1
|
Zhang YY, Ghirardello M, Williams R, Diaz AS, Rojo J, Voglmeir J, Ramos-Soriano J, Galan MC. Microfluidics-Based Ionic Catch and Release Oligosaccharide Synthesis (ICROS-Microflow) to Expedite Glycosylation Chemistry. JACS AU 2024; 4:4328-4333. [PMID: 39610727 PMCID: PMC11600195 DOI: 10.1021/jacsau.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
A continuous microfluidic glycosylation strategy that requires no chromatography between steps and significantly expedites glycosylation chemistry is described. This practical approach incorporates the advantages of imidazolium-based chromatography-free purification and in situ mass spectrometry reaction monitoring to achieve fast reaction optimization and shorter reaction times. We demonstrate the utility of this strategy in the synthesis of a series of glycoside targets, including an α-(1,6)-trimannoside and a branched Man5 oligomannoside, within 1 day.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- School
of Chemistry, Cantock’s Close, University
of Bristol, Bristol BS8 1TS, U.K.
- Glycomics
and Glycan Bioengineering Research Center, College of Food Science
and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Mattia Ghirardello
- School
of Chemistry, Cantock’s Close, University
of Bristol, Bristol BS8 1TS, U.K.
| | - Ryan Williams
- School
of Chemistry, Cantock’s Close, University
of Bristol, Bristol BS8 1TS, U.K.
| | - Adrian Silva Diaz
- Instituto
de Investigaciones Químicas, CSIC—Universidad
de Sevilla, Avenue Américo
Vespucio 49, Seville 41092, Spain
| | - Javier Rojo
- Instituto
de Investigaciones Químicas, CSIC—Universidad
de Sevilla, Avenue Américo
Vespucio 49, Seville 41092, Spain
| | - Josef Voglmeir
- Glycomics
and Glycan Bioengineering Research Center, College of Food Science
and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Javier Ramos-Soriano
- Instituto
de Investigaciones Químicas, CSIC—Universidad
de Sevilla, Avenue Américo
Vespucio 49, Seville 41092, Spain
| | - M. Carmen Galan
- School
of Chemistry, Cantock’s Close, University
of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
2
|
Liu Y, Bineva-Todd G, Meek RW, Mazo L, Piniello B, Moroz O, Burnap SA, Begum N, Ohara A, Roustan C, Tomita S, Kjaer S, Polizzi K, Struwe WB, Rovira C, Davies GJ, Schumann B. A Bioorthogonal Precision Tool for Human N-Acetylglucosaminyltransferase V. J Am Chem Soc 2024; 146:26707-26718. [PMID: 39287665 PMCID: PMC11450819 DOI: 10.1021/jacs.4c05955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Correct elaboration of N-linked glycans in the secretory pathway of human cells is essential in physiology. Early N-glycan biosynthesis follows an assembly line principle before undergoing crucial elaboration points that feature the sequential incorporation of the sugar N-acetylglucosamine (GlcNAc). The activity of GlcNAc transferase V (MGAT5) primes the biosynthesis of an N-glycan antenna that is heavily upregulated in cancer. Still, the functional relevance and substrate choice of MGAT5 are ill-defined. Here, we employ protein engineering to develop a bioorthogonal substrate analog for the activity of MGAT5. Chemoenzymatic synthesis is used to produce a collection of nucleotide-sugar analogs with bulky, bioorthogonal acylamide side chains. We find that WT-MGAT5 displays considerable activity toward such substrate analogues. Protein engineering yields an MGAT5 variant that loses activity against the native nucleotide sugar and increases activity toward a 4-azidobutyramide-containing substrate analogue. By such restriction of substrate specificity, we show that the orthogonal enzyme-substrate pair is suitable to bioorthogonally tag glycoproteins. Through X-ray crystallography and molecular dynamics simulations, we establish the structural basis of MGAT5 engineering, informing the design rules for bioorthogonal precision chemical tools.
