun (Camb) 2016; 52:6475-8. [DOI: 10.1039/c6cc01218c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We demonstrate the fabrication of fluorescent supracolloidal chains functionalized with quantum dots, which were polymerized from patched micelles of diblock copolymers by adjusting the polarity of the solvent. Supracolloidal random and block chains with green- and red-emitting quantum dots were also synthesized.
Collapse
Affiliation(s)
- Seungyong Chae
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | - Sanghwa Lee
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | - Kyungtae Kim
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | - Suk Woo Jang
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | | |
Collapse
|
20
|
Bao C, Zhu L, Lin Q, Tian H. Building biomedical materials using photochemical bond cleavage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1647-62. [PMID: 25655424 DOI: 10.1002/adma.201403783] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/02/2014] [Indexed: 05/06/2023]
Abstract
Light can be used as an external trigger to precisely determine where and when a process is initiated as well as how much of the process is being consumed. Phototriggers are a type of photoresponsive functional group that undergo an irreversible photolysis reaction by selectively breaking a chemical bond, enabling three fundamental functions: the photoactivation of fluorescent and bioactive molecules; the photocleavable degradation of macromolecular materials; and the photorelease of drugs, active groups, or surface charges from carriers and interfaces. With the expanded applications of light-controlled technology, particularly in living systems, new challenges and improvements of phototriggers are required to fulfill the demands for better sensitivity, faster kinetics, and more-demanding biomedical applications. Here, improvements to several conventional phototriggers are highlighted, and their notable, representative biomedical applications and their challenges are discussed.
Collapse
Affiliation(s)
- Chunyan Bao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, China
| | | | | | | |
Collapse
|
21
|
Kim JH, Kwon WJ, Sohn BH. Supracolloidal polymer chains of diblock copolymer micelles. Chem Commun (Camb) 2015; 51:3324-7. [DOI: 10.1039/c4cc09518a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Directional attraction with lateral repulsion between colloidal nanoparticles can create their supracolloidal chains.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Department of Chemistry
- Seoul National University
- Seoul
- Korea
| | | | | |
Collapse
|
22
|
Shiraishi Y, Tanaka H, Sakamoto H, Ichikawa S, Hirai T. Amino-substituted spirothiopyran as an initiator for self-assembly of gold nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra14752b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amino-substituted spirothiopyran promotes spontaneous aggregation of gold nanoparticles, producing the aggregates with tunable sizes and narrow size distributions.
Collapse
Affiliation(s)
- Yasuhiro Shiraishi
- Research Center for Solar Energy Chemistry
- Division of Chemical Engineering
- Graduate School of Engineering Science
- Osaka University
- Toyonaka 560-8531
| | - Haruki Tanaka
- Research Center for Solar Energy Chemistry
- Division of Chemical Engineering
- Graduate School of Engineering Science
- Osaka University
- Toyonaka 560-8531
| | - Hirokatsu Sakamoto
- Research Center for Solar Energy Chemistry
- Division of Chemical Engineering
- Graduate School of Engineering Science
- Osaka University
- Toyonaka 560-8531
| | - Satoshi Ichikawa
- Institute for NanoScience Design
- Osaka University
- Toyonaka 560-8531
- Japan
| | - Takayuki Hirai
- Research Center for Solar Energy Chemistry
- Division of Chemical Engineering
- Graduate School of Engineering Science
- Osaka University
- Toyonaka 560-8531
| |
Collapse
|
23
|
Shiraishi Y, Shirakawa E, Tanaka K, Sakamoto H, Ichikawa S, Hirai T. Spiropyran-modified gold nanoparticles: reversible size control of aggregates by UV and visible light irradiations. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7554-7562. [PMID: 24746341 DOI: 10.1021/am5009002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
UV or visible light irradiation of gold nanoparticles (AuNPs) modified with a thiol-terminated spiropyran dye promotes reversible aggregation or dispersion of AuNPs. This is facilitated by the electrostatic repulsion/attraction between the AuNPs controlled by the ring-opening/closing photoisomerization of the surface dyes. This photochemical method successfully produces aggregates of AuNPs with tunable sizes (20-340 nm) and narrow size distributions (standard deviation <34%) in a reversible manner. In addition, the formed aggregates, even when left in the dark condition, scarcely change their sizes because the stacking interaction between the ring-opened forms of surface dyes suppresses thermal reverse isomerization and maintains the attractive force between the AuNPs.