Collapse
Affiliation(s)
- Yu Liu
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| | - Ganka Bineva-Todd
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| | - Richard W. Meek
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Laura Mazo
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Beatriz Piniello
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Olga Moroz
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Sean A. Burnap
- Department
of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin
Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Nadima Begum
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - André Ohara
- Department
of Chemical Engineering and Imperial College Centre for Synthetic
Biology, Imperial College London, London SW7 2AZ, U.K.
| | - Chloe Roustan
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Sara Tomita
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Svend Kjaer
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Karen Polizzi
- Department
of Chemical Engineering and Imperial College Centre for Synthetic
Biology, Imperial College London, London SW7 2AZ, U.K.
| | - Weston B. Struwe
- Department
of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin
Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08020 Barcelona, Spain
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Benjamin Schumann
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| |
Collapse
|
3
|
Keenan T, Hatton NE, Porter J, Vendeville JB, Wheatley DE, Ghirardello M, Wahart AJC, Ahmadipour S, Walton J, Galan MC, Linclau B, Miller GJ, Fascione MA. Reverse thiophosphorylase activity of a glycoside phosphorylase in the synthesis of an unnatural Manβ1,4GlcNAc library. Chem Sci 2023; 14:11638-11646. [PMID: 37920340 PMCID: PMC10619541 DOI: 10.1039/d3sc04169g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
β-Mannosides are ubiquitous in nature, with diverse roles in many biological processes. Notably, Manβ1,4GlcNAc a constituent of the core N-glycan in eukaryotes was recently identified as an immune activator, highlighting its potential for use in immunotherapy. Despite their biological significance, the synthesis of β-mannosidic linkages remains one of the major challenges in glycoscience. Here we present a chemoenzymatic strategy that affords a series of novel unnatural Manβ1,4GlcNAc analogues using the β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase, BT1033. We show that the presence of fluorine in the GlcNAc acceptor facilitates the formation of longer β-mannan-like glycans. We also pioneer a "reverse thiophosphorylase" enzymatic activity, favouring the synthesis of longer glycans by catalysing the formation of a phosphorolysis-stable thioglycoside linkage, an approach that may be generally applicable to other phosphorylases.
Collapse
Affiliation(s)
- Tessa Keenan
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Natasha E Hatton
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jack Porter
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | | | - David E Wheatley
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Alice J C Wahart
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Sanaz Ahmadipour
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Julia Walton
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Bruno Linclau
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
- Department of Organic and Macromolecular Chemistry, Ghent University Campus Sterre, Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycosciences, Keele University Keele, Staffordshire ST5 5BG UK
| | - Martin A Fascione
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
4
|
Recent applications of ionic liquid-based tags in glycoscience. Carbohydr Res 2022; 520:108643. [PMID: 35977445 DOI: 10.1016/j.carres.2022.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
The functionalization of glycosides with ionic compounds such as ionic liquids provides enhanced polarity for the labelled glycans thanks to the presence of a permanent positive charge. The chemical derivatisation of glycans with ionic liquids constitutes an emerging strategy to boost the detection sensitivity in MS applications. This allows the straightforward monitoring and detection of the presence of labelled glycans in complex matrices and in those cases where very limited amounts of material were available such as in biological samples and chemoenzymatic reactions. The use of ionic liquid based derivatisation agents can be further exploited for the labelling of live cells via metabolic oligosaccharide engineering for the detection of cancer biomarkers and for the tuning of live cells-surface properties with implications in cancer prognosis and progression. In this mini-review we summarise the latest development of the ionic liquid based derivatisation agents in glycoscience focussing on their use for sensitive MS applications.
Collapse
|
5
|
Cao R, Li JX, Chen H, Cao C, Zheng F, Huang K, Chen YR, Flitsch SL, Liu L, Voglmeir J. Complete shift in glycosyl donor specificity in mammalian, but not C. elegans β1,4‐GalT1 Y286L mutants, enables the synthesis of N,N‐diacetyllactosamine. ChemCatChem 2022. [DOI: 10.1002/cctc.202101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ran Cao
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Jing-Xuan Li
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Huan Chen
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Cui Cao
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Feng Zheng
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Kun Huang
- Nanjing Agricultural University College of Food Science And Technology UNITED KINGDOM
| | - Ya-Ran Chen
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | | | - Li Liu
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Josef Voglmeir
- Nanjing Agricultural University College of Food Science And Technology 1 Weigang 210095 Nanjing CHINA
| |
Collapse
|
6
|
Fang W, Zhong K, Cheng J, Liu X, Liu C, Wang Z, Cao H. Capture‐Release
Strategy Facilitates Rapid Enzymatic Assembly of Oligosaccharides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wenyuan Fang
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
| | - Kan Zhong
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy Ocean University of China Qingdao Shandong 266003 China
| | - Jiansong Cheng
- College of Pharmacy Nankai University Tianjin 300071 China
| | - Xian‐Wei Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
| | - Chang‐Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an Shaanxi 710069 China
| | - Hongzhi Cao
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy Ocean University of China Qingdao Shandong 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao Shandong 266237 China
| |
Collapse
|
7
|
Calle B, Bineva-Todd G, Marchesi A, Flynn H, Ghirardello M, Tastan OY, Roustan C, Choi J, Galan MC, Schumann B, Malaker SA. Benefits of Chemical Sugar Modifications Introduced by Click Chemistry for Glycoproteomic Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2366-2375. [PMID: 33871988 PMCID: PMC7611619 DOI: 10.1021/jasms.1c00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Mucin-type O-glycosylation is among the most complex post-translational modifications. Despite mediating many physiological processes, O-glycosylation remains understudied compared to other modifications, simply because the right analytical tools are lacking. In particular, analysis of intact O-glycopeptides by mass spectrometry is challenging for several reasons; O-glycosylation lacks a consensus motif, glycopeptides have low charge density which impairs ETD fragmentation, and the glycan structures modifying the peptides are unpredictable. Recently, we introduced chemically modified monosaccharide analogues that allowed selective tracking and characterization of mucin-type O-glycans after bioorthogonal derivatization with biotin-based enrichment handles. In doing so, we realized that the chemical modifications used in these studies have additional benefits that allow for improved analysis by tandem mass spectrometry. In this work, we built on this discovery by generating a series of new GalNAc analogue glycopeptides. We characterized the mass spectrometric signatures of these modified glycopeptides and their signature residues left by bioorthogonal reporter reagents. Our data indicate that chemical methods for glycopeptide profiling offer opportunities to optimize attributes such as increased charge state, higher charge density, and predictable fragmentation behavior.
Collapse
Affiliation(s)
- Beatriz Calle
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Ganka Bineva-Todd
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Andrea Marchesi
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Helen Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Mattia Ghirardello
- School of Chemistry, Cantock’s Close, University of Bristol, BS8 1TS, United Kingdom
| | - Omur Y. Tastan
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Junwon Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - M. Carmen Galan
- School of Chemistry, Cantock’s Close, University of Bristol, BS8 1TS, United Kingdom
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT 06511, United States
| |
Collapse
|
8
|
Bulmer GS, Mattey AP, Parmeggiani F, Williams R, Ledru H, Marchesi A, Seibt LS, Both P, Huang K, Galan MC, Flitsch SL, Green AP, van Munster JM. A promiscuous glycosyltransferase generates poly-β-1,4-glucan derivatives that facilitate mass spectrometry-based detection of cellulolytic enzymes. Org Biomol Chem 2021; 19:5529-5533. [PMID: 34105582 PMCID: PMC8243248 DOI: 10.1039/d1ob00971k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023]
Abstract
Promiscuous activity of a glycosyltransferase was exploited to polymerise glucose from UDP-glucose via the generation of β-1,4-glycosidic linkages. The biocatalyst was incorporated into biocatalytic cascades and chemo-enzymatic strategies to synthesise cello-oligosaccharides with tailored functionalities on a scale suitable for employment in mass spectrometry-based assays. The resulting glycan structures enabled reporting of the activity and selectivity of celluloltic enzymes.