Collapse
Affiliation(s)
- Yasuhiro Shiraishi
- Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Shiraishi Y, Tanaka K, Shirakawa E, Sugano Y, Ichikawa S, Tanaka S, Hirai T. Light-Triggered Self-Assembly of Gold Nanoparticles Based on Photoisomerization of Spirothiopyran. Angew Chem Int Ed Engl 2013; 52:8304-8. [DOI: 10.1002/anie.201302430] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/18/2013] [Indexed: 02/03/2023]
|
25
|
Shiraishi Y, Tanaka K, Shirakawa E, Sugano Y, Ichikawa S, Tanaka S, Hirai T. Light-Triggered Self-Assembly of Gold Nanoparticles Based on Photoisomerization of Spirothiopyran. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Zhen SJ, Zhang ZY, Li N, Zhang ZD, Wang J, Li CM, Zhan L, Zhuang HL, Huang CZ. UV light-induced self-assembly of gold nanocrystals into chains and networks in a solution of silver nitrate. NANOTECHNOLOGY 2013; 24:055601. [PMID: 23306830 DOI: 10.1088/0957-4484/24/5/055601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Controllable assemblies of nanocrystals have attracted considerable interest because they often exhibit unique collective properties that differ from those displayed by individual nanocrystals and bulk samples. Reported approaches to prepare nanocrystal assemblies based on the molecular recognitions of small molecules or biomacromolecules are effective, but often require complicated and time-consuming modification processes of nanocrystals. In this paper, we demonstrate a simple and universal approach to assemble gold nanocrystals (AuNCs) into linear chains and complex networks in aqueous silver nitrate medium under irradiation with UV light without the involvement of any modification step. Due to the strong plasmon resonance coupling verified by finite difference time domain calculation, the assembled structures of AuNCs can be used as excellent surface-enhanced Raman scattering substrates and dark-field light-scattering bioimaging probes.
Collapse
Affiliation(s)
- Shu Jun Zhen
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Biradar SC, Kulkarni MG. One pot room temperature synthesis of robust gold nanochains. RSC Adv 2013. [DOI: 10.1039/c3ra22803g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Grzelczak M, Mezzasalma SA, Ni W, Herasimenka Y, Feruglio L, Montini T, Pérez-Juste J, Fornasiero P, Prato M, Liz-Marzán LM. Antibonding plasmon modes in colloidal gold nanorod clusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8826-8833. [PMID: 22044275 DOI: 10.1021/la203750d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The optical response of nanoplasmonic colloids in disperse phase is strictly related to their shape. However, upon self-assembly, new optical features, for example, bonding or antibonding modes, emerge as a result of the mutual orientations of nanoparticles. The geometry of the final assemblies often determines which mode is dominating in the overall optical response. These new plasmon modes, however, are mostly observed in silico, as self-assembly in the liquid phase leads to cluster formation with a broad range of particle units. Here we show that low-symmetry clustering of gold nanorods (AuNRs) in solution can also reveal antibonding modes. We found that UV-light irradiation of colloidal dispersions of AuNRs in N-methyl-2-pyrrolidone (NMP), stabilized by poly(vinylpyrrolidone) (PVP) results in the creation of AuNRs clusters with ladderlike morphology, where antibonding modes can be identified. We propose that UV irradiation induces formation of radicals in solvent molecules, which then promote cross-linking of PVP chains on the surface of adjacent particles. This picture opens up a number of relevant questions in nanoscience and is expected to find application in light induced self-assembly of particles with various compositions and morphologies.
Collapse
Affiliation(s)
- Marek Grzelczak
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhao H, Sterner ES, Coughlin EB, Theato P. o-Nitrobenzyl Alcohol Derivatives: Opportunities in Polymer and Materials Science. Macromolecules 2012. [DOI: 10.1021/ma201924h] [Citation(s) in RCA: 432] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hui Zhao
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
| | - Elizabeth S. Sterner
- Department of Polymer Science & Engineering, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003-4530, United States
| | - E. Bryan Coughlin
- Department of Polymer Science & Engineering, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003-4530, United States
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
- World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul, Korea
| |
Collapse
|
30
|
Gangula A, Chelli J, Bukka S, Poonthiyil V, Podila R, Kannan R, Rao AM. Thione–gold nanoparticles interactions: Vroman-like effect, self-assembly and sensing. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm35279f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Park HG, Oh JH, Lee JS. Assembly-based titration for the determination of monodisperse plasmonic nanoparticle concentrations using DNA. Anal Chem 2011; 83:4989-95. [PMID: 21615088 DOI: 10.1021/ac200764a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We present a stoichiometric titration method to determine the concentration of nanoparticles of various materials, sizes, and shapes. We have discovered that the optical response associated with the assembly formation is maximized when two types of nanoparticles attractively interact at a specific ratio, regardless of the particle type. Based on the reversible hybridization properties of two cDNA sequences used to assemble the particles, the assembly-based titration of various nanoparticles of unknown concentrations is visually demonstrated with high accuracy and reliability, which is analogous to the classic molecular titration method.
Collapse
Affiliation(s)
- Hyon-Gyu Park
- Department of Materials Science and Engineering and Institute for Biomedical Research, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea, 136-713
| | | | | |
Collapse
|