Collapse
Affiliation(s)
- Gregory S Bulmer
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, Manchester, UK.
| | - Ashley P Mattey
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, Manchester, UK.
| | - Fabio Parmeggiani
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, Manchester, UK. and Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milano, Italy
| | - Ryan Williams
- School of Chemistry, University of Bristol, Bristol, UK
| | - Helene Ledru
- School of Chemistry, University of Bristol, Bristol, UK
| | - Andrea Marchesi
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, Manchester, UK.
| | - Lisa S Seibt
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, Manchester, UK.
| | - Peter Both
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, Manchester, UK.
| | - Kun Huang
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, Manchester, UK.
| | | | - Sabine L Flitsch
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, Manchester, UK.
| | - Anthony P Green
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, Manchester, UK.
| | - Jolanda M van Munster
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, Manchester, UK. and Scotland's Rural College, Central Faculty, Edinburgh, UK
| |
Collapse
|
9
|
Flack EKP, Chidwick HS, Guchhait G, Keenan T, Budhadev D, Huang K, Both P, Mas Pons J, Ledru H, Rui S, Stafford GP, Shaw JG, Galan MC, Flitsch S, Thomas GH, Fascione MA. Biocatalytic Transfer of Pseudaminic Acid (Pse5Ac7Ac) Using Promiscuous Sialyltransferases in a Chemoenzymatic Approach to Pse5Ac7Ac-Containing Glycosides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emily K. P. Flack
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| | | | - Goutam Guchhait
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| | - Tessa Keenan
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| | - Darshita Budhadev
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| | - Kun Huang
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kindgom
| | - Peter Both
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kindgom
| | - Jordi Mas Pons
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kindgom
| | - Helene Ledru
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kindgom
| | - Shengtao Rui
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, United Kindgom
| | - Graham P. Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kindgom
| | - Jonathan G. Shaw
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, United Kindgom
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kindgom
| | - Sabine Flitsch
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kindgom
| | - Gavin H. Thomas
- Department of Biology, University of York, York YO10 5DD, United Kindgom
| | - Martin A. Fascione
- Department of Chemistry, University of York, York YO10 5DD, United Kindgom
| |
Collapse
|
10
|
Huang K, Marchesi A, Hollingsworth K, Both P, Mattey AP, Pallister E, Ledru H, Charnock SJ, Galan MC, Turnbull WB, Parmeggiani F, Flitsch SL. Biochemical characterisation of an α1,4 galactosyltransferase from Neisseria weaveri for the synthesis of α1,4-linked galactosides. Org Biomol Chem 2020; 18:3142-3148. [DOI: 10.1039/d0ob00407c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new α1,4 galactosyltransferase has been characterised and used for the synthesis of natural and non-natural cell surface trisaccharide antigens.
Collapse
|
11
|
Zhang YY, Senan AM, Wang T, Liu L, Voglmeir J. 1-(2-Aminoethyl)-3-methyl-1 H-imidazol-3-ium tetrafluoroborate: synthesis and application in carbohydrate analysis. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Reductive alkylation of the carbonyl group of carbohydrates with fluorescence or ionizing labels is a prerequisite for the sensitive analysis of carbohydrates by chromatographic and mass spectrometric techniques. Herein, 1-(2-aminoethyl)-3-methyl-1H-imidazol-3-ium tetrafluoroborate ([MIEA][BF4]) was successfully synthesized using tert-butyl N-(2-bromoethyl)carbamate and N-methylimidazole as starting materials. MIEA+ was then investigated as a multifunctional oligosaccharide label for glycan profiling and identification using LC-ESI-ToF and by MALDI-ToF mass spectrometry. The reductive amination of this diazole with carbohydrates was exemplified by labeling N-glycans from the model glycoproteins horseradish peroxidase, RNase B, and bovine lactoferrin. The produced MIEA+ glycan profiles were comparable to the corresponding 2AB labeled glycan derivatives and showed improved ESI-MS ionization efficiency over the respective 2AB derivatives, with detection sensitivity in the low picomol to the high femtomol range.
Collapse
Affiliation(s)
- Yao Y. Zhang
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Ahmed M. Senan
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Ting Wang
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Li Liu
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
12
|
Li T, Liu L, Wei N, Yang JY, Chapla DG, Moremen KW, Boons GJ. An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nat Chem 2019; 11:229-236. [PMID: 30792508 PMCID: PMC6399472 DOI: 10.1038/s41557-019-0219-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/20/2019] [Indexed: 11/09/2022]
Abstract
An automated platform that can synthesize a wide range of complex carbohydrates will greatly increase their accessibility and should facilitate progress in glycoscience. Here we report a fully automated process for enzyme-mediated oligosaccharide synthesis that can give easy access to different classes of complex glycans including poly-N-acetyllactosamine derivatives, human milk oligosaccharides, gangliosides and N-glycans. Our automated platform uses a catch and release approach in which glycosyltransferase-catalysed reactions are performed in solution and product purification is accomplished by solid phase extraction. We developed a sulfonate tag that can easily be installed and enables highly efficient solid phase extraction and product release using a single set of washing conditions, regardless of the complexity of the glycan. Using this custom-built synthesizer, as many as 15 reaction cycles can be performed in an automated fashion without a need for lyophilization or buffer exchange steps.
Collapse
Affiliation(s)
- Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Na Wei
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA. .,Department of Chemistry, University of Georgia, Athens, GA, USA. .,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Zhao X, Cai P, Sun C, Pan Y. Application of ionic liquids in separation and analysis of carbohydrates: State of the art and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Huang K, Parmeggiani F, Ledru H, Hollingsworth K, Mas Pons J, Marchesi A, Both P, Mattey AP, Pallister E, Bulmer GS, van Munster JM, Turnbull WB, Galan MC, Flitsch SL. Enzymatic synthesis of N-acetyllactosamine from lactose enabled by recombinant β1,4-galactosyltransferases. Org Biomol Chem 2019; 17:5920-5924. [DOI: 10.1039/c9ob01089k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synthesis of LacNAc with reversible GalTs.
Collapse
|
15
|
Sasaki N, Nokami T, Itoh T. Synthesis of a TMG-chitotriomycin Precursor Based on Electrolyte-free Electrochemical Glycosylation Using an Ionic Liquid Tag. CHEM LETT 2017. [DOI: 10.1246/cl.170126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Norihiko Sasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552
| | - Toshiyuki Itoh
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552
| |
Collapse
|
16
|
Sittel I, Galan MC. Imidazolium-labeled glycosides as probes to harness glycosyltransferase activity in human breast milk. Org Biomol Chem 2017; 15:3575-3579. [PMID: 28401975 PMCID: PMC5708356 DOI: 10.1039/c7ob00550d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/06/2017] [Indexed: 11/21/2022]
Abstract
Imidazolium-labeled (ITag-) glycosides are used to harness the glycosyltransferase activity directly from human breast milk. The covalently attached ionic labels provide a bifunctional chemical handle that is used to monitor reaction progress by MS, as well as aid in product purification from complex mixtures. The technology is exemplified in the synthesis of biologically relevant oligosaccharide analogs, LacNAc-ITag, ITag-Lewisx and ITag-Lewisa, in a matter of days from human breast milk without having to isolate specific enzymes.
Collapse
Affiliation(s)
- I Sittel
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - M C Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
17
|
Nokami T, Sasaki N, Isoda Y, Itoh T. Ionic-Liquid Tag with Multiple Functions in Electrochemical Glycosylation. ChemElectroChem 2016. [DOI: 10.1002/celc.201600311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Toshiki Nokami
- Department of Chemistry and Biotechnology; Graduate School of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
- Center for Research on Green and Sustainable Chemistry; Faculty of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
| | - Norihiko Sasaki
- Department of Chemistry and Biotechnology; Graduate School of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
| | - Yuta Isoda
- Department of Chemistry and Biotechnology; Graduate School of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
| | - Toshiyuki Itoh
- Department of Chemistry and Biotechnology; Graduate School of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
- Center for Research on Green and Sustainable Chemistry; Faculty of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
| |
Collapse
|
18
|
Benito-Alifonso D, Tremell S, Sadler JC, Berry M, Galan MC. Imidazolium-tagged glycan probes for non-covalent labeling of live cells. Chem Commun (Camb) 2016; 52:4906-9. [DOI: 10.1039/c5cc10040b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use imidazolium tagged-mannosamine derivative for the non-covalent, rapid and site-specific labeling of sialic acid containing glycoproteins using commercial N-nitrilotriacetate fluorescent reagents in a range of live cells is reported.
Collapse
Affiliation(s)
| | | | | | - Monica Berry
- School of Physics
- University of Bristol
- NSQI
- Bristol BS8 1F
- UK
| | | |
Collapse
|
19
|
Sittel I, Galan MC. Chemo-enzymatic synthesis of imidazolium-tagged sialyllactosamine probes. Bioorg Med Chem Lett 2015; 25:4329-32. [DOI: 10.1016/j.bmcl.2015.07.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
|
20
|
Henderson AS, Medina S, Bower JF, Galan MC. Nucleophilic Aromatic Substitution (SNAr) as an Approach to Challenging Carbohydrate–Aryl Ethers. Org Lett 2015; 17:4846-9. [DOI: 10.1021/acs.orglett.5b02413] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander S. Henderson
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - Sandra Medina
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - John F. Bower
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
21
|
Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem Rev 2015; 115:6811-53. [PMID: 26121409 DOI: 10.1021/cr500719h] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angeles Farrán
- †Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 4, 28040 Madrid, Spain
| | - Chao Cai
- ‡Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Manuel Sandoval
- §Escuela de Química, Universidad Nacional of Costa Rica, Post Office Box 86, 3000 Heredia, Costa Rica
| | - Yongmei Xu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - María J Hernáiz
- ▽Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Pz/Ramón y Cajal s/n, 28040 Madrid, Spain
| | | |
Collapse
|
22
|
Henderson AS, Bower JF, Galan MC. Carbohydrate-based N-heterocyclic carbenes for enantioselective catalysis. Org Biomol Chem 2014; 12:9180-3. [DOI: 10.1039/c4ob02056a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Versatile syntheses of C2-linked and C2-symmetric carbohydrate-based NHC·HCls from functionalised amino-carbohydrate derivatives are reported. The corresponding Rh complexes were evaluated in asymmetric hydrosilylation of ketones.
Collapse
Affiliation(s)
| | - John F. Bower
- School of Chemistry
- University of Bristol
- Bristol BS8 1TS, UK
| | | |
Collapse
|
23
|
Ho TD, Zhang C, Hantao LW, Anderson JL. Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 2013; 86:262-85. [PMID: 24205989 DOI: 10.1021/ac4035554] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tien D Ho
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States
| | | | | | | |
Collapse
|
24
|
Galan MC, Jones RA, Tran AT. Recent developments of ionic liquids in oligosaccharide synthesis: the sweet side of ionic liquids. Carbohydr Res 2013; 375:35-46. [DOI: 10.1016/j.carres.2013.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 11/29/2022]
|
25
|
Sittel I, Tran AT, Benito-Alifonso D, Galan MC. Combinatorial ionic catch-and-release oligosaccharide synthesis (combi-ICROS). Chem Commun (Camb) 2013; 49:4217-9. [DOI: 10.1039/c2cc37164b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Galan MC, Tran AT, Bromfield K, Rabbani S, Ernst B. Ionic-liquid-based MS probes for the chemo-enzymatic synthesis of oligosaccharides. Org Biomol Chem 2012; 10:7091-7. [DOI: 10.1039/c2ob25855b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Galan MC, Tran AT, Boisson J, Benito D, Butts C, Eastoe J, Brown P. [R4N] [AOT]: A Surfactant Ionic Liquid as a Mild Glycosylation Promoter. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.609626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- M. Carmen Galan
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Anh Tuan Tran
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Julien Boisson
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - David Benito
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Craig Butts
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Julian Eastoe
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Paul Brown
- a School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| |
Collapse
|
28
|
Tran AT, Burden R, Racys DT, Carmen Galan M. Ionic catch and release oligosaccharide synthesis (ICROS). Chem Commun (Camb) 2011; 47:4526-8. [DOI: 10.1039/c0cc05580h] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